(9@] chemosensors ﬁw\p\py

Review

Thin Films Sensor Devices for Mycotoxins Detection
in Foods: Applications and Challenges

Andréia O. Santos !, Andreia Vaz ?, Paula Rodrigues 37, Ana C. A. Veloso 24,
Armando Venancio 22 and Anténio M. Peres 1-3:*

1 Laboratory of Separation and Reaction Engineering-Laboratory of Catalysis and Materials (LSRE-LCM),

Instituto Politécnico de Braganca, Campus Santa Apolénia, 5300-253 Braganga, Portugal;
andreia.santos0986@gmail.com
CEB-Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
andreia.sgvaz@gmail.com (A.V.); anaveloso@isec.pt (A.C.A.V.); avenan@deb.uminho.pt (A.V.)
Centro de Investigagdo de Montanha (CIMO), Instituto Politécnico de Braganga, Campus de Santa Apoldnia,
5300-253 Braganga, Portugal; prodrigues@ipb.pt
4 Instituto Politécnico de Coimbra, ISEC, DEQB, Rua Pedro Nunes, Quinta da Nora,

3030-199 Coimbra, Portugal
*  Correspondence: peres@ipb.pt; Tel.: +351-273-30-3220

check for
Received: 28 November 2018; Accepted: 20 December 2018; Published: 4 January 2019 updates

Abstract: Mycotoxins are a group of secondary metabolites produced by different species of filamentous
fungi and pose serious threats to food safety due to their serious human and animal health impacts
such as carcinogenic, teratogenic and hepatotoxic effects. Conventional methods for the detection
of mycotoxins include gas chromatography and high-performance liquid chromatography coupled
with mass spectrometry or other detectors (fluorescence or UV detection), thin layer chromatography
and enzyme-linked immunosorbent assay. These techniques are generally straightforward and yield
reliable results; however, they are time-consuming, require extensive preparation steps, use large-scale
instruments, and consume large amounts of hazardous chemical reagents. Rapid detection of
mycotoxins is becoming an increasingly important challenge for the food industry in order to effectively
enforce regulations and ensure the safety of food and feed. In this sense, several studies have been
done with the aim of developing strategies to detect mycotoxins using sensing devices that have
high sensitivity and specificity, fast analysis, low cost and portability. The latter include the use
of microarray chips, multiplex lateral flow, Surface Plasmon Resonance, Surface Enhanced Raman
Scattering and biosensors using nanoparticles. In this perspective, thin film sensors have recently
emerged as a good candidate technique to meet such requirements. This review summarizes the
application and challenges of thin film sensor devices for detection of mycotoxins in food matrices.
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1. Introduction

Mycotoxins are a group of secondary fungal metabolites produced by different species of
filamentous fungi [1], among which the most important belong to the genera Aspergillus, Fusarium,
and Penicillium [2].

Considering the agro-economic aspects and the impact on global agriculture, as well as the
possible implications on the public health, the most relevant mycotoxins are aflatoxins (AFs), citrinin
(CIT), deoxynivalenol (DON), fumonisin B1 (FB1), ochratoxin A (OTA), patulin (PAT), T-2 toxin (T-2),
and zearalenone (ZEA) [3-5]. These toxins are found worldwide as natural contaminants in many food
matrices of plant origin, like aromatic herbs, cereal grains, coffee beans, dried fruits, fruits, oilseeds,
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spices, and vegetables, as well as in wine, and beer. Mycotoxins can also be found in animal-derived
foods due to the intake of contaminated feeds [6-11].

The presence of mycotoxins in foods has severe implications on human and animal health even at very
low levels, due to their mutagenic, teratogenic, carcinogenic, nephrotoxigenic, and immunosuppression
effects [12]. Table 1 summarizes the main mycotoxins and their respective toxic effects, as well as the
producing fungal species and the regulatory limit ranges established in the European Union (EU), when
applicable [13-16].

Consequently, sensitive and accurate methods of analysis are needed to gather adequate
information on the levels of exposure to mycotoxins and to assess the relevant toxicological risk
for humans and animals. In addition, analytical methods should allow the measurement of such
contaminants at levels lower than the legal limits fixed by the EU or other national or international
regulations with good accuracy and precision, allowing us to establish monitoring programs and so to
ensure international trade safety [17].
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Table 1. Representative mycotoxins and their respective toxic effect and main producing fungal species.
Mycotoxin Abbreviation Food Matrix Toxic effect Limit EU * Fungal Species References
AFBI: 2-12 ug/kg
. . . AFB1: 0.1 pug/kg for cereal-based
Hepatotoxic, carcinogenic, foods for children and medicinal
. AFM1, AFM2, AFB1, Peanuts, maize, milk and probable immune Aspergillus flavus,
Aflatoxins . . . . purposes e [15,18-21]
AFB2, AFG1, AFG2 derived, cereals, oilseeds suppression and childhood . L. A. parasiticus
stanting reduced growth AFM1: 0.05 pg/kg in milk and
0.025 pg/kg in foods for infants
Total aflatoxin: 4-15 ug/kg
Cereals, coffee. cocoa. wine Nephrotoxic, hepatotoxic, Aspergillus ochraceus,
Ochratoxins OTA, OTB, OTC ’ L L neurotoxic, teratogenic, 0.5-10 pg/kg A. carbonarius, [12,13,22,23]
beer, grapes, dried fruits K K R
immunotoxic Penicillium verrucosum
. . Neurotoxic, genotoxic, . e
Fumonisins FB1 e FB2 Ma{ze and maize based food, immunotoxic, carcinogenic, 200-4000 pg/kg Fusarium Z{ertlczllzozdes, [14,24]
rice, sorghum, soybeans h - . F. proliferatum
epatotoxic, nephrotoxic
Type A: HT2,T-2,  'Vheat, barley and maize and Inhlblsh:;h(;fsimtem s oifr?:;;:z?des
Trichothecenes ype i Hms, e less often in oats, rice, rye, . Y g DON: 200-1750 pug/kg porotr ' [2,13,14,16,25]
Type B: DON -, immunosuppressive and F. graminearum,
sorghum and triticale :
cytotoxic effect F. culmorum
Apples and apple products Genotoxic, embryotoxic,
Patulin PAT pp frui tPEicep ! immunotoxic, teratogenic, 10-50 ug/kg Penicillium expansum [13,26]
) carcinogenic
Zearalenone ZEA Corn, oats . Hepatotopc, gen.otoxm,. 20-400 ug/kg Fusarium graminearum [14,27]
immunotoxic, carcinogenic
P. citrinum,
Various commodities of plant Nephrotoxic, neurotoxic, PR;;;; Z?cs):;:r;
Citrinin CIT origin, cereals, namely genotoxic, embryotoxic, 2000 pg/kg for rice ) ! [12,16,28]

