

Pyridinyl Conjugate of UiO-66-NH₂ as Chemosensor for the Sequential Detection of Iron and Pyrophosphate Ion in Aqueous Media

Aasif Helal ^{1,*}, Md. Eyasin Arafat ¹ and Mohammad Mizanur Rahman ²

- ¹ Center of Research Excellence in Nanotechnology, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia; g201707550@kfupm.edu.sa
- ² Center of Research Excellence in Corrosion, King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia; mrahman@kfupm.edu.sa
- * Correspondence: aasifh@kfupm.edu.sa; Tel.: +966-013-860-7532

Received: 7 October 2020; Accepted: 23 November 2020; Published: date

1. Characterization of H₂L

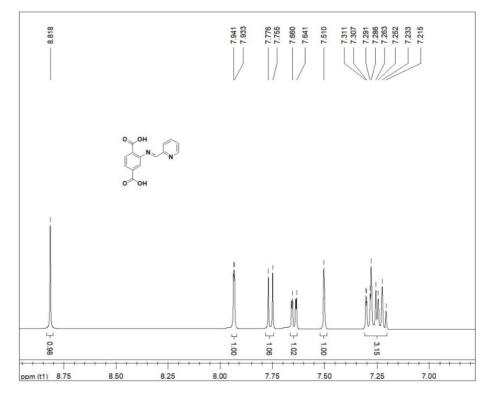


Figure S1. ¹H NMR spectrum of H₂L in DMSO-*d*₆ solution at 400 MHz.

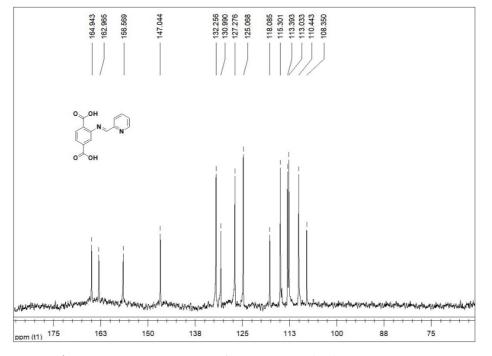


Figure S2. ¹³C NMR spectrum of H₂L in DMSO-*d*₆ solution at 400 MHz.

2. Characterization of UiO-66-N-Py

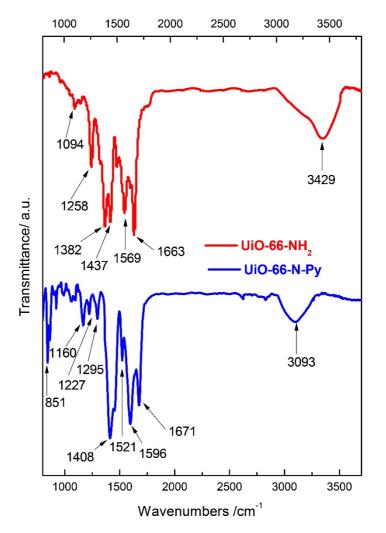


Figure S3. FTIR spectra of UiO-66-N-Py and UiO-66-NH2.

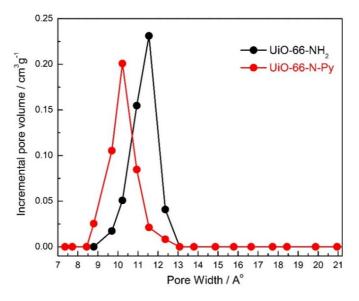


Figure S4. DFT adsorption pore-size distribution of UiO-66-N-Py and UiO-66-NH2.

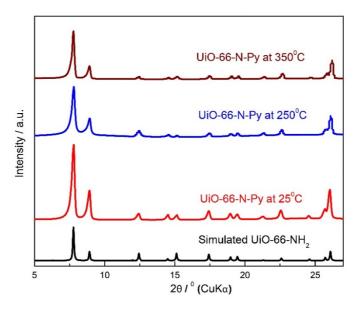


Figure S5. Thermal stability of UiO-66-N-Py at different temperatures.

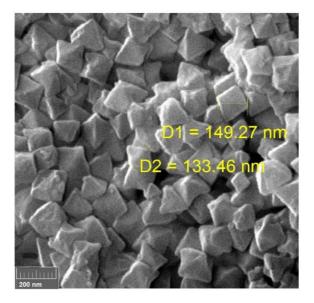


Figure S6. SEM image of UiO-66-N-Py.

3. Emission Properties of UiO-66-N-Py

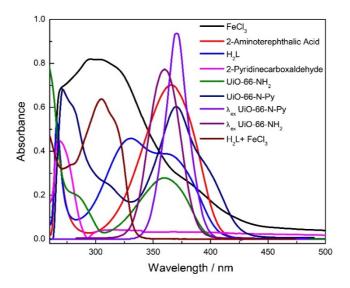


Figure S7. UV-vis spectra of UiO-66-N-Py, UiO-66-NH2, linkers, and FeCl3 in water.

The emission spectra were corrected for the inner filter effect by using the following correction factor:

$$F_{corr} = F_0 x 10^{(A_{ex}l_{ex} + A_{em}l_{em})} \tag{1}$$

where F_{corr} is the corrected fluorescence intensity, A_{ex} is the absorbance at the excitation wavelength, l_{ex} is the penetration depth of the light into the sample, A_{em} is the absorbance over the emission wavelength and l_{em} is the emission path length [1].

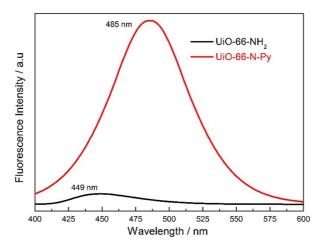


Figure S8. The fluorescence emission spectra of UiO-66-NH₂ and UiO-66-N-Py. (λ_{ex} = 341nm).

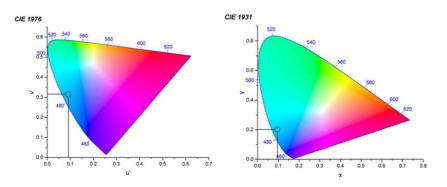
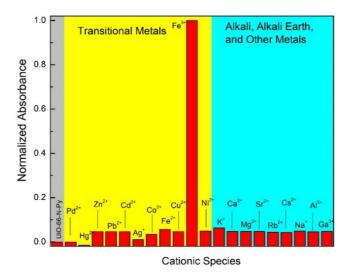



Figure S9. Chromaticity diagram of UiO-66-N-Py dispersion in water.

4. Cation Sensing Properties of UiO-66-N-Py

Figure S10. Change in the normalized absorbance of UiO-66-N-Py at 315 in water upon addition of 200 μ L of different metal cations (10⁻² M).

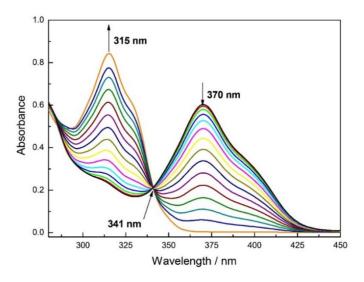


Figure S11. Changes in UV-vis spectra of UiO-66-N-Py with the incremental addition of FeCl₃ (10^{-2} M) in water.

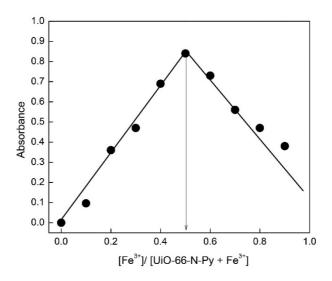


Figure S12. Job's plot for UiO-66-N-Py with FeCl $_3$ in water.

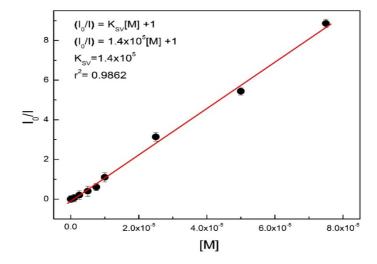
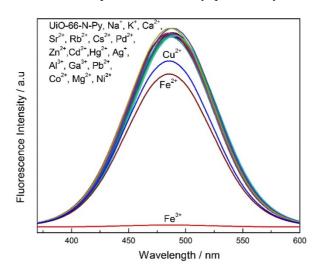



Figure S13. Stern-Volmer plot of UiO-66-N-Py quenched by FeCl₃ in water.

Figure S14. Changes in emission spectra of UiO-66-N-Py upon addition of 200 μ L of different metal cations (10⁻² M) in water. (λ_{ex} = 341 nm).

Figure S15. Competitive metal ion selectivity of UiO-66-N-Py: Bars indicate the fluorescence intensity (341 nm excitation, 485 nm emission). Salts of various metal ions (10^{-2} M) were added to UiO-66-N-Py and Fe³⁺ (10^{-2} M) (a) UiO-66-N-Py only, (b) Ag⁺ + Fe³⁺, (c) Pb²⁺ + Fe³⁺, (d) Zn²⁺ + Fe³⁺, (e) Mg²⁺ + Fe³⁺, (f) Fe³⁺ + Cu²⁺, (g) K⁺ + Fe³⁺, (h) Co²⁺ + Fe³⁺, (i) Al³⁺ + Fe³⁺, (j) Fe²⁺ + Fe³⁺, (k) Na⁺ + Fe³⁺, (l) Cd²⁺ + Fe³⁺, (m) Sr²⁺ + Fe³⁺, (n) Rb⁺ + Fe³⁺, (o) Pd²⁺ + Fe³⁺, (p) Ni²⁺ + Fe³⁺, (q) Hg²⁺ + Fe³⁺, (r) Ga³⁺ + Fe³⁺, (s) Cs⁺ + Fe³⁺, (t) Ca²⁺ + Fe³⁺ in water.

