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Abstract: The feasibility of a compact, modular sensing system able to quantify the presence of 
nitrogen, phosphorus and potassium (NPK) in nutrient-containing fertilizer water was investigated. 
Direct UV-Vis spectroscopy combined with optical fibers were employed to design modular 
compact sensing systems able to record absorption spectra of nutrient solutions resulting from local 
producer samples. N, P, and K spectral interference was studied by mixtures of commercial fertilizer 
solutions to simulate real conditions in hydroponic productions. This study demonstrates that the 
use of bands for the quantification of nitrogen with linear or logarithmic regression models does not 
produce analytical grade calibrations. Furthermore, multivariate regression models, i.e., Partial 
Least Squares (PLS), which consider specimens interference, perform poorly for low absorbance 
nutrients. The high interference present in the spectra has proven to be solved by an innovative self-
learning artificial intelligence algorithm that is able to find interference modes among a spectral 
database to produce consistent predictions. By correctly modeling the existing interferences, 
analytical grade quantification of N, P, and K has proven feasible. The results of this work open the 
possibility of real-time NPK monitoring in Micro-Irrigation Systems.  

Keywords: nitrogen; phosphorus; potassium; nutrient; spectrophotometry; optical sensor; artificial 
intelligence; optical fiber 

 

1. Introduction 

Since the 1950s, the use of fertilizers has changed agriculture productivity and its industry has 
grown significantly [1]. The global liquid fertilizer industry was estimated to be worth 11.2 billion 
USD in 2015 and is expected to grow more in the coming years [2]. Several factors have helped this 
growth: development of micro-economies, globalization of the economy and world markets, and 
technological evolution toward mechanization and automation. In the latter category, development 
of Micro-Irrigation Systems (MIS) are today key agricultural technologies [3] as they allow farmers 
and growers to perform precision irrigation in small quantities, with spatial accuracy and the correct 
amount of nutrients, leading to better nutrient distribution efficiency and crop yield. 

Nowadays, with emerging markets competition, the synergy between agriculture and 
technology may provide the missing boost toward sustainability as human imprints on the 
ecosystems point to possible imbalances in Earth’s capacity to fix carbon [4]. Several case-studies [5–
7], guidelines [8,9], and papers [10–13] are available, approaching the subject of technology in crop 
management. 
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In this context, the development of an all-in-one sensor for nitrogen, phosphorus, and potassium 
(NPK) assessment for integration in an online system would be an ideal tool to enable a more 
sustainable crop management. However, current knowledge and technology has not been able to 
develop a portable, integrable sensor able to measure these three key parameters in both water or 
soil, by a simple, straight-forward, and cost-effective way, maintaining the accuracy of standard 
methodologies. 

Precision agriculture is, nevertheless, a growing trend either by necessity or by demand, and 
several papers have reported innovations in distinct areas or overcoming technological barriers like 
micro-flowing [14,15] image processing [16], optimization of the efficiency of fertirrigation systems 
[7] or soil multi-analyte systems [17]. Some studies have reported methodologies for single nutrient 
analysis, using approaches that range from chromatographical [18], electrochemical [19], or 
spectrophotometrical methodologies [20,21], using microfluidic devices [22] or nanomaterials [23,24], 
while others report multi-analyte assessment methodologies [25–27]. 

Different chemical equilibria can be obtained upon different nutritional configurations. 
Regarding nitrogen, in aerobic conditions, by bacterial activity, nitrification can occur in a two-step 
process (Equations 1 and 2): 𝑁𝐻 + 3𝑂 ⎯⎯⎯⎯⎯⎯⎯⎯⎯ 2𝑁𝑂 + 2𝐻 𝑂 + 4𝐻  (1) 

 2𝑁𝑂 + 𝑂  ⎯⎯⎯⎯⎯⎯⎯ 2𝑁𝑂  (2) 

As for phosphorus, considering dihydrogen potassium phosphate (KH2PO4), the number of 
species will depend on the degree of dissociation (represented by the equations 3 – 5 by the pKa 
value): 𝐾𝐻 𝑃𝑂 +  𝐻 𝑂 ⇌  𝐾 + 𝐻 𝑂 +  𝐻 𝑃𝑂  

                            pKa1= 2.15 
(3) 

 𝐻 𝑃𝑂 + 𝐻 𝑂 ⇌  𝐻 𝑂 +  𝐻𝑃𝑂  

                        pKa2= 6.82 
(4) 

 𝐻𝑃𝑂 + 𝐻 𝑂 ⇌  𝐻 𝑂 + 𝑃𝑂  

                     pKa3= 12.38 
(5) 

Regarding potassium, if potassium sulfate (K2SO4) is considered, the number of species available 
for plant uptake will be as shown (Equation 6): 

 𝐾 𝑆𝑂 + 𝐻 𝑂 ⇌  2𝐾 +  𝑆𝑂  (6) 

Nitrogen, phosphorus, and potassium (NPK) sensing usually rely on Ion-Selective Electrodes 
(ISE) or wet chemistry for colorimetric assessment: while ISE are useful for laboratorial, controlled 
environment usage, their application on-field is limited, as they are fragile and costly, with a short 
lifespan, a need for recurring calibration, and are drift-prone; colorimetric methodologies, while 
practical and intuitive, lack the accuracy that smart nutrient distribution requires nowadays, in order 
to achieve a profitable operation, besides being time-consuming, consumable demanding, and prone 
to suffer influences of, e.g., the pH of the sample which, subsequently, can disperse the accuracy of 
the results. Well-known examples of this type of methodology are nitrite and potassium 
determination employing Griess-Ilosvay’s, or phosphomolybdenum blue’s reaction, respectively. 

We aimed to demonstrate the viability of measuring NPK using spectroscopy, overcoming the 
inherent difficulties usually associated with real nutrient sample assessment: fertilizers constituents’ 
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interferences, limits of detection and quantification (LOD and LOQ, respectively), and enabled its on-
line capability. In order to understand if the minority nutritional components exert a systematic 
influence on the major nutrients, we developed strategies using both hardware and software 
(Artificial Intelligence - AI). 

It was our goal to develop a sensing system able to quantify the target nutrients (NPK) by using 
affordable materials and components, achieving results with high level of confidence without 
compromising portability and interoperability/integration with existing systems. We proposed 
achieving this by employing optical based sensors combined with optical fibers exploiting their well-
known properties, namely electromagnetic immunity, corrosion imperviousness, and remote 
manipulation/control. In this research, assays were performed in order to demonstrate the feasibility 
of measuring NPK by determining spectral interference between N, P, and K in simulated fertilizer 
solutions and their corresponding detection limits. 

2. Materials and Methods 

A compact benchtop system was built using a D2 (deuterium) light source (Ocean Optics model 
DH-2000-BAL), a spectrometer (Ocean Optics model HR4000), a transmission optical fiber bundle 
(UV), and a stainless steel slitted reflection probe for insertion on samples and/or sampling chambers. 
The design of the experimental setup is represented by the schematic of Figure 1. 

 

Figure 1. Schematics of the components of a compact, portable and low-cost prototype system. 

Real samples of (commercial) fertilizers, acid, and water were gathered from local producers of 
strawberries and flowers near Porto area (Portugal) using an in-house developed protocol: acid-
washed, 5 × (<1 µScm−1) water-rinsed 500 mL and 100 mL glass bottles were used to collect water 
used for irrigation as well as acid (used by growers for EC and pH corrections), respectively, and 
sterile 35 mL polyethylene bottles were used to collect fertilizer samples. Samples were transported 
in shock-proofed boxes, with isothermal properties. 

