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Abstract: A cobalt (II) oxide/carboxylic acid functionalized multiwalled carbon nanotube
(CoO/COOH-MWNT) composite was fabricated for the biochemical detection of dopamine (DA).
CoO particles were tethered to COOH-MWNTs by sonication. The current response versus different
concentration was measured using cyclic voltammetry. Various parameters, including sonication
time, pH, and loading were varied for the best current response. The composite with optimum
current response was formed using a 30-min sonication time, at pH 5.0 and a 0.89 µg/mm2 loading
onto the glassy carbon electrode surface. Good sensitivity with a limit of detection of 0.61 ± 0.03
µM, and dynamic range of 10–100 µM for DA is shown, applicable for neuroblastoma screening.
The sensor was selective against ascorbic and uric acids.
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1. Introduction

Neuroblastoma is a type of pediatric cancer that forms in the adrenal glands, which can be exhibited
in the spine, chest, neck and abdomen. This condition is characterized by a high dopamine (DA)
content in urinary excretion. Multiple analytical approaches, such as UV-vis spectrophotometry,
high-performance liquid chromatography, fluorescence spectrophotometry and electrochemical
methods, have been applied to detect dopamine in environmental and biological samples [1–5].
However, sample preparation prior to analysis by applying these methods can be time-consuming
and complex.

Among the various techniques used for the detection of DA, electrochemical methods provide
a simple and rapid means of detection without the need for costly instrumentation [6–16]. Normal
urine pH can be slightly acidic or basic, ranging from pH = 4.5 to 8.0 [17]. Electrochemical analysis
provides a rapid, cost-effective means of disease monitoring. The presence of ascorbic acid (AA)
and uric acid (UA), in particular, interferes with DA during electrochemical detection and the
electrochemical approach becomes difficult [18–22]. To this end, Khamlichi et al. [23] developed an
L-leucine modified sol-gel carbon electrode for DA detection in the 10-to-120 µM concentration range
in urine. We have re-designed the working electrode by incorporating solely non-perishable materials
for the electrocatalyst surface to detect dopamine, making it more amenable for industrial scale-up,
while also overcoming selectivity issues with UA and AA.

Carbon nanotubes are attractive materials for use in electrochemical electrodes applicable for
DA [24]. Cobalt (II)-containing complexes are known to be effective electrocatalyst materials for
the detection of DA [25]. In this study, we explore the utilization of the cobalt (II) oxide (CoO)
particles tethered to COOH-functionalized multiwalled carbon nanotubes (COOH-MWNTs) to produce
a composite to modify glassy carbon electrodes (GCE) for assaying DA using cyclic voltammetry (CV).
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2. Materials and Methods

2.1. Materials

All reagents were of analytical grade (99% or greater purity). COOH-MWNTs were purchased
from NanoLab, Inc. (Walton, MA, USA). Cobalt (II) oxide (CoO) particles were purchased from
Nanostructured and Amorphous Materials (Los Alamos, NM, USA). Dopamine, L-ascorbic acid,
phosphate buffer solution (PBS) at pH 7.00 and uric acid were purchased from Sigma-Aldrich (St. Louis,
MO, USA). NafionTM was purchased from Ion Power, Inc (New Castle, DE, USA). HCl and NaOH were
purchased from Fisher Scientific (Pittsburgh, PA, USA). Absolute anhydrous ethyl alcohol (AAEA)
was purchased from Pharmco-AAPER (Brookfield, CT, USA). MicropolishTM Al2O3 slurries 0.05 and
1.0 µM in diameter were purchased from Buehler, Ltd. (Lake Bluff, IL, USA). Solutions were buffered
using phosphate buffer solution (PBS) pH at 7.0 (Sigma-Aldrich, St. Louis, MO, USA) and acetic
acid/acetate buffer solution pH at 4.66 (EMD Millipore Corporation, Billerica, MA, USA).

2.2. Nanocomposite Synthesis

COOH-MWNTs (2 mg) and CoO (2 mg) were combined in a 1:1 mixture. The mixture was
then sonicated in 1 mL of AAEA to get the colloidal suspension. Ultrasonication was performed
on Sharpertek Stamina XPTM sonicator (Pontiac, MI, USA). WaveNanoTM USB potentiostat was
purchased from the Pine Instrument Co. (Raleigh, NC, USA). The resulting suspension contained the
CoO/COOH-MWNT composite, which was applied to the GCE surface. A drop casting method was
used to modify the GCE surface using CoO/COOH-MWNT composite suspension. This approach
has been effective for attaching metal oxide nanoparticles to the COOH-MWNT sidewalls using
the cavitation process offered by sonication to tether them to the COOH functional groups [26–28].
The GCE surface was polished using 1.0 and 0.05 µm diameter alumina slurries, successively, with
10 min of sonication in between to obtain a mirror-like finish. The electrode was then sonicated
using concentrated nitric acid:deionized water 1:1 for 5 min to activate the surface and dried at room
temperature. CoO/COOH-MWNT suspensions were vortexed for a few minutes to obtain uniform
dispersions. Aliquots of 10-µL suspensions were applied to the electrode. A first suspension was
drop-casted onto the GCE and dried in an oven for 10 min at 80 ◦C. Finally, a 10-µL aliquot of Nafion
(2% wt) in AAEA solution was then applied to the GCE surface to bind the CoO/COOH-MWNTs to the
GCE surface. The above modified electrode was then dried in an oven at 80 ◦C for another 10 min to
form the Nafion/CoO/COOH-MWNT/GCE sensing composite.

2.3. Characterization of CoO/COOH-MWNTs

X-ray photoelectron spectroscopy (XPS) was performed using a Perkin Elmer PHI 560 system (Eden
Prairie, MN, USA) using a Mg Kα anode (hν = 1253.6 eV) operated at 250 W and 13 kV. Transmission
electron microscopy (TEM) was performed using a Hitachi H-7650 (Krefeld, Germany) instrument
operated at 100 kV, drop casting colloidal samples onto 200-mesh Cu grids (Ted Pella, Inc.: Redding,
CA, USA). A WaveNanoTM potentiostat (Pine Instrument Co.: Raleigh, NC, USA) was used for CV
measurements. The electrochemical measurements were performed in a 3-electrode cell using a Pt wire
counter electrode, Ag/AgCl (3.5 M KCl) reference electrode and the Nafion/CoO/COOH-MWNT/GCE
as the working electrode. CV experiments were performed in deoxygenated solution via sparging
with 99.9% purity N2 gas (Air Gas Products; Radnor, PA, USA) for 15 min prior to each experiment.
Raman spectroscopy was performed using an Enwave Optronics ProRaman-L spectrometer (Irvine,
CA, USA) using a 500-mW class 3B laser (λ = 785 nm). Samples from Raman analysis were prepared
by pipetting composite colloidal suspensions onto Si(100) wafers and allowing the AAEA to evaporate
in a clean air environment. The isoelectric point (Ip) of the composite was measured using a spear-tip
electrode applying the method originally described by Park and Regalbuto [29], which was later
modified for measuring the Ip of carbon nanomaterials [30]. CV current measurements as a function of
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sonication time, DA concentration, and pH were obtained in triplicate from multiple batches of the
CoO/COOH-MWNT composite produced.

3. Results and Discussion

Scheme 1 shows the electrochemical mechanism of DA on the working electrode surface
corresponding to the two observed peaks in the CV data (vide infra). XPS binding energy core
level shifts of the synthesized CoO/COOH-MWNTs verified that the tethered particles were CoO,
and not from Co3O4 (Figure S1 in the Supplemental Materials).
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Scheme 1. Reduction products of dopamine.

A pH dependence on signal sensitivity was observed with maximum current occurring at pH 5.0
for 100 mM DA (Figure S2); pH values below and above 5.0 had a diminished current. We attribute the
variations in signal to Coulombic effects from protonation/deprotonation of the CoO/COOH-MWNT
surface contributing to electrostatic attraction of DA to the electrode surface. In addition to increased
sensitivity to DA, surface charge can also explain the electrode’s selectivity. AA, UA and DA have
known Ip values (based on their pKas) of 4.2, 5.4 and 8.93, respectively. Under pH 5.0 solution
conditions, AA and UA are near electrostatically neutral conditions as compared to DA, which, on the
other hand, would be significantly more protonated according to Gouy–Chapman theory, and hence
adopt a positive charge. The measured Ip of the CoO/COOH-MWNT composite itself was found to
be 7.86 (Figure S3 in the Supplemental Materials). The lower Ip value of the CoO/COOH-MWNTs
as compared to that of DA (8.93) denotes a greater electron rich density for the composite at pH 5.0.
The combination of the positively charged DA and the electron-rich character of the electrocatalyst
serves as the driving force for the electrode’s pronounced Coulombic attraction to DA as compared to
AA and UA, providing a basis for the sensor’s selectivity.

The CV of 100 µM DA shows a sharp anodic peak at oxidation potential +0.300V (Figure 1A).
The asymmetric shape of CV indicates a quasi-reversible redox process. We observe an electrocatalytic
activity dependence with sonication time (Figure 1B). Sonication was used to attach the particles
to the underlying COOH-MWNT surface, as demonstrated previously in our laboratory [26–28].
Sonication periods that are too brief are known to result in a sparse density of attached particles
while excessively prolonged times damages the stable carboxylate –COO– structures needed to create
a fine dispersion of them, often resulting in agglomeration and reduced electroactive surface area [31].
Hence, the sonication time needed to produce the optimized dispersion of the composite needs to be
experimentally determined prior to its use as a sensor.
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Figure 1. (A) Cyclic voltammetries (CVs) of 100 µM concentrations of (a) dopamine (DA), (b) ascorbic
acid (AA), and (c) uric acid (UA) using the Nafion/CoO/.COOH-MWNT/GCE at pH 5.0 at a scan rate of
50 mV/s; (B) CV current at oxidation potential +0.300V vs sonication time (error bars of the data points
are smaller than the symbols).

Figure 1B shows the ideal sonication period to be 30 min at the +0.300 V anodic voltage for 100 µM
DA in order to achieve maximum current output. Furthermore, no signal at +0.300 V was observed for
either 100 µM AA or 100 µM UA, common interferents in urinalysis. Additional control experiments
involving composite sub-components and various composite loadings on the GCE are shown in Figure
S4 in the Supplementary Materials.

We have recently discovered that sonication can disentangle the COOH-MWNT support such
that more of the particulate surface area can be exposed and thereby increase electrocatalytic activity of
ZnO/COOH-MWNTs [28]. However, this same effect was not observed for CoO/COOH-MWNTs for
the detection of DA; the degree of disentanglement of the underlying carbon nanotube surface had
no effect on the sensitivity of the composite. Dissimilar to the findings pertaining to UA detection
with ZnO/COOH-MWNTs as the working electrode material, measuring the integrated peak area
intensity of the G band alone was insufficient to identify the optimum sonication time for DA
detection. Rather, the dominant factor affecting sensitivity was the CoO particle surface density on
the COOH-MWNT underlying substrate, which can be indirectly measured by noting the sp3-to-sp2

hybridized carbon ratio of the electrocatalyst surface. A correlation between the relative sp3-hybridized
carbon with increased DA signal at the maximum Raman D/G band ratio (relative integrated peak area
at 2.59) in occurring at 30 min of sonication was observed (Figure 2A). The peaks at 1325 and 1625
cm−1 correspond to the D and G bands, respectively. The D bands at 1325 cm−1 denote the disordered
sp3-hybridized carbon and the G bands at 1625 cm−1 are related to ordered sp2-hybridized carbon [32].

Unlike the electrocatalytic activity of the ZnO/COOH-MWNTs, the relative degree of exposed
sp2-hybridized carbon as exhibited by the Raman G bands (Figure 2A) did not correlate with
the magnitudes if the CV intensities observed. Rather, it was the relative degree of disordered
sp3-hybridized carbon on the MWNTs that correlated with the CV peak maximum current, coinciding
with the largest D-to-G band ratio (Figure 2B). It should be noted that the CoO particles used in this
composite had a markedly larger diameter (~80 nm) (Figure 3) as compared to the previously tethered
metal oxide nanoparticles (~15 nm diameter). Both CoO/COOH-MWNT (in this experiment) and
ZnO/COOH-MWNT (in our previous experiment [29]) composites were tethered to carbon nanotube
supports with the same length and diameter. We postulate that disentanglement plays a larger role in
affecting the electroactive surface area for the particles (tethered to the MWNT surface) that are smaller
in diameter, suggesting that the aspect ratio between the tethered particulate diameter vs. the carbon
nanotube length and diameter is an important variable governing the exposed electroactive surface
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area. Beyond a certain particle-to-COOH-MWNT size ratio threshold (i.e., if the diameter is too large),
disentanglement has little, if any, effect. In the case of the CoO/COOH-MWNT composite, the degree
of sp3-hybridized carbon from the MWNT sidewalls plays a dominant role, linking to the density of
tethered particles tethered to the sidewalls corresponding to the relative electroactive surface area; this
phenomenon has also been observed for other particles attached to COOH-MWNTs, also verified by
Raman spectroscopy [29].
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Figure 2. (A) Raman spectra of CoO/COOH-MWNT at 0 to 60 min of sonication; (B) Plot of Raman
D/G band integrated peak area ratio vs sonication time.
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Figure 3. (A) Transmission electron microscopy (TEM) image of CoO/COOH-MWNT composite in
absolute anhydrous ethyl alcohol solution 30-min sonication; (B) size distribution histogram of the
CoO particles.

Figure 3A shows a representative TEM image of CoO/COOH-MWNTs at 30-min sonication time.
The composite becomes disentangled with an increase in sonication time. The highest amount of
disordered sp3-hybridized carbon occurred at 30 min of sonication of the composite as observed from
Raman analysis. As sonication proceeded beyond the 30-min point, the composite becomes more
entangled with the increase in sonication time. The TEM histogram (Figure 3B) shows an average CoO
particle size of 315 ± 12 nm (n = 74). Close-up TEM images revealing the underlying carbon nanotube
support are shown in Figures S6 and S7 in the Supplemental Materials.
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XPS analysis (Figure S1) showed that the atomic percent composition of the CoO/COOH-MWNT
composite was 97.03% carbon, 2.83% oxygen and 0.14% cobalt from the normalized integrated peak
areas of the C 1s, O 1s and Co 2p core levels, respectively. Core level binding energy (BE) shifts
confirm that the attached particles were those of CoO, not Co3O4 (see Figure S1 and narrative in the
Supplementary Materials).

The asymmetric line shape of the CV shows greater signal for reduction than for oxidation
(Figure 1A). The measured voltage for oxidation remained constant, while that for reduction shifted to
higher voltages with increase in DA concentration. For this reason, the CV oxidation current at +0.300 V
was selected over that for reduction (at ~0.4V) to quantify DA concentration in aqueous solution.

Figure 4 shows the CV current vs DA concentration plot. Asymmetry in the CV indicating
irreversibility suggests the possible decomposition of DA on the electrode surface. Surface adsorption
of the residue could impede DA oxidation and result in deviation from linear current vs concentration
measurements. However, the saturation of surface sites was minimal since Randles–Sevcik analysis also
showed a diffusion controlled process for the amperometric detection of DA (Figure S5). A quadratic
relationship in the 10 to 100 µM DA concentration range is observed, following the regression equation:
I (µA) = −(7.00 × 10−3) [DA]2 + 2.135 [DA]−7.813 with a correlation coefficient R2 = 0.9883.
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