fermented rice

immunotoxic

Aspergillus carneus,
A. niveus, Monascus
purpureus

* The limits vary according to the food matrix [13-16,19].
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2. Conventional Analytical Methods for Mycotoxins Detection

Chromatography is the most commonly used method used for mycotoxin analysis in food and
feed [29]. The thin layer chromatography (TLC) was the first chromatographic method to be applied
for mycotoxin determination and, nowadays, is still a routine technique used in several laboratories.
TLC is presently used as a rapid visual screening method for certain mycotoxins (AFM1, AFG1,
AFG2, FB1 and OTA) allowing a qualitative evaluation or, if coupled with instrumental densitometry,
enabling a semi-quantitative assessment [30-32]. However, current trends in mycotoxin analysis in
foods are focused on the application of robust, fast, easy to use, and cheap technologies that are able
to detect and quantify simultaneously various mycotoxins with a high sensitivity and selectivity in
a single run [33]. To meet those needs, many chromatographic methods such as high-performance
liquid chromatography (HPLC) coupled with ultraviolet (UV), diode array (DAD), fluorescence (FLD),
or mass spectrometry (MS) detectors; and, ultra-HPLC (UHPLC) or UPLC with reduced column
packing material (1-2 um) have been developed [34]. Additionally, gas chromatography (GC) coupled
with electron capture (ECD), flame ionization (FID), or MS detectors have been also used to identify
and quantify volatile mycotoxins [34]. Due to the high polarity and low volatility of some mycotoxins,
GC analysis often requires a derivatization step. Thus, this method is used rarely in mycotoxins
analysis [35]. Mycotoxin analysis has been greatly enhanced by coupling liquid chromatography
techniques with mass-spectrometry (e.g., LC-MS; LC-MS/MS) [29]. While HPLC-MS coupled with
mass spectrometric or fluorescence detectors are usually applied for mycotoxins analysis in foods,
other chromatographic techniques (e.g., TLC) are rarely used due to the limited sensitivity and
specificity [34,36,37].

Chromatographic methods, namely LC and GC, typically require additional steps prior to detection,
including extraction, clean-up and separation that are crucial, though time consuming, for a successful
protocol, and directly affect the final choice for the detection procedure [29]. Although these methods
have high sensitivity and selectivity, they are not suitable for rapid, on-site testing because they
are laboratory-based and require skilled operators and expensive equipment. In addition, they are
time-consuming, involve high costs, often require large amounts of hazardous reagents and solvents
during the analysis process, and may exhibit a lack of accuracy for low analyte concentrations [38].
A comparison between the conventional analytical methods to detect mycotoxins in food and feed
samples is summarized in Table 2. In this table, some examples of mycotoxin detection/quantification
limits are given for the conventional analytical techniques commonly used, although it should be
remarked that the referred techniques may allow achieving lower detection limits depending on the type
of food matrix and/or on the target mycotoxin.

Additionally, enzyme-linked immunosorbent assays (ELISA) are an important analytical
technique that has been widely used in the detection of mycotoxins [39,40]. The technique principles
are based on the competitive interactions between mycotoxins (acting as an antigen) and specific
antibodies labelled with toxin-enzyme conjugates [41]. ELISA can be performed in several ways
such as direct assay, direct competitive assay, and indirect competitive assay, with competitive
direct assay being the most commonly used method [42]. This technique provides a fast screening,
and commercial kits are available. These have been validated for a wide variety of food matrices
and are available for the detection and quantification of mycotoxins including AFs, DON, FB, OTA,
T-2 toxin, and ZEA [33,41,43]. The ELISA-based method is user-friendly, less expensive, and less
time-consuming than HPLC techniques, which, on the other hand, are much more reliable in terms of
analyte quantification [44].