Stock solutions were prepared prior to the sample analysis and used throughout the assay. 
Adequate quantities of each component (sodium nitrate, sodium nitrite, ortho-phosphoric acid, and 
potassium chloride, P.A. grade, Alfa Aesar (Germany), Merck (Germany), Fluka (Austria)) and water 
were added to the bottles, with constant stirring for a period of 30 min in order to properly 
homogenize the solutions. Samples were used at room temperature and stored at 4 °C upon usage 
(in-house developed protocol). Different concentrations of each ionic species (target) were obtained 
by using different volumes of the stock/tank mimicking solutions. These solutions aim to emulate the 
local producer strategy for the plant nutritional scheme and do not intend to represent the best 
strategy for either plant nutrition or the experimental design. 
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After preparing the samples in small glass bottles, the reflection probe was inserted slowly to 
minimize any air presence. Nevertheless, all samples were individually and manually degassed, as 
well as mechanically stirred for 10 s prior to analysis. Data acquisition was performed with 10 scans 
for an integration period of 60 ms. The probe was rinsed with water and air dried between 
measurements to avoid carry-over contaminations. In a practical operation, the probe can be directly 
inserted into the flow of the nutritive solutions or make the sample go through a sampling flow 
chamber. 

The recorded spectra are a super-position of scattering and interference between the absorbance 
of the difference constituents. An innovative spectral processing methodology was developed to cope 
with such effects [28]. The main difference to other approaches, such as local-Partial Least Squares 
(PLS) [29], Support Vector Machines (SVM) [30], and Deep Learning Artificial Neural Networks 
(ANN) [31], is that it assumes that for given unknown samples and composition there is a covariance 
mode that relates both with high precision and accuracy. Therefore, instead of a “monolithic” model 
that relates inputs, the spectra (X), to the output, composition (Y), the method performs a search along 
spectral characteristics that best fit a covariance direction between characteristic interference of the 
spectra and composition. Characteristics are extracted from the original data using decomposition 
methods such as singular value decomposition, Fourier, or Wavelets, so that the original data is re-
arranged into a compressed space of relevant features where X → F and Y → K, so that it maximizes 
their co-variance by the following: 

j = argmax(KtF) (7) 

so that K and F optimally have a similar eigenstructure. Such translates into optimal coordinates co-
variance T = U, where K = UVt and F = TPt, so that K and F hold the corresponding information under 
different basis V and P, respectively. If the information is reduced to a single eingenvector, the 
method has found a particular eigenmode; that is, a co-variance mode that can linearly correlate the 
composition to spectral features from a consistent sub-set of samples [28]. 

Information from this sub-set of samples is always subjected to stray-light [32] and scattering 
corrections [33]. Stray-light affects both baseline and spectral intensity with a significant 
multiplicative effect. Mie scattering, scattering due to particles greater than the wavelength of the 
incident light, is known to be proportional to the square of the wavelength (λ) [34], whereas Rayleigh 
scattering is proportional to the inverse of the 4th power of λ. In this sense, we can derive the following 
empirical correction (Equation 8): 

xi = a + bxr + cλ + dλ2 + e log (λ) (8) 

where xi is the observed spectra, xr the reference spectra, the median spectra of a particular sub-set, 
and the coefficients: a the baseline correction, b the multiplicative correction, c and d the Mie 
correction, and e the Rayleigh correction. The coefficients matrix BRLS, is determined using robust 
least squares for a given subset of spectra Xi: 

Xcorr = Xi BRLS (9) 

where Xcorr is the corrected spectra used in the developed method to compute KtF and estimate the 
composition. 

2.1. Nitrate and Nitrite Signal Assessment 

These assays involved the direct UV assessment (DUVA) of both nitrates and nitrites (λabs max = 
302 nm and 352 nm, respectively). At these wavelengths, no interferences from organic matter [35], 
bromide [36], or sulphide [37], though possible, were detected. Nevertheless, interferences from other 
nutrients can exist; of these, both PO43− and K+ ions were tested as interfering patterns on NO3− and/or 
NO2− determination. 

Accordingly, a series of eight tests were performed in order to understand any existing 
interferences from within selected components. Effects of these interferences on the real 
concentrations, thus leading to a perceived concentration value, were also assessed. 
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Planned workflow to determine initial assessments as well as interferences is shown in Figure 2. 

 

Figure 2. Workflow planned procedures for nitrate and nitrite assessment and existing 
interferences. 

2.2. Synthetic Fertilizer Formulations for Interference Factorial Design Assays 

In order to achieve a realistic scenario in a controlled laboratorial environment, nutritional 
formulations used by the producer of this case study were replicated and used to simulate the 
different irrigation tanks available on-site. 

In this case, to emulate the producer nutritional strategy in laboratorial conditions, three stock 
solutions were prepared similarly to the tanks available on-site for irrigation: stock T0 contains the 
HNO3 (54%) used for pH correction, stock T1 contains Ca(NO3)2 and (NH4)(NO3) whereas stock T2 
contains KNO3, KH2PO4, MgSO4, K2SO4 and micronutrients from commercial brand fertilizers 
suppliers (Table S1). Different concentrations (solutions) of each stock were prepared in order to 
mimic on-site conditions, resulting in cumulative concentrations for each (target) ionic species (Table 
1). 

In a simplified perspective, and considering our main target nutrients (NPK), stock solution T0 
contributes to the final nutritional mixture with nitrate, stock solution T1 contributes with both 
nitrate, and potassium while stock solution T2 contributes with phosphorus. 

Considering that the variation (increase/decrease) of a particular ionic species A could induce 
an interference in both species B and/or C acting as mutually inclusive events, a crossed interference 
assay was designed in a way that this could be evaluated as a significant/insignificant contribution 
determining the sensing system viability. A factorial design was prepared considering different 6 
mixture levels of T0, T1, and T2, where each level correlates to a 20% increase on any given ionic 
species, starting from 0%. 
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Table 1. Irrigation tanks composition and cumulative (target) ionic species concentrations. 

 Composition C (mgL−1) 
Σ Concentration 

(mgL−1 per nutrient) 
T0 HNO3 135.3 135.3 

    
T1 Ca(NO3)2 9368  

 (NH4)(NO3) 1702 11071 
    

T2 KNO3 3387 3387 
 KNO3 9948  
 KH2PO4 4793  
 K2SO4 116.0 14857 
 KH2PO4 3854 3854 

This type of design totalized 216 sample combinations to be performed. In order to reduce the 
man-hours needed to achieve the results, improbable or impossible fertilizer combinations were 
eliminated from the full factorial design, i.e.,: a) T0 variation with no variation from both T1 (100%) 
and T2 (100%) or b) T0 variation with no variation from both T1 (0%) and T2 (100%), among other 
examples. This reduction led to 144 sample combinations (Table 2). For each sample, the 
concentration of N, P and K was calculated considering the mixture levels, and a spectrum of the 
mixture solution was recorded. 

Table 2. Crossed interference matrix excerpt, where the concentration of T0 varies coupled to T1 
concentration variation on constant concentration of T2, on two batches (Tests ID 1–6 and 7–12). 

ID V T0 (mL) V T1 (mL) V T2 (mL) V H2O (mL) 
1 1.00 0.80 1.00 0.20 
2 0.80 0.80 1.00 0.40 
3 0.60 0.80 1.00 0.60 
4 0.40 0.80 1.00 0.80 
5 0.20 0.80 1.00 1.00 
6 0.00 0.80 1.00 1.20 
7 1.00 0.60 1.00 0.40 
8 0.80 0.60 1.00 0.60 
9 0.60 0.60 1.00 0.80 

10 0.40 0.60 1.00 1.00 
11 0.20 0.60 1.00 1.20 
12 0.00 0.60 1.00 1.40 

3. Results and Discussion 

3.1. Nitrate and Nitrite Signal Assessment 

Preliminary assays involved the DUVA of both nitrates and nitrites. Ideally, nitrates should be 
assessed through its stronger band (circa 200 nm) [38,39] allowing for a lower LOD (and an higher 
LOQ) and a temperature independent measurement (π*←π transition takes place entirely within the 
molecule) [38] but interferences from other compounds (i.e., bromide or organic matter) present in 
water could arise inhibiting the proper nutrient evaluation [40]. Furthermore, either there are 
limitations with the electronic instrumentation (limited availability of compliant 
devices/components) or the cost increases steeply within this range. Below this wavelength (200 nm), 
detection is not feasible and i) photons have enough energy to cause chemical reactions in, virtually, 
all materials (hence the high degradation rate of certain materials exposed to UV radiation); ii) water 
(analyte support material) strongly absorbs UV radiation (UV cut-off value is 190 nm); iii) oxygen 
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also strongly absorbs UV radiation; iv) choice of transparent materials is reduced (MgF2 or CaF2 are 
commonly used as they are transparent in this range), as well as the cost of said materials; v) light 
sources cost is very high and/or of weak turnout. 

