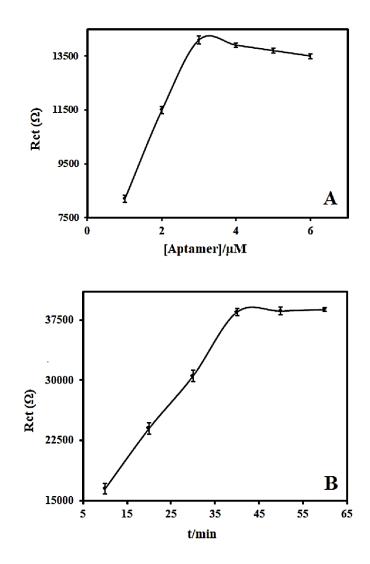


Supplementary Material Sensitive Electrochemical Detection of Tryptophan Using a Hemin/G-Quadruplex Aptasensor


Ayemeh Bagheri Hashkavayi ¹, Jahan Bakhsh Raoof ² and Ki Soo Park ^{1,*}

- ¹ Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Korea; elnazbagheri@konkuk.ac.kr
- ² Electroanalytical Chemistry Research Laboratory, Department of Analytical Chemistry, Faculty of Chemistry, University of Mazandaran, Babolsar 47416-95447, Iran; j.raoof@umz.ac.ir
- * Correspondence: akdong486@konkuk.ac.kr

Received: 13 September 2020; Accepted: 12 October 2020; Published: date

Figure S1. FE-SEM images of AuNPs/SPE. The measured particle size is indicated in yellow color. The scale bar is 500 nm.

Figure S2. Optimization of the prepared aptasensor (Apt/DGNs/Fe₃O₄@SiO₂/DABCO/SPE). (**A**) Optimization of aptamer concentration for preparation of aptasensor: 1 μ M (a), 2 μ M (b), 3 μ M (c), 4 μ M (d), 5 μ M (e), and 6 μ M (f). (**B**) Optimization of incubation time for the interaction of aptamer (3 μ M) with Trp (0.9 nM).

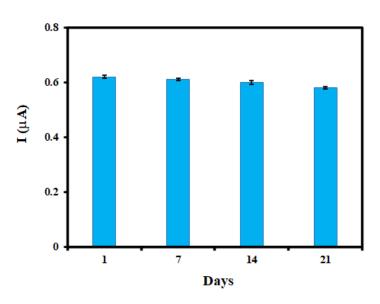


Figure S3. Stability of the prepared aptasensor.

Table S1. Analysis of Trp aptamer sequence by QGRS Mapper software.

Length	Quadruplex forming G-rich sequences (QGRS)	G-Score*
17	GGTTAGGTCAGGTTTGG	21

* The G-score provided by QGRS Mapper is a criterion to forecast how likely QGRS is to form a stable quadruplex structure. It is known that G-quadruplexes with G scores \geq 19 has a P-value of lower than 0.05, and thus 19 is used as the threshold to identify significant G-quadruplexes.

Table S2. Analysis of human serum samples with Trp at different concentrations.

Sample	Added (nM)	Detected (nM)	CV (%)* (n = 3)	Accuracy (%)
1	0.04	0.036	1.6	10
2	7	6.93	1.2	1
3	100	105	0.9	5

*CV (coefficient of variation).