

Article

A Naphthalimide–Sulfonylhydrazine Conjugate as a Fluorescent Chemodosimeter for Hypochlorite

Yasuhiro Shiraishi *, Rikako Nakatani, Shunsuke Takagi, Chiharu Yamada and Takayuki Hirai

Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka 560-8531, Japan; rikaco053cgda@gmail.com (R.N.); s.takagi@cheng.es.osaka-u.ac.jp (S.T.); chiharu-y@tech-maseka.co.jp (C.Y.); hirai@cheng.es.osaka-u.ac.jp (T.H.)

* Correspondence: shiraish@cheng.es.osaka-u.ac.jp; Tel.: +81-6-6850-6271

Supplementary Material

CONTENTS

	Page
Table S1. TD-DFT calculation results of 1 and 2	2
Figure S1. ¹ H NMR chart of 3	3
Figure S2. ¹³ C NMR chart of 3	4
Figure S3. FAB(+)-MS chart of 3	5
Figure S4. ¹ H NMR chart of 1	6
Figure S5. ¹³ C NMR chart of 1	7
Figure S6. ¹ H– ¹ H COSY chart of 1	8
Figure S7. FAB(+)-MS chart of 1	9
Figure S8. TLC results	.10
Figure S9. FAB(+)-MS chart of the product by the reaction of 1 with ClO ⁻	.11
Figure S10. FAB(–)-MS chart of the product by the reaction of 1 with ClO-	.12
Cartesian coordinates of 1	.13
Cartesian coordinates of 2	.14

Compound	Main orbital transition (CIC ^[a])	$F(eV)[\lambda(nm)]$	f
singlet state (S_n) of 1 and 2 .			
Table 1. Calculated excitation	energy (E), wavelength (λ), and osci	llator strength (f) for lo	w-laying

Compound		Main orbital transition (CIC ^[a])	<i>E</i> (eV) [λ (nm)]	f
	$S_0 \mathop{\rightarrow} S_1$	HOMO \rightarrow LUMO (0.68894)	3.0808 [402.44]	0.0568
	$S_0 \rightarrow S_2$	HOMO-1 \rightarrow LUMO (0.61028)	3.6172 [342.76]	0.0555
1	$S_0 \to S_3$	HOMO-3 \rightarrow LUMO (0.68524)	3.6748 [337.39]	0.0001
1	$S_0 \rightarrow S_4$	HOMO \rightarrow LUMO+1 (0.47616)	4.0263 [307.93]	0.3585
	$S_0 \rightarrow S_5$	HOMO-2 \rightarrow LUMO (0.42519)	4.0889 [303.22]	0.1647
	$S_0 \rightarrow S_6$	HOMO-6 \rightarrow LUMO (0.54185)	4.1812 [296.53]	0.0128
	$S_0 \rightarrow S_1$	HOMO \rightarrow LUMO (0.69654)	2.9771 [416.46]	0.1315
	$S_0 \rightarrow S_2$	HOMO-1 \rightarrow LUMO (0.68201)	3.3435 [370.82]	0.0003
2	$S_0 \rightarrow S_3$	HOMO-2 \rightarrow LUMO (0.60894)	3.7187 [333.41]	0.0112
2	$S_0 \to S_4$	HOMO-4 \rightarrow LUMO (0.44525)	3.8193 [324.62]	0.0093
	$S_0 \to S_5$	HOMO-2 \rightarrow LUMO (0.31200)	3.8759 [319.89]	0.0104
	$S_0 \rightarrow S_6$	HOMO-3 \rightarrow LUMO (0.48423)	4.0390 [306.97]	0.0002

 ${}^{[a]}\operatorname{CI}$ expansion coefficients for the main transitions.

Figure S1. ¹H NMR chart of 3-formyl-4-hydroxy-N-butyl-1,8-naphthalimide (3) (10 mM, CDCl₃, 400 MHz).

Figure S2. ¹³C NMR chart of 3-formyl-4-hydroxy-N-butyl-1,8-naphthalimide (3) (30 mM, CDCl₃, 400 MHz).

Figure S3. FAB(+)-MS chart of 3-formyl-4-hydroxy-*N*-butyl-1,8-naphthalimide (3).

Figure S5. ¹³C NMR chart of 1 (30 mM, DMSO-d₆, 100 MHz).

Figure S6. ¹H–¹H COSY chart of **1** (30 mM, DMSO–d₆, 400 MHz). Colored circles indicate the observed cross peaks. The texts next to the circle mean the coupling protons.

Figure S7. FAB(+)-MS chart of 1.

Figure S8. TLC results of (left) **1**, (center) the sample after the reaction of **1** with ClO⁻, and (right) **3**, developed in a *n*-hexane/EtOAc (1/1 v/v) mixture under irradiation of 254 nm light.

Figure S9. FAB(+)-MS chart of the crude product obtained by the reaction of 1 with ClO⁻.