Nitrites, on the other hand, possess an absorption band at 352 nm that inter-converts to the 
nitrate signal (λabs max = 302 nm) if the adequate conditions are available, due to the redox nature of 
these species. 

Consequently, performing the measurement at the optimum intensity point (λabs max) for each 
case would only be valid if no interferences exist on the matrix, as they lead to the violation of 
Bouguer-Lambert-Beer’s Law. Therefore, any measurement has to consider the interferences’ 
contribution to the attained value, and it may only be possible using signal processing and 
chemometrics in combination with AI. 

Considering our DUVA calibration results, the UV-Vis raw data allows us to infer that a linear 
correlation exists (Figure 3a) within a certain range limit: in our case, up to 6000 ppm of NO3− (Figure 
3b) and 2000 ppm of NO2− (Figure 3c), after which the deviations are evident. 

 

(a) 

(b) (c) 

Figure 3. DUVA calibration results. (a) Calibration chromatogram for nitrate and nitrite, on green and 
red plotting, respectively; calibration curves for (b) nitrate and (c) nitrite. 

 

The operational design for interference assessment (Table 3) should allow us to understand if: 
(i) nitrite interferes in the measurements of a low (A1) and high (A2) nitrate concentration sample; 
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(ii) phosphate interferes in a nitrate (B1) and nitrate/nitrite (B2) sample; 
(iii) potassium interferes in a nitrate (C1) and a nitrate/nitrite (C2) sample; 
(iv) a phosphate/potassium solution interferes with a nitrate (D1) and a nitrate/nitrite (D2) sample 

(Supplementary Information’s Figure S1 to S4). 

Table 3. Series of tests performed toward analysis of interferences, in a sample of nitrate and a sample 
of nitrate and nitrite. 

 Interferent 
Sample NO2− PO43− K+ PO43− and K+ 

NO3− A1 and A2 B1 C1 D1 
NO3− and NO2− - B2 C2 D2 

From the assays performed, it is possible to confirm the linear correlation previously inferred, with 
the exceptions of tests B2 and D2, wherein a logarithmic correlation is observed (Table S2). This is 
attributed to changes in pH due to the phosphate anion in the equilibrium of nitrate/nitrite species. A 
typical graphical output from linear correlation assays is represented in Figure 4a, while the logarithmic 
correlations are represented in Figure 4b (remaining assays are available on Supplementary 
Information’s Figure S5 to S8). In the latter, it is observable that the addition of phosphate leads to the 
formation of new bands (within the 320–400 nm range), in a total of at least four, in comparison to the 
band observed in the same region for the linear correlation. This event is not subject to further 
considerations, at this point, as it falls outside the scope of this study. 

(a) (b) 

Figure 4. Examples of UV-Vis spectra where (a) linear correlation was observed (Test A2) and (b) 
logarithmic correlation was observed (Test D2). 

Considering the maximum value of nitrite in water set by the European Commissions’ Council 
Directive [41] is up to 0.5 ppm of NO2−, if we consider the results obtained in test A1 ([NO3−]= 300 
ppm), the presence of the maximum allowed amount of nitrite (0.5 ppm) would represent an error of 
3.95% of the nitrate value (by excess), while in test A2 ([NO3−]= 2000 ppm), that same amount of nitrite 
would represent an error of 0.44% of the nitrate value (by excess). 

From tests B1 and B2, it is noticeable that phosphate causes interference on the nitrate/nitrite. 
The presence of 200 ppm of phosphate (the maximum threshold observed for, i.e., orchids 
(Cymbidium; baltic glacier mint ice) crops [42] would represent an error of 5.98% of the nitrate value 
(by deficit). 