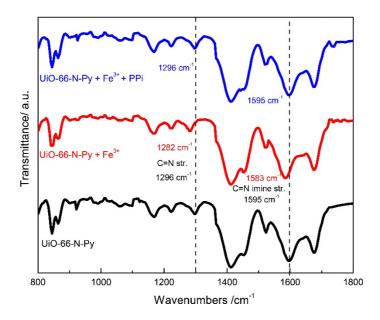
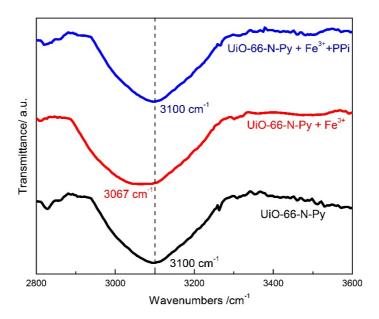



Figure S16. Part of FTIR spectra for UiO-66-N-Py before and after sensing experiments with Fe³⁺.

Figure S17. Part of FTIR spectra for UiO-66-N-Py before and after sensing experiments with Fe³⁺ and PPi.

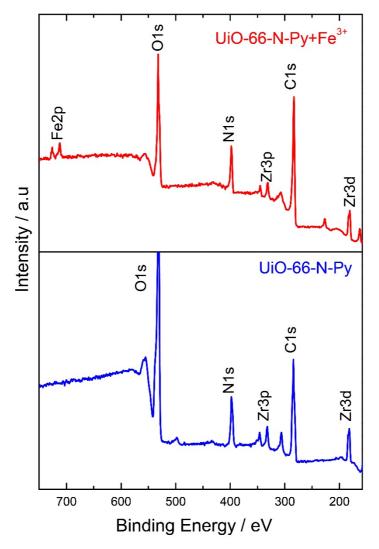
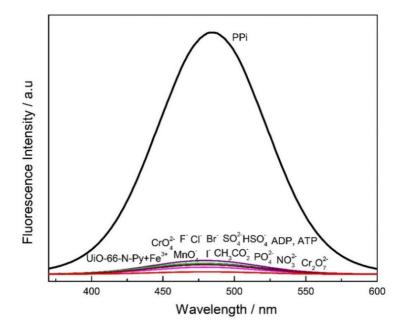
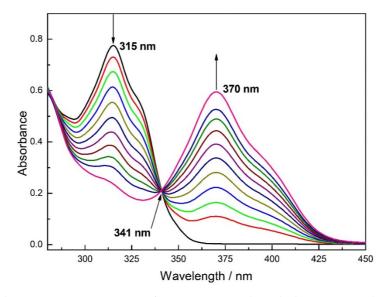




Figure S18. XPS of UiO-66-N-Py and UiO-66-N-Py+Fe³⁺.

5. Anion Sensing Properties of UiO-66-N-Py+Fe³⁺

Figure S19. Changes in emission spectra of UiO-66-N-Py-Fe³⁺ upon addition of 200 μ L of different anionic species (10⁻² M) in water. (λ_{ex} = 341 nm).

Figure S20. Changes in UV-vis spectra of UiO-66-N-Py+Fe³⁺ with the incremental addition of PPi (10^{-2} M) in water.

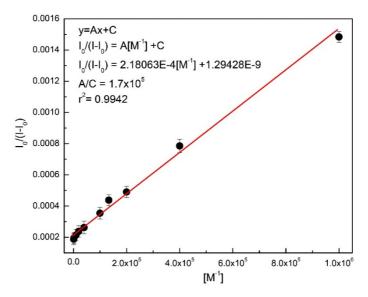


Figure S21. Binding constant calculation of UiO-66-N-Py+Fe³⁺ with PPi in water.

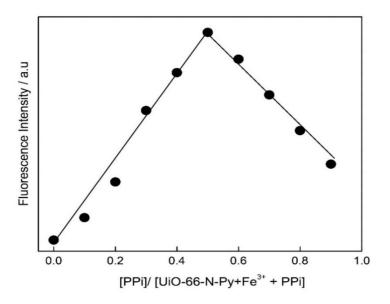
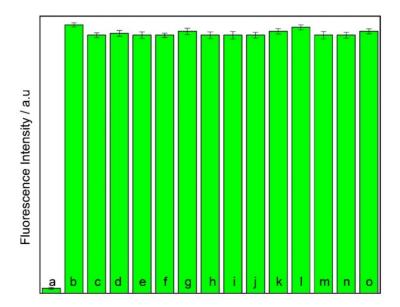
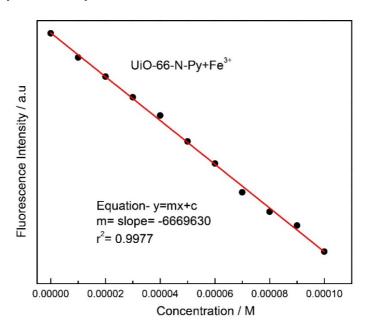
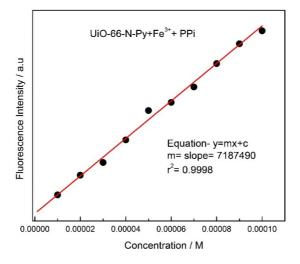



Figure S22. Job's plot for UiO-66-N-Py + Fe³⁺ with PPi in water.


Figure S23. Competitive anion selectivity of UiO-66-N-Py+Fe³⁺: Bars indicate the fluorescence intensity (341 nm excitation, 485 nm emission). Various anions (10⁻² M) were added to UiO-66-N-Py+Fe³⁺and PPi (10⁻² M) (a) UiO-66-N-Py+Fe³⁺ only, (b) F^- + PPi, (c) Cl⁻ + PPi, (d) Br^- + PPi, (e) I⁻ + PPi, (f) CH₃CO₂⁻ + PPi, (g) MnO₄⁻ + PPi, (h) NO₃²⁻ + PPi, (i) PO₄²⁻ + PPi, (j) SO₄²⁻ + PPi, (k) HSO₄⁻ + PPi, (l) Cr₂O₇²⁻ + PPi, (m) CrO₄²⁻ + PPi, (n) ADP + PPi, (o) ATP + PPi in water.

6. Determination of the detection limit [2]


The detection limit was calculated based on the fluorescence quenching titration experiments. The fluorescence emission spectrum of UiO-66-N-Py and UiO-66-N-Py+Fe³⁺ was measured six times from which the standard deviation of the blank measurement was achieved. To gain the slope, the fluorescence intensity at 485 nm was plotted as a concentration of the analytes. So the detection limit was calculated with the following equation:

Detection limit =
$$3\sigma/k$$
 (2)

where σ is the standard deviation of blank measurement, k is the slope between the normalized fluorescence intensity versus analytes concentrations.

Figure S24. Linear region of fluorescence intensity ($\lambda_{ex} = 341 \text{ nm}$ and $\lambda_{em} = 485 \text{ nm}$) for UiO-66-N-Py suspensions in water upon incremental addition of Fe³⁺ solutions.

Figure 25. Linear region of fluorescence intensity (λ_{ex} = 341 nm and λ_{em} = 485 nm) for UiO-66-N-Py+Fe³⁺ suspensions in water upon incremental addition of PPi solutions.

Blank Readings	Fe ³⁺	PPi
1 Fluorescence Intensit	y 1027.495	19.23888
2 Fluorescence Intensit	y 1027.305	19.74356
3 Fluorescence Intensit	y 1027.525	19.94235
4 Fluorescence Intensit	y 1028.195	20.3923
5 Fluorescence Intensit	y 1028.295	20.7681
6 Fluorescence Intensit	y 1028.095	20.9871
Standard Deviation (σ)	0.42415	0.72594
Slope (k)	$6669630 \pm 254861 \ \mu M$	$7187490 \pm 364513 \ \mu M$
Detection limit (3 σ/k)	0.19 μM /	0.3 μM /
	10 ppb	50 ppb

Table 1. Calculation of the Limit of Detection (LOD).

7. pH Properties of UiO-66-N-Py

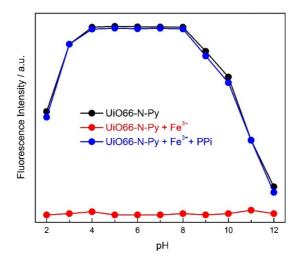


Figure S26. Effect of pH on the emission intensities at 485 nm of UiO-66-N-Py, in H₂O (λ_{ex} = 341 nm).

References:

- 1. Sunish, K.S.; Benjamin, R.; Ryan, P.S.; Jędrzej, S.; Kenneth, P.G.; Matthew F.P.; Ronald P.S. Photophysics of Untethered ZnTPP Fullerene Complexes in Solution. *J. Phys. Chem. A* **2011**, *115*, 12217–12227.
- 2. Lv, R.; Wang, J.; Zhang, Y.; Li, H.; Yang, L.; Liao, S.; Gu, W.; Liu, X. An amino-decorated dual-functional metal–organic framework for highly selective sensing of Cr(III) and Cr(VI) ions and detection of nitroaromatic explosives. *J. Mater. Chem. A* **2016**, *4*, 15494-15500.