Figure S10. FAB(–)-MS chart of the crude product obtained by the reaction of 1 with ClO-.

Cartesian Coordinates (in Å) of **1** (DFT/B3LYP/6–31G+(d))

С	-3.25411	2.605044	-0.88675	С	6.90641	1.531296	-0.14101
С	-2.05898	2.943694	-1.51833	С	6.148023	2.233449	0.795648
С	-0.93559	2.127629	-1.37515	С	4.964348	1.683854	1.287869
С	-0.99194	0.962263	-0.59491	С	4.539053	0.431932	0.84343
С	-2.20598	0.618915	0.04204	С	6.604517	3.576983	1.27266
С	-3.33846	1.438922	-0.11468	Н	-4.1345	3.255625	-0.99476
С	0.126593	0.131163	-0.4265	Н	-2.00076	3.855607	-2.13073
С	0.048192	-1.01681	0.363675	Н	0.003396	2.400626	-1.87892
С	-1.14898	-1.35173	0.993463	Н	-1.20405	-2.25243	1.622523
С	-2.28271	-0.5453	0.828239	Н	-5.52989	-1.95417	-0.29607
С	-3.57422	-0.87807	1.53568	Н	-6.35033	-1.63537	1.294715
Ν	-4.74684	-0.35998	0.826877	Н	-7.24499	0.516243	0.401762
С	-4.61714	1.082117	0.604185	Н	-6.42454	0.197445	-1.18903
С	-5.87819	-1.16262	0.404575	Н	-7.73669	-1.9099	-1.4431
С	-6.89669	-0.27531	-0.29889	Н	-8.55714	-1.59111	0.147693
С	-8.08499	-1.11835	-0.74245	Н	-9.9719	-0.84714	-1.77006
С	-9.1035	-0.23104	-1.44591	Н	-9.45179	0.560505	-0.74526
0	-5.43996	1.893646	0.955844	Н	-8.63135	0.241707	-2.33605
0	-3.63387	-1.50092	2.569007	Н	1.159207	1.268774	-1.53751
0	1.294353	0.446457	-1.0372	Н	1.062825	-2.70131	1.139071
С	1.123547	-1.79643	0.516583	Н	3.237638	-3.12207	0.679495
N	2.206526	-1.49463	-0.05235	Н	7.07911	-0.27429	-1.32428
N	3.293945	-2.28299	0.102279	Н	7.83992	1.96478	-0.52915
S	4.751668	-1.87677	-0.66352	Н	4.366251	2.237649	2.02651
С	5.297441	-0.27022	-0.09323	Н	3.605581	-0.00158	1.231629
0	4.549681	-1.83693	-2.09883	Н	7.561196	3.844176	0.770524
0	5.757615	-2.87135	-0.34512	Н	5.831751	4.339459	1.027237
С	6.481085	0.279434	-0.58553	Н	6.759922	3.546227	2.374328

Cartesian Coordinates (in Å) of **2** (DFT/B3LYP/6–31G+(d))

С	-0.72245	2.754853	0.405555	0	3.994438	1.395424	-0.72296
С	0.407753	3.470125	0.014469	С	4.110721	-1.32547	-0.41461
С	1.606645	2.801542	-0.23876	0	5.093187	-0.70987	-0.75381
С	1.691863	1.40734	-0.10102	0	4.171562	-2.65389	-0.26677
С	0.543513	0.683505	0.292487	Н	-1.66284	3.286518	0.612924
С	-0.66537	1.360978	0.535597	Η	0.355036	4.563408	-0.09487
С	2.888404	0.713229	-0.33913	Η	2.493647	3.373137	-0.54942
С	2.950522	-0.67263	-0.18453	Н	1.873414	-2.47495	0.336062
С	1.817865	-1.384	0.206721	Η	-2.54108	-1.75195	-1.23632
С	0.608618	-0.71456	0.43592	Н	-3.3172	-2.30332	0.312551
С	-0.6147	-1.47012	0.896178	Н	-4.44415	-0.0881	0.536065
Ν	-1.85982	-0.80206	0.509876	Η	-3.66804	0.463271	-1.01281
С	-1.87322	0.58028	0.99465	Н	-4.79052	-1.39867	-2.23772
С	-2.92984	-1.42251	-0.24682	Н	-5.56664	-1.95003	-0.68885
С	-4.05539	-0.41754	-0.45343	Η	-7.12617	-0.5405	-2.03567
С	-5.17928	-1.06923	-1.24823	Н	-6.6936	0.265191	-0.46534
С	-6.30484	-0.06425	-1.45483	Η	-5.91748	0.816559	-2.01421
0	-2.75109	1.04295	1.683518	Η	3.762498	2.337813	-0.77672
0	-0.57165	-2.50786	1.513028	Η	5.085356	-2.90728	-0.48021