The results obtained from tests C1 and C2 are foreseeable, as potassium is not expected to react 
with either nitrate or nitrite. Nevertheless, during these tests the effect of dilution of the sample 
(proportional to the addition of 300 ppm of potassium) caused a deviation error of 2.98%. 

Lastly, tests D1 and D2 evaluate both the possibility of interference by K+ and PO43-. The results 
indicate a very similar behavior to what was obtained in tests B1 and B2. Therefore, the presence of 
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1253 ppm of phosphate and 1256 ppm of potassium (over 6-fold the amount observed in test B2′s 
observations) would represent an error of 0.80% and 1.19%, respectively, of the nitrate value (by 
deficit). 

3.2. Interference Factorial Design Assays 

Different concentrations for each tank were prepared in order to mimic on-site conditions, 
resulting in cumulative concentrations for each (target) ionic species (Table 5). Detailed information 
regarding the fertilizers used and their composition is available in the Supplementary Information 
(Table S1). 

Table 5. Laboratorial reproduction of irrigation tanks composition and cumulative target species 
concentrations. 

 Composition 1 Ionic Specie C (gmL-1) Σ Concentration (Per Ionic Specie) 
T0 HNO3 NO3− 1.353 × 10−4 NO3− = 1.353 × 10−4 
T1 Ca(NO3)2 NO3− 9.368 × 10−3  

 (NH4)(NO3) NO3− 1.702 × 10−3 NO3− = 1.107 × 10−2 
T2 KNO3 NO3− 3.387 × 10-3 NO3− = 3.387 × 10−3 

 KNO3 K+ 9.948 × 10-3  
 KH2PO4 K+ 4.793 × 10-3  
 K2SO4 K+ 1.160 × 10-4 K+= 1.486 × 10−2 
 KH2PO4 P5+ 3.854 × 10-3 P5+= 3.854 × 10−3 

1 Individual concentration of each target species contributes to its own cumulative concentration 
available per tank. 

The execution of this matrix allowed us to obtain several different samples, each one with its 
own specific concentration of nutrients: nitrogen, phosphorus, and potassium (NPK), as shown in 
Table S3. By varying one parameter individually while maintaining the remaining constant, 
individual variations as well as their correlations were obtained, through the software and its AI 
processing capability. 

One must consider that the amount of species present in solution add a special level of 
complexity to the analysis, as some species can have synergetic (e.g., pH) or antagonistic effects (e.g., 
signal masking or overlapping). Therefore, analysis cannot be a simple measurement of physical 
parameters but a combination with iterative mathematical calculations that allow the unmasking and 
clarification of the real measured property (e.g., concentration). In order to do so, spectral data was 
collected and cross correlated with the concentration information for each solution. Spectroscopy 
signals were processed accordingly to [28]. Nevertheless, using advanced signal processing it is possible 
to train the system to recognize and extract the information from the relevant features, incorporating 
multi-scale interference into the NPK quantification models. 

Figure 5a shows the corresponding recorded spectra in the UV-Vis region (200 to 600 nm) of the 
factorial design samples. As expected, most of the systematic spectral variation occurs at 250 to 350 
nm, and, to a lesser extent, to 500 nm. This figure provides evidence that information about P and K 
is present, because, even to the naked eye, one can observe that there are more spectral patterns in 
the region of 250 to 350 nm than the expected nitrogen levels of the experimental design; that is a 
good indication that the interferences between all the constituents are being registered on the spectra. 
The correlation of the different levels among the NPK nutrients of the matrix design, can be 
represented as displayed by Figure 5b. 
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(a) 

 

 
(b) 

Figure 5. UV-Vis spectra of some nutritional solutions prepared (a). Factorial design for the sample 
emulation assays for N, P, and K nutrients (b). 

Figure 6 presents the principal component analysis of the factorial design spectra. The main 
cluster groups are distinguishable by different colors and are comprised of higher to lower 
concentrations of total nitrogen. Within each nitrogen level, a high dispersion is observable due to 
the interference of the other constituents of the different mixture levels between T0, T1, and T2. 

The developed AI methodology searches within each cluster, a group of samples that is able to 
sustain a statistically consistent co-variance eigenvector, allowing us to take into consideration the 
interference of the different constituents into a quantification model, e.g., a co-variance mode [28]. 
Within this co-variance mode, it is expected that unknown samples that are projected into this space 
of the PCA space (Figure 6), will have similar interferences. If the PCA space has enough information 
within a search space, it is expected that co-variance modes can be extracted and N, P, and K are 
accurately quantified. In this way, a map of features from which the system can identify the 
tendencies of spectral feature versus concentration, for each analyte, and therefore enable the 
calibration and quantification of each nutrient. 

 

Figure 6. Principal component analysis graph for nitrogen; different levels of N are color assigned. 

The principal component analysis scores plot of the corresponding experimental design spectra 
are shown, where the different colors represent the different levels of total nitrogen. The main 
variance present in the spectra corresponds to the nitrogen absorbance, where the first principal 
component is highly correlated to the nitrogen content (PC1 96,95%). The second and third principal 
components provide the dispersion of phosphorus and potassium absorbance, and interference for a 
particular nitrogen level, accounting only for 2.7% of spectral variation (PC2-2.38%, PC3-0.32%). 
Despite the low level of information of P and K in the spectra, we further investigated if it was feasible 
to use it for P and K quantification, whereby for each sub-set of N level, there is a spectral variation 
that is proportional to P and K. 
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Figure 7a shows the total nitrogen quantification using the signal intensity at 302 nm. The results 
show a highly non-linear dependence of signal intensity in relationship to the N concentration, with 
very significant bias at the lower and upper limits >10% (average). Such bias leads to the conclusion 
that interference and non-linearity do not allow the use of DUVA methods in fertilizers for total 
nitrogen quantification. 

We further investigated if the quantification of NPK is feasible using a multivariate linear model, 
using the PLS algorithm. PLS maximizes the co-variance between the spectra (X) and composition 
(Y), using latent projections. Latent projections, more commonly known as scores (T), can account for 
linear combinations of spectral interference by combining the different dimensions of the loadings 
vector (P), resulting in the oblique projection of the Bpls coefficients, where the optimized number of 
latent variables is obtained by cross-validation evaluation of the standard prediction error. The 
number of dimensions, or P vectors, that are necessary to produce a linear oblique projection Bpls 
allows us to come to a conclusion as to the degree of interference. The complexity of spectral 
interference is directly related to the number of interference modes present in the dataset. [28] 

Figure 7b shows the optimized PLS-R model for quantifying total nitrogen. PLS-R needs 4 LV to 
be able to provide projections that can deal with non-linear interference, allowing a correlation of 
99.53% and mean average percentage error (MAPE) of 3.19%. Despite the low error, one would expect 
that for an analytical scale-prepared solution, the error would be below 1%. 

The dispersion of results shown in Figure 7c is the result of PLS-R finding a global co-variance 
direction that is accounting for all the modes in the experimental design. Phosphorus quantification 
using PLS-R has lower performances: correlation of 0.8619 and MAPE of 23.25%. 

A similar result is obtained for potassium, with a correlation of 0.7982 and an MAPE of 34.84% 
with 3 LV (Figure 7d). Despite the correlation confirming that the spectra carry information about 
phosphorus and potassium, the high dispersion of errors do not allow the use of standard 
chemometrics PLS-R as a method capable of providing analytical quality results (e.g., correlations 
>0.95, MAPE <5.00%). The PLS-R analysis demonstrates that considering all interference modes to 
build a global calibration model for NPK leads to high-variance in predictions and low accuracy, 
especially for lower absorbance of P and K that contribute much less to spectral variance. 
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(a) (b) 

(c) (d) 

Figure 7. Total nitrogen quantification prediction using a linear model (a); optimized PLS-R model 
for quantifying total nitrogen (b), phosphorus (c) and potassium (d). 

If the spectral co-variance modes are mapped and found, it is possible to achieve analytical 
performance using spectral quantifications. [28] This basic principle is the basis of a self-learning AI 
algorithm, which herein we investigate its application aiming to quantify NPK. 

Figure 8a shows the self-learning AI prediction for total nitrogen. A very satisfactory result is 
obtained, with a correlation of 0.9997 and significantly low MAPE of 0.48%. As shown previously, 
despite N having the highest absorbance in the UV region, its quantification suffers interference from 
the other constituents. This figure shows, for different levels of N concentration, the influence of P 
and K. At the higher levels, small errors are introduced, because the AI algorithm is not able to find 
sufficient samples to represent the observed interference modes. Nevertheless, quantification errors 
at high N concentrations are significantly lower when taking into consideration PLS results. Such 
evidence shows that to properly quantify N, one needs to determine the interferences effects in the 
spectra that are correlated to specific co-variance directions of sample composition/spectral features. 

Figure 8b presents the self-learning AI prediction for total phosphorus content. We also obtained 
a very satisfactory correlation (0.9984) and low MAPE (2.40%). This figure shows that the 
quantification of the P concentration levels is highly dependent on the N level. For each level of N, 
the self-learning AI computed the different levels of P, with significantly higher error than N. This is 
attributed to the fact that P levels are constant, because they are derived only from the T2 solution, 
and it does not create local gradients in P concentrations, necessary for the AI to accurately determine 
the co-variance. Predicting the P concentration without local co-variance refinement leads to the 
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observed dispersion error at each P level of the experimental design. These errors are expected to be 
minimized if sufficient data is recorded to refine local variations in phosphorus concentration. 

Figure 8c presents the self-learning AI prediction for total potassium. Similar to the phosphorus 
quantification, a satisfactory correlation (0.9984) and low MAPE (2.40%) is obtained, as well as 
dispersion in K prediction for each level of N. Potassium exists only in the T2 solution, and therefore 
its concentration levels are repeated along the experimental design, which affects the capacity of the 
self-learning AI to determine a locally consistent co-variance for a given level of N. In this sense, 
dispersion in the prediction is obtained due to lack of information for extracting the co-variance 
modes as accurately as with N. Furthermore, as P and K are only present in the T2 solution, the 
experimental design forces interference of P and K to be co-linear. Such is reflected in the same 
correlations and MAPE results of these two constituents. 

(a) (b) 

(c) 

Figure 8. Self-learning AI prediction for total nitrogen (a) total phosphorus (b) and potassium (c). 

4. Conclusions 

Results show that the direct quantification of nitrogen, phosphorus and potassium (NPK) in 
fertilizers using UV-Vis spectroscopy is only feasible if interference modes between all specimens are 
considered. We demonstrated that the use of bands for the quantification of nitrogen with linear or 
logarithmic regression models does not produce analytical grade calibrations. Furthermore, 
multivariate regression models that can consider specimens interference perform poorly for lower 
absorbance nutrients such as P and K. Despite the information about P and K being present in the 
spectra, PLS-R models cannot cope with all the existing co-variance modes, producing a median 
latent variables projection model that has significant correlation but very high variance. The high 
interference of phosphorus in the spectra has proven to be solved by the self-learning AI algorithm. 
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Results prove that once co-variance modes are found and the interferences are correctly accounted 
for in the prediction models, quantification attains analytical grade quality. This controlled 
experiment will be tested with Micro-Irrigation Systems toward the development of an analytical 
grade NPK monitoring based on UV-Vis spectroscopy and artificial intelligence. 
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for Tests A1 and Test A2, Figure S6: Acquired spectra for Tests B1 and Test B2, Figure S7: Acquired spectra for 
Tests C1 and Test C2, Figure S8: Acquired spectra for Tests D1 and Test D2, Table S1: Irrigation tanks 
discrimination per fertilizer and supplier brand, Table S2: Calibration values obtained from data, with linear and 
logarithmic correlations, Table S3: Crossed interference matrix excerpt, with values of each ionic species, on two 
batches. 
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