The availability of other fast, sensitive, simple, portable and cost-effective methods for rapid
determination of mycotoxins and others contaminants is becoming an increasingly significant challenge
for the food industry in order to ensure the safety of foods and feeds. Therefore, the use of analytical
procedures based on sensors has recently gained increased interest, mainly due to their capability
to overcome a large number of analytical challenges, including difficulties in detecting low-level
mycotoxin contamination, and the co-occurrence of mycotoxins [45,46]. In this sense, many researchers
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applied sensor-based devices like microarray chips [38], electrochemical sensors [47], biosensors [48],
multiplex lateral flow [24,49], Surface Plasmon Resonance (SPR) [50], Total Internal Reflection
Ellipsometry (TIRE) [51], and Surface Enhanced Raman Scattering (SERS) [32]. In this perspective,
thin film sensors have recently emerged as good candidate techniques to fulfill such requirements,
although not all of the above-mentioned types of sensor-based devices would fall within the thin-films
sensors classification.
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Table 2. Comparison between the conventional analytical methods for mycotoxins analysis.
Method Advantages Disadvantages Mycotoxin/Matrix LOD LOQ References
Simple and inexpensive ggg; serlelz;:i\(;iy
TLC Can be used as a rapid prect h onlv if DON/Wheat flour 30 ng-mL~! 100 ng-mL~! [30,52,53]
screening method QuantltatlYe approa.c only 1
coupled with a densitometer
Good selectivity
Accurate identification Expensive equipment
HPLC-FLD  Short analysis time Specialist expertise required AFB1/Spices 0.04ng-mL~!  0.15ng-mL"! [54,55]
Automatic analysis (autosampler) Derivatization may be required
Official methods available
Selective and sensitive detection
Capability to generate structural Expensive equipment
information of the target analyte Specialist expertise required . _ _
LEMS Low detection limits Sgimultarzleous SEnsitiVity dzpends 02 AFB1/Wheat grain 2pgkg”! 3.5 ugkg ™! [55-571
analysis of multiple mycotoxins ionization technique
Minimum sample pre-treatment steps
Expensive equipment
Simultaneous analysis of multiple Sg;ii?:;:;gﬁi:si;fe(gmed
GC mycotoxins Non-li lib qt' DON/Pasta 0.5 ng-kg™! 1 ng-kg™! [4,35,58]
Selective and sensitive detection on-inear ca Ibration curve
Carry over effects from previous
sample
Convenient and sensitive detection Matrix interference problems
Ease of operation Rapid sample Cross-reactivity with related
screenin, mycotoxins e
ELISA Simultar%eous analysis of multiple Po};sible false positive/negative OTA/Corn 40ngmL~ Not specified [591
mycotoxins results
Low use of organic solvents Narrow operating range
Rapid screening of a large number of Complicated interpretation of
Spectral samples spectral data
analysis Qualitative and quantitative information ~ Spectra overlapping Fumonisin/Corn 100 pg-kg~! Not specified [60,61]
technology about the structure of mycotoxins Possible false positive /negative

Can be used in situ

results

ELISA—Enzyme-linked immunosorbent assay; GC—Gas chromatography; HPLC-FLD—High-performance liquid chromatography coupled with fluorescence detector; LC-MS—Liquid
chromatography-mass spectrometry; TLC—Thin layer chromatography.
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3. Thin Film Based Sensors

A thin film generally refers to a layer of material that ranges from a few nanometers to several
micrometers in thickness. Thin film devices play an important role in many conventional and emerging
technologies due to the constant advances in nanotechnology, among which the development of
functional materials and the use of properties of thin films can be mentioned, such as high surface area,
controlled nanostructure for effective charge transfer, and special physical and chemical properties [62].

Thin layers applied in the thin film devices may comprise organic, inorganic, and composite
thin layers, sharing analogous functionalities, properties, and fabrication routes. The combination
between different thin films can produce a thin film device, like thin film solar cells, thermoelectric
devices, actuators and also transistors, for the development of biosensors or other electrochemical
sensors for mycotoxins detection [62]. The film layer(s) may be deposited using vapor, liquid or
solid precursors or from a combination of several precursors phases, depending on their nature and
on the desired functionality and specification of the thin film [62-64]. Conducting polymer thin
films may be deposited using several solution-processed casting techniques, such as electrochemical
deposition, Langmuir-Blodgett (LB) technique, layer-by-layer self-assembly, dip coating, spin coating,
drop-casting, spray coating, inkjet printing, as well as using different thermal evaporation techniques at
moderate temperatures [65]. In addition, some physical and chemical-vapor deposition methods (PVD
and CVD, respectively), such as sputtering and molecular bean epitaxy modes, can also be applied to
improve the quality of the deposition [62].

A biosensor is a bioanalytical device constituted by a biorecognition element (DNA, enzyme,
antibody, etc.), which is responsible for recognizing an analyte, i.e., a bioreceptor; an immobilization
matrix like conducting polymers [48,66], nanomaterials [67,68], sol-gel films [69], and self-assembled
monolayers [70], which have been used for the immobilization of a biomolecule; and a transducer unit
for converting the biochemical response into a recognizable electrochemical/electric signal.

Biosensors are commonly classified based on the type of transducer, as optical (colorimetry,
fluorescence, luminescence, interferometry, spectroscopy, SPR, and TIRE); electrochemical (amperometry,
conductimetry, potentiometry, and voltammetry); and piezoelectric (quartz crystal microbalance
(QCM) [48,71].

3.1. Optical Sensors

Optical biosensors provide a powerful alternative to conventional methods such as ELISA and
chromatographic techniques because they allow high sensitive, nondestructive, and real-time analysis
of food toxins without needing extensive and complex sample preparation steps [72].

This kind of biosensor uses a transducer unit capable of converting the interaction between the
biorecognition elements and the target analytes into a measurable optical signal. They are classified
according to the optical method applied to detect the analyte of interest, which may be based on
fluorescence, colorimetry, electrochemiluminescence, and SPR [73-75]. Among optical techniques,
SPR and fluorescence are the most frequently used.

3.1.1. Fluorescence Sensors

Among the several optical detection methods, fluorescence sensing techniques attracted huge
interest due to their easy operation, short analytical time and convenient signal reading [76].
Nanomaterials have been integrated into fluorescent biosensing devices, taking into account their
inherent excellent optical and electronic properties [75]. Gold nanoparticles [77], dendrimers [78],
quantum dots [79], and graphene oxide [80] have been employed in the mycotoxin sensing.
In combination with nanoparticles, specific aptamers were also used to develop some fluorescence
thin film sensors for mycotoxin detection [81,82]. The aptamer consists of a synthetic oligonucleotide
ligand (either single stranded DNA (ssDNA) or RNA) that comprises less than 80 nucleotides and
with less than 25 kDa and are known to exhibit high specificity and strong binding affinity [83].
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Caputo et al. [84] developed a rapid, compact and innovative method for the detection of OTA
based on hydrogenated amorphous silicon (a-Si:H) thin film sensors (Figure 1, reprinted with permission
from [84] ©MDP], 2018). The sensor was constituted by a stacked structure of p-type/intrinsic/n-type
a-Si:H layers deposited by plasma enhanced chemical vapor technique (PECVD), which was deposited
on a glass substrate allowing improvement of the detection limits. The metal contact surface comprised
a three metal layer of chromium /aluminum/chromium, obtained by evaporation under vacuum [84].
As described by the researchers, a high-performance thin layer Chromatography (HPTLC) plate was
placed on the silica side, being 2 uL of OTA solutions with different concentrations spotted. The incidence
of an UV radiation, at 253.4 nm, allowed exciting the mycotoxin, which re-emitted light (mostly in
the green range) passed through the glasses/TCO layers being absorbed by the a-Si:H photosensor,
which is aligned with the OTA molecules dropped on the silica. According to Caputo et al. [84],
the minimum detected OTA concentration was 0.25 pg-kg~! (corresponding to 0.1 ng of OTA detected
after an extraction process starting from 10 mL of red wine), showing that the presented system has the
potential for a low-cost system suitable for the early detection of toxins in foods.

I 1 ]
] 1 1
Lo UV Radiation
A A A
1 1 1
vy v ¥
OTA SPOT SILICA| 100 _u_n'_i
Light|frpm GLASS .
OTA mglekules mm
--------- ¥
’ \ GLASS 1 mm
-------- ¥

Figure 1. Qualitative scheme of the fluorescence detection system for OTA molecules. The analyte
is confined in an HPTLC plate, optically coupled with a glass substrate, where the a-Si:H photosensor
have been deposited. (reproduced with permission from Caputo et al. [84] ©MDP]I, 2018).

Using the same system with a-Si:H photosensor, Caputo et al. [85] reported limits of detection of
0.1 ng and 1 ng in standard solutions or in contaminated red wine samples, respectively, allowing to
infer if the OTA content in a red wine was above or below the legal limit (2 pg-kg ') [86].

A portable thin film device for detecting OTA was developed by De Cesare et al. [44]. The device
allowed assessing the mycotoxin level of different food commodities, even if it was below the maximum
limit imposed by the EU Commission [86] for the specific food evaluated. The prototype device included
three main parts: a UV light source that supplied the radiation to induce the OTA fluorescence; a commercial
HPTLC plate made of a silica gel-covered glass; an array of amorphous silicon photodetectors (a-Si:H
photosensors), positioned behind the back side of the TLC plate. The photosensors were deposited by
PECVD on a glass that was optically coupled to the TLC plate. The system performance was evaluated
using OTA standard solutions, as well as with OTA extracts from fortified wine or beer samples. The results
revealed a quantification limit of 0.2 ng in 2 uL of extracted sample solution (red wine or beer fortified
with OTA) which would correspond to 10 ng of OTA in 5 mL of real matrix, being, according to the
researchers, a value of 5.5 mL (admitting a 90% extraction efficiency) of sample enough to determine if the
OTA concentration was lower than the legal threshold (2 pg~kg’1) [86].

Some fluorescence sensing assays are based on Fluorescence Resonance Energy Transfer (FRET) [80].
In this manner, one chemical group provides energy and the other one accepts the transferred energy.
A large overlap between receiver excitation and donor emission must exist in order to achieve FRET.
When the distance between donor and acceptor is close enough, the energy will be transferred from
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the donor to the acceptor. Furthermore, the acceptor and donor in the FRET system can be designed in
a biunique or one-to-multiple manners, enabling the simultaneous application of multiple mycotoxin
sensing methods [76]. The FRET technique was applied by several researchers, allowing detection of
different mycotoxins (e.g., AFM1, AFB1, OTA and FB1) in foods (e.g., milk, peanuts, rice, and/or maize).
Antibodies or aptamers were immobilized onto fluorescent nanoparticles-graphene oxide, quantum
dots-AulNPs or nanogold-strips, forming thin films and enabling achieving low detection limits (e.g., 0.02
to 0.1 ng-mL !, depending on the method /mycotoxin) [80,87,88].

3.1.2. Surface Plasmon Resonance (SPR) Sensors

Biosensors based on SPR use a thin metal (usually gold or silver) film between two transparent
media with different refractive indices, like, a glass prism and the sample solution. When a polarized
light beam passes through the higher refractive index medium (e.g., glass prism) it can undergo a total
internal reflection if the incidence angle is above the critical angle, generating an evanescence wave
that penetrates the metal layer [89,90]. The interaction of this wave with free oscillating electrons
at the metal film surface at a specific angle of incidence will cause the excitation of the plasmon
surface, resulting in a decrease in the reflected light intensity. A SPR system thus detects changes in
the refractive index of the surface layer of a solution in contact with the sensor chip [81]. Figure 2
(reproduced with permission from reference [91] ©Nature, 2018) shows the SPR biosensor principle,
including a typical set-up as well as a common binding cycle.

M. Flow channel 6

O o”

"

Sensor chip
N A U With gold film
Polarized Reflected
light Prism light
v
Optical

Light

AR detection

unit

Sensorgram 4—'

Intensity
Resonance
signal

Angle ’ Time

Figure 2. SPR biosensor principle. Typical set-up for an SPR biosensor. (reproduced with permission
from Cooper [91] ©Nature, 2018).

Small compounds, such as mycotoxins, usually do not generate a sufficient change in the refractive
index and thus their detection using SPR is more challenging, due to the low signal intensity and poor
sensitivity [92]. However, a clear enhancement of the method sensitivity can be achieved by using
SPR combined with competitive or inhibitive detection tools together with the use of additional high
mass labels.

Indeed, SPR sensing has been used with competitive-inhibition assays and sandwich assays to
determine mycotoxins. In competitive methodologies, the sensor surface is coated with an antibody
that interacts with the mycotoxin. When a conjugated antigen is added to the sample, it competes
with the mycotoxin for the limited number of biding sites on the surface. Therefore, the recorded
signal is inversely proportional to the mycotoxin concentration. The inhibition assay relies on mixing
a known concentration of antibody with a sample containing an unknown concentration of antigen
that is subsequently injected into the flow cell and passed through a sensor surface, to which antigen
is immobilized. Then, the amount of bounded antigen to the modified surface antibody is measured
and the obtained signal is proportional to the concentration of the mycotoxin [76,93]. In the sandwich
format, the antibody is added to the sample to recognize and react with the target, forming a primary
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complex [50,94,95]. Then, the primary complex is placed in contact with the sensor chip to generate
the sandwich complex, which results in a measurable signal [76].

Other approaches to amplify the SPR signal response involve the use of fluorescence or modifications
of the sensor chip with metallic nanoparticles. The latter ones are widely used in the construction of
biosensors due to their unique physical and chemical properties, good biocompatibility and high catalytic
activity for many chemical reactions. Among the large variety of nanomaterials currently available,
the implementation of gold nanoparticles (AuNPs) has gained huge relevance [75]. The application of
silver film over nanospheres has also been a very effective practice due to the high enhancement factor
achieved (>10%), the high stability within a wide temperature range and wide analyte concentration
ranges, and the good shelf-life (higher than 40 days) [96].

The nanomaterial-based enhanced SPR biosensing systems may be achieved using two common
strategies. One promotes the substrate SPR biosensing by applying nanomaterials and, the other uses
nanomaterials as amplification labels for SPR biosensing enhancement. As SPR substrate, nanomaterials
with large surface area allow the immobilization of several biorecognition elements.

Fu et al. [97] reported a SPR biosensor for OTA detection based on gold hollow balls (AuHBs)
with dendritic surface. An electropolymerized thionine (PTh) film was deposited onto a gold electrode,
forming a PTh-modified electrode surface with several amino groups. The deposition was achieved
using voltammetric cycles between 0 and 1.5 V at a scan rate of 50 mV /s in 0.1 M thionine aqueous
solution. The AuHBs were immobilized using a thionine thin film electropolymerized onto the SPR
probe surface. Then, anti-OTA monoclonal antibody (anti-OTA, linked to AuHBs, was also immobilized
onto the SPR-probe surface. The developed SPR biosensor exhibited a linear detection range from 0.05 to
7.5ng mL! with a low limit of detection (LOD) (0.01 ng mL1), under the optimum operating conditions.
Furthermore, this SPR biosensor also enabled a fast detection (<30 min) of OTA in milk samples.

Todescato et al. [98] developed a new sensor prototype capable of detecting OTA, at levels lower
than the legal threshold of 0.5 ug/kg, in different food matrices (dried milk, juices, and wheat milk):
The sensor device comprised a silver film over nanospheres plasmonic substrates functionalized with
a specific anti-OTA antibody (Ag-FON), able to bind with the complex OTA-Alexa Fluor (AF) 647. Briefly,
as described by the researchers, polystyrene nanospheres, in an aqueous solution, were spin-coated
on top of the clean glass slides to form a self-assembled stack. Silver thin films were then deposited
onto the substrates using an Edwards E306A coating system with a bare pressure of 6 x 107> mbar.
The metal deposition rate was approximately 1 A /s and the final Ag thicknesses, evaluated by means
of a quartz crystal microbalance, were approximately equal to 50, 100 and 150 nm. In the work,
OTA concentrations ranging from 0 to 5 ug-kg ! were incubated on commercial micro arrays or on
Ag-FON slides. The Ag-FON array slides allowed detecting OTA concentration as low as 0.05 pg-kg ™!,
10 folds lower than the detectable concentrations using commercial microarray slides (0.5 pg-kg™1).
Indeed, the limit of quantification (LOQ) of OTA using Ag-FON substrates was of 3.6 ng-kg ! that is
20 times lower than the LOQ observed for commercial microarray slides (70.7 ng-kg~!). To evaluate
the feasibility of the detection strategy for real samples, the authors spiked milk, juices and wheat mix
samples with unlabeled OTA and the results showed that the proposed methodology was able to detect
OTA concentrations as low as 0.5 ug-kg ! (E.U. legislation lower tolerable limit) in the spiked samples,
whose levels were statistically higher than those observed in the control samples (not spiked with OTA).
These findings showed that OTA concentrations higher than 0.5 pg-kg~! could be detectable in these
food matrices when compared to control samples [98].

Karczmarczyk et al. [99] developed an indirect OTA detection method for red wines analysis,
based on an AuNPs-enhanced SPR device. The sensor chip comprised a BK7 glass substrate that was
coated by applying a sputtering deposition method, with a thick gold film (37 nm). The setup allowed
secondary antibodies, conjugated with AuNPs, to interact with antibody—OTA complexes immobilized
on a gold sensor chip surface, via self-assembled thiol monolayer (SAM). In order to optimize the
enhanced SPR biosensor response for the OTA immunoassay, Ab2-AuNPs conjugates with different
diameters (1040 nm) were used. The LODs were obtained in PBS as well as in red wine samples and
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were equal to 0.068 and 0.19 ng-mL~!, respectively. The highest signal amplification was obtained
for diameters of 40 nm and for distances greater than 50 nm between the nanoparticles and the gold
surface leading to enhancement factors greater than 100.

A similar AuNPs enhanced SPR thin film immunosensor was constructed for a fast and sensitive
detection of aflatoxin M1 (AFM1) in milk and dairy products by Karczmarczyk et al. [100]. In this work,
and similarly to reference [97], the sensor chip was prepared on the top of a BK7 glass substrate that was
coated with a 41 nm thick gold layer. Two surface architectures were used for the immobilization of AFM1
and of the primary antibody on the gold surface. The first, (A), was based on a bicomponent SAM with
polyethylene glycol (PEG) moieties and, the second, (B), used poly(2-hydroxyethyl methacrylate) marked
as p(HEMA) brush (Figure 3; reproduced with permission from [100] ©Elsevier, 2018). Both sensors were
characterized in terms of surface mass density of the immobilized AFM1 conjugate as well as affinity
bound of primary and secondary antibodies. The sensor with thiol mixed SAM with PEG moieties
showed a LOD of 26 pg-mL~! and 38 pg-mL~! in buffer standard solutions and in milk samples,
respectively. On the other hand, the sensor with p(HEMA) exhibited a LOD of 18 pg-mL~!, which is
more than two-times lower compared to that on thiol SAM with PEG groups. The biosensor [100] was
highly sensitive towards AFM1 in milk, allowing its detection in a low time-period (55 min), showing
a sensitivity of at least one order of magnitude higher compared to the those reported by other methods,
including electrochemistry [101] or indirect and direct ELISA [102].

-\Y,L Y
Ab:-AuNPs ——— -f \-
-\Y,L _\ Y . ”‘

BSAAFM‘\%# {;r/ \A»/\/«L \V\/\ Sl
Au film I I[I-; }III | e s VSO

Glass

t S \,'\0,

(b) e

Laser Detector o d

Au

Figure 3. Scheme of the optical setup and sensor chip with different surface architectures: (a) mixed
SAM and (b) p (HEMA) brushes (reproduced with permission from Karczmarczyk et al. [100] ©Elsevier,
2018).

Another interesting optical approach is the use of Localized Surface Plasmon Resonance (LSPR),
which has been attracting the attention of researchers because of its potentially high sensitivity [103,104].

3.1.3. Total Internal Reflection Ellipsometry (TIRE)

The method of Total Internal Reflection Ellipsometry (TIRE) combines the advantages of SPR
and spectroscopic ellipsometry and allows achieving sensitivities 10 times higher than SPR and,
therefore, it became particularly suitable for detection of low molecular weight molecules such as
mycotoxins [105].

Al Rubaye et al. [82] reported for the first time a label-free optical detection of OTA using a direct
assay with highly specific aptamers using the TIRE method (Figure 4; (reproduced with permission from
reference [82] ©Elsevier, 2018). Gold layers, of about 25 nm of thickness, were formed by evaporation on
glass slides using an Edwards E306A equipment. A thin layer of chromium (2-3 nm) was obtained by
evaporation, allowing improvement of the adhesion of the gold layer on the glass surface. Immobilization
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was carried out by casting the aptamer solution onto the gold coated slides. The reported results showed
that the detection of OTA using this aptamer-TIRE method was successful and OTA concentrations as
low as 0.01 ng-mL~"! could be detected. This same research group [51] also developed a highly sensitive
analytical TIRE method, which combined with LSPR and using nanostructured gold films allowed
detecting aflatoxin B1 and M1 in a direct assay based on the use of specific aptamers immobilized on
a gold sensor surface. The concentration range for aflatoxin B1 detection ranged from 0.01 ng-mL~! to
100 ng-mL !, being obtained LODs of 0.01 ng-mL~!, which is remarkably low for LSPR-based biosensors.
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Figure 4. Total Internal Reflection Ellipsometry (TIRE) spectra recorded on aptamer layer (1) and after
binding Ochratoxin A (OTA) of 0.01 ng/mL (2), 1 ng/mL (3) and 10 ng/mL (4). (reproduced with
permission from Al Rubaye et al. [82] ©Elsevier, 2018).

3.2. Electrochemical Biosensors

The use of electrochemical biosensors is based on the electroactive characteristics of several
analytes, which may be oxidized or reduced on a working electrode surface, generating a measurable
electrochemical signal [106]. Most of electrochemical biosensors developed for mycotoxins detection
are based on the use of specific antibodies, aptamers or artificial receptors like molecularly imprinted
polymers (MIPs) as affinity ligands that allow binding the analyte to the sensor, with negligible
interference from other components that may be present in the sample [107,108].

To transform the mycotoxin interaction into a measurable analytical signal, different electrochemical
techniques have been used like (1) amperometric, which measures the changes in the current at a given
applied voltage resulting from the oxidation or reduction of an electroactive biological element providing
specific quantitative analytical information; (2) potentiometric, which measures the changes in the voltage
between the working and the reference electrodes due to the establishment of an electrostatic interaction;
(3) conductometric, which measures the changes in the capability of the sensing material to transport
charge (electron); and (4) impedimetric, which measures the resistance of the generated electric current
at certain applied voltage and combines the analysis of both the resistive and capacitive properties
of the materials [109-113]. Many review articles have focused on mycotoxin detection using different
electrochemical biosensors [47,107,114,115] and on the application of nanomaterial-mediated bio and
immunosensors [21,75,76].

Table 3 summarizes research regarding electrochemical sensors devices recently used for mycotoxin
analysis in food samples. It should be remarked that, concerning the electrochemical devices, the majority
of the works do not give information regarding the thickness of the detection thin-films formed,
usually only reporting the thickness sensor surface where the film layers are formed. Nevertheless,
from the overall information gathered for most devices, it could be assumed that the thickness of the
film layers (nanocomposites are usually reported) is at nanometer-micrometer level, although for few
devices it could be at a millimeter level.
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Table 3. Electrochemical thin film sensors devices recently used in the mycotoxins analysis in food samples.
Method Mycotoxin Bioreceptor Interface Material Sample Type Limit of Detection (LOD) Linearity Range Reference
Au surface
CIT Antibody electrodeposited on a Rice 0.1 ng-mL~! 0.5-50 ng-mL~! [116]
GCE
Amperometric AFM1 Antibody SPCE Milk 0.039-ng-mL~! 1-10.000 ng-L~! [117]
P ZEA Antibody Au@AgPt Milk 0.0017 ng-mL~! 0.005-15 ng-mL ! [118]
Chitosan-AuNPs

AFB1 Antibody modified gold Wheat 0.15 ng-mL~! 1.6-32 ng-mL~! [119]

microelectrode
Cond . OTA Enzyme TLN/AuNPs/(PVA /PEI) Olive oil 1 nM 2-100 nM [120]
onductometric AFB1 Enzyme Au + Pyroceramic + Cr Standard solution 50 ng-mL~! 0.25-1mM [121]
OTA Antibody SAM (AUT/Au) Coffee 0.0008 ng-mL_1 0.5-6.0 ng-dL_1 [122]
OTA Aptamers SPCE Cocoa beans 0.15 ng-mL*1 0.15-2.5 ngmL*1 [123]
AFM1 Aptamers SPCE Milk Not specified 20-1000 ng-kg ™! [124]
AFM1 Aptamers SPCE Buffer 1.15 ng'L_l 2-150 ng»L_1 [124]
AFM1 Antibody Ag wire Milk 0.001 ng-mL~! 6.25-100 pg-mL~! [125]
4 OTA Aptamers AuNPs—PC Soybean 10~8 ng-mL~! 1078-0.1 ng-mL~! [126]

Impedimetric Au electrode +
OTA Aptamers AuNPs/Boltorn H30® Beer 0.02nM 0.1-100 nM [127]
OTA Aptamers SPCE/PTH + IrO, NPs White wine 0.014 nM; 5.65 r1g~kg’1 0.01-100 nM [128]
DON Antibody GCE + AuNPs/G/PhNO, Cereals 0.3 ng-mL_1 6-30 ng'mL_1 [129]

. CD-trodes modified with 1 1

AFB1 Antibody lipoic acid SAM Peanut 0.11 ng-mL 1.56-31.2 ng-mL [130]
OTA Antibody AuSPCE/BSA Plant extracts Not specified 2.5-100 ng-mL~! [131]
AFM1 Antibody Ag/AgCl Standard solution 0.04 ng-mL~! 0.25-2 ng-mL~! [132]
AFM1 Antibody Ag/AgCl Milk 0.5ng-mL~! Not specified [132]
Potentiometric AFM1 - GCE + ggl\?;;“'CD * Milk 2000 nM 0.015-25 mM [133]
OTA Aptamers GCE + AuNPs/MoSe, Red wine 0.00008 nM 0.0001-1 nM [134]
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electrode + cystamine

Method Mycotoxin Bioreceptor Interface Material Sample Type Limit of Detection (LOD) Linearity Range Reference
DON Antibody GCE + SWNTs/CS Sorghum 0.005 ng-mL ™! 0.01-1000 ng-mL~! [135]
SPCE modified with
AFB1 Antibody AuNPs and PPy /ErGO Corn 42ng-mL~! 200-4500 ng-mL ! [136]
film
SPCE modified with
DON Antibody AuNPs and PPy/ErGO Corn 8.6 ng-mL~! 50-1000 ng-mL~! [136]
film
OTA Antibody GCE + PTH/AuNPs Corn 0.2 ng-mL*1 1-1000 ng~mL*1 [137]
Voltammetry OTA - GC]Z+ N{IPt/ NfiWSNT Beer and wine 4.1nM (1.7 ng-mLfl) 50-1000 nM [138]
. u electrode . o . o
AFB1 Antibody CNTs/PDDA /PdeAu Standard solution 0.03 ng-mL 0.05-25 ng-mL [139]
. Au electrode + . _1 e
AFB1 Antibody CNTs/PDDA /PdeAu Rice 1250 ng-kg Not specified [139]
OTA Antibody + AuSPE Red wine 15 ng-mL~! 10-2-10% ng-mL ™" [140]
enzyme
AFM1 Antibody + AuSPE Milk 0.037 ng-mL "1 102-103 ng-mL ! [140]
enzyme
AFB1 Aptamers PAMAM G4 + Au Peanuts 0.40 nM 0.1-10 nM [141]

Au—Gold; Au@AgPt—Gold core and imperfect Silver/Platinum shell structure; AuNPs/G/PhNO,—Gold nanoparticles-dotted 4-nitrophenylazo functionalized graphene;
AUT—11-amino-1-undecanethiol; BSA—bovine serum albumin; CD—recordable compact disks; CDs—Cyclodextrins; CNTs/PDDA /PdeAu—Carbon nanotubes; Cr—Chromium;
ErGO—Electrochemically reduced graphene oxide; GCE—Glassy carbon electrode; GQDs—graphene quantum dots; IrO, NPs—Iridium oxide nanoparticles; MIP—molecularly
imprinted polymer; MoSe,—Molybdenum diselenide; MWCNTs—Multiwalled carbon nanotubes; NPs—Nanoparticles; PAMAM G4—Poly(amidoamine) dendrimers of fourth generation;
Pd—Palladium; PDDA—poly(diallyldimethylammoniumchloride); PPy—Polypyrrole; PTH—Polythionine; PTH—Polythionine; PVA /PEIl—polyvinyl alcohol/polyethylenimine;
SAM—Self assembled monolayer; SPCE—Screen printed carbon electrodes; SPE—Screen printed electrodes; SWNTs/CS—Single-walled carbon nanotubes/chitosan; TLN—thermolysin.
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3.3. Mass-Based Piezoelectric Biosensors (Quartz Crystal Microbalance)

A Quartz Crystal Microbalance (QCM) consists of a thin quartz disk where electrodes are placed.
The application of an external electrical potential to a piezoelectric material produces an internal
mechanical stress. As the QCM is piezoelectric, an oscillating electric field applied across the device
induces an acoustic wave that propagates through the crystal and reaches a minimum impedance when
the thickness of the device is a multiple of a half wavelength of the acoustic wave. Another advantage of
QCM is its ability to carry out real-time measurements [142].

Karczmarczyk et al. [143] developed a novel sensor device based on a quartz crystal microbalance
with dissipation monitoring (QCM-D). The sensor consisted of a gold surface modified with a mixed
thiol self-assembled monolayer (SAM) to which the BSA-OTA conjugate was attached as shown in
Figure 5 (reproduced with permission from Karczmarczyk et al. [143] ©Elsevier, 2018). Antibodies for
specific analyte recognition were used, allowing fast and sensitive detection of OTA in red wine.
The amplification of the QCM-D signal was achieved by applying secondary antibodies conjugated
with AuNPs. The developed QCM-D biosensor exhibited a linear detection range of 0.2-40 ng-mL~!
and a LOD of 0.16 ng-mL 1.
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Figure 5. Scheme of the interfacial molecular architecture for the detection of OTA using a competitive
immunoassay-QCM approach (reproduced with permission from Karczmarczyk et al. [143]
©Elsevier, 2018).

A simple and sensitive QCM immunosensing platform was designed by Tang et al. [144] for
detecting AFB1 in foodstuffs. Initially, the phenoxy-derived dextran molecule was immobilized
on the surface of QCM gold substrate. Then, AFB1-bovine serum albumin (AFB1-BSA) conjugated
concanavalin A (Con A) was assembled onto the QCM probe through the dextran-Con A interaction.
Glucose-loaded nanoliposome, labeled with monoclonal anti-AFB1 antibody, was used for the
amplification of QCM signal. The observed dynamic ranged from 1.0 ng-kg~! to 10 pug-kg~! and
the LOD was 0.83 ng-kg~!. The accuracy of the immunoassay was evaluated with peanut samples,
including naturally contaminated peanut samples and spiked peanut samples. The immunosensing
platform showed similar results compared to commercial AFB1 ELISA kits.

4. Conclusions and Future Perspectives

The need of controlling food contamination is a current and growing worldwide challenge.
Therefore, the availability of fast and accurate analytical devices that could be used as a warning
preliminary screening tool, allowing the detection of food contamination is of utmost relevance.
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Thin film biosensor devices are currently one of the most active research areas within the mycotoxins
analysis. Comparing with the traditional analytical methods used for mycotoxins analysis, the main
advantages of biosensors include the fast analysis time and rapid detection, high sensitivity, easy sample
preparation, reusability and low cost. Nanomaterials such as gold, silver, metal oxides and quantum
dots have been extensively employed for enhancing the detection capability of biosensors due to
their remarkable optical, electronic, thermal, and mechanical properties, allowing the increase of
their sensitivity, stability, and selectivity towards mycotoxins. In addition, several studies have been
carried out focusing in the use of aptamers, antibodies, and MIPs together with nanoparticles in order
to amplify the signal responses and thus guaranteeing a greater selectivity of thin film biosensors.
Finally, it should also be mentioned that sensors merging electrochemical and optic detection systems
(e.g., electrochemiluminescence and SPR assays) seem to be very promising approaches, demonstrating
reliable and sensitive mycotoxins detection, possessing self-checking and self-calibration capabilities.
These devices can also be designed for single or multi-analyte testing, single-use or reusable procedures,
even allowing continuous monitoring assays. However, some drawbacks must be overcome before
these devices may be used as routine techniques for mycotoxins detection. An effort must be made by
researchers to convince the industrial partners of the advantages of thin film sensor devices, allowing
their commercial exploitation. The use of several non-standard deposition techniques for obtaining the
thin layers, the need of incorporating antibodies or aptamers as recognition elements coupled with the
nano/microscale of the films poses some practical limitations. Moreover, the availability of user-friendly
commercial devices, which are currently not a reality, requires merging several fields of knowledge
(e.g., artificial intelligence, digital electronic sensors design, material sciences, microcircuit design,
software innovations, and electronic systems integration) that at the actual research and development
level is not a straightforward task. Furthermore, although the thin film sensor devices may enhance the
mycotoxins detection performance, it should be remarked that the conventional analytical techniques
(e.g., ELISA, HPLC, GC, etc.) allow for achieving detection limits of the same order of magnitude
(ng'mL~! or pg-kg 1), fulfilling the legal detection thresholds and so, limiting the need of establishing
novel detection strategies. Similarly to other emerging techniques, the key challenge in the near
future would be reaching the market, which would require unequivocally demonstrating the practical
detection feasibility of such devices as well as the possibility of producing them at an industrial level,
or the huge advantages of delivering personalized solutions upon a specific request from a client.
Nevertheless, the reported overall satisfactory performances achieved with thin-film sensor based
devices for mycotoxins detection in food matrices, even at levels lower than the legally regulated
thresholds, allow foreseeing their future practical application, as a routine analytical procedure.
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