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Abstract: Fluorescein and its derivatives are yellowish-green emitting dyes with 

outstanding potential in advanced molecular probes for different applications. In 

this work, two fluorescent compounds containing fluorescein and an amino acid 

residue (compounds 1 and 2) were photophysically explored. Compounds 1 and 2 

were previously synthesized via ester linkage between fluorescein ethyl ester and 

Boc-ser (TMS)-OH or Boc-cys(4-methyl benzyl)-OH. Studies on the time-resolved 

fluorescence lifetime and relative fluorescence quantum yield (φ) were performed 

for 1 and 2 diluted in acetonitrile, ethanol, dimethyl sulfoxide, and tetrahydrofuran 

solvents. The discussion considered the dielectric constants of the studied solvents 

(range between 7.5 and 47.2) and the photophysical parameters. The results of the 

lifetime and φ were compared with those obtained for compounds 1, 2 and 

fluorescein without an amino acid residue in alkaline aqueous solutions. Moreover, 

as a preliminary result compound 2 (S-cysteine) was tested in the presence of gold 

nanoparticles as an aggregation colorimetric probe. 
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1. Introduction 

One of the most commonly yellowish-green emitting dyes used for the 

preparation of advanced molecular probes applied in biological, toxicological, 

biomedical, and environmental studies is fluorescein [1–4]. It is a very versatile dye 
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due to its attractive photophysical properties, such as high extinction coefficients, 

high fluorescence quantum yield (φ), biocompatibility and low cost [5–7]. 

Fluorescein and its derivatives can be found as differently charged species 

depending on the pH of the aqueous solution. The range of these species progresses 

through the protonated cation form (acidic solution, 𝐹𝐻3
+) to the neutral species (FH2) 

and then to the anionic (FH−) and the dianionic (F2−) entities in alkaline solutions 

[5,8,9]. 

As a result of the electron distribution around the fluorescein core, these 

different entities possess unique photophysical properties that affect the absorbed 

and emitted light. The other photophysical parameters, such as the quantum yield 

and the lifetimes of the excited states, are also closely related to the pH [9,10], 

polarity [11,12], and hydrogen bonding power (HBP) [13,14] of the chemical 

environment [8]. The solvent polarity determines the equilibrium form of 

fluorescein and its derivatives; for example, in polar protic solvents, dissociation of 

the acidic phenol hydrogen (pKa = 6.4 in water) leads to an equilibrium between the 

neutral and anionic forms; in contrast, the predominant form in aprotic solvents is 

the neutral lactone [8]. To characterize the solvatochromism, fluorescein was 

extensively explored using absorption, steady-state, and time-resolved fluorescence 

spectroscopy [6,11,15–18]. The absorption/emission band shifts exhibited a high 

dependence on the HBP and dielectric constants of the solvents [13,14,19]. 

Consequently, the solvent-dependent photophysical characterization of new 

chromophores must be performed with differing solvents [20,21] to establish 

diverseness to suit a variety of potential applications. 

Fluorescein in its free-acid form is a very versatile fluorogenic building block for 

the synthesis of new molecular probes [22]. However, due to the presence of 

oxygenated organic functional groups over the core of the molecule, fluorescein is 

poorly selective for a specific analyte. The outermost groups around the xanthene 

moiety can be structurally modified using biomolecules (such as amino acids or 

peptides) to adjust the chromophore properties to suit the desired analytical 

application [4,22]. 

Recent studies have highlighted the potential of fluorescein as a fluorescent 

compound for functionalizing gold nanoparticles (Au-NPs), and preparation of 

smart materials. Several applications have been reported as in sensitive detection of 

toxins [23]; in vitro and in vivo breast cancer imaging [24]; the detection of 

immunoglobulin G [25]; a dual-mode imaging system [26]; selective recognition and 

quantitative detection of thiourea [27]; tumor suppressor (p53) detection using time-

resolved fluorescence [28]; intracellular pH mapping and cellular pH measurement 

under drug stimulation [29]; an optical mercury chemosensor [30]; and other 

nanoarchitecture materials for drug delivery [31]. With these applications in mind, 

we have designed and synthesized two compounds, 1 and 2 (Figure 1) by a simple 

esterification reaction of the phenolic portion with the protected amino acids Boc-

Ser (TBDMS)-OH and Boc-Cys (4-methyl-benzyl)-OH, respectively. Both compounds, 

1 and 2 were explored recently by us, as probes for the trivalent ions (Al3+, Fe3+, Ga3+, 

and Cr3+) as well as for Hg2+ [22].  
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Figure 1. Chemical structure of compounds 1 and 2. 

In order to explore the interaction with different organic solvents and colloidal 

suspensions, the present work reports the solvent effect on the UV–vis absorption, 

steady-state fluorescence, and time-resolved fluorescence spectroscopy, and the 

relative fluorescence quantum yield, φ, of compounds 1 and 2. These studies were 

performed in four different solvents, acetonitrile, dimethylsulfoxide (DMSO), 

tetrahydrofuran (THF), and absolute ethanol. For fluorescein without an amino acid 

residue, the spectroscopic, lifetime, and φ results in alkaline aqueous solutions are 

reported for comparison. To evaluate the effects of the presence of a sulfur atom in 

2, its interaction with gold nanoparticles in an ethanolic colloidal suspension was 

also performed. 

2. Materials and Methods 

Chemicals, starting materials, and synthesis of gold nanoparticles. Fluorescein 

(free acid) was purchased from Fluka. Compounds 1 and 2 were prepared as 

reported previously [22] and presented in the Supplementary Materials. 

Acetonitrile, dimethylsulfoxide (DMSO), tetrahydrofuran (THF), and ethanol were 

purchased from Sigma Aldrich and used as received. The alkaline aqueous solution 

was prepared using 0.064 M NaOH (pH 12.8). The Au-NPs used in this study were 

obtained in absolute ethanol (absorbance of 1.23 at 535 nm and NP size of 48 nm) 

using a patented technique that was published recently [32]. 

Instruments: Absorption spectra were recorded on a Jasco V-650 

spectrophotometer, and fluorescence emission spectra were obtained using a 

Horiba-Yvon-Spex Fluoromax-4 spectrofluorimeter. The lifetime of the excited state 

was measured using a Horiba Jobin-Yvon Tempro equipped with a NanoLED light 

source at 460 nm at the PROTEOMASS Scientific Society Facility, Portugal. Dynamic 

light scattering (DLS) equipment was used to determine the particle surface charge 

Z-potential (Zetasizer Nano ZS from Malvern Instruments, Malvern, UK). 

Spectrophotometric and spectrofluorimetric measurements. Stock solutions of 1 

and 2 were prepared separately by diluting an appropriate amount of compound 1 

or 2 in different solvents (acetonitrile, ethanol, DMSO, THF or alkaline aqueous 

solution) in 10 mL volumetric flasks. Working solutions of compounds 1 and 2 were 

prepared by diluting the stock solutions in their respective solvent (acetonitrile, 

ethanol, DMSO, THF or alkaline aqueous solution) to obtain a final concentration of 

1 × 10−5 mol/L. The fluorescence quantum efficiencies of compounds 1 and 2 were 

measured with a solution of acridine yellow in absolute ethanol as the standard (φ 
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= 0.47) [33] and were corrected for the different refraction indexes of the solvents. 

The Au-NP functionalization was performed by diluting compound 2 

(concentration of 1.67 × 10−4 mol/L) in 4 mL of an ethanol suspension. Next, 1 mL of 

the mixture was homogenized in an ultrasonic bath for 5 min, and the other 3 mL 

was kept under stirring for 20 h. Both samples were washed twice with ethanol 

(centrifuged at 4000 rpm for 10 min), and the functionalized NPs were finally 

suspended in ethanol before the photophysical characterization. 

3. Results and Discussion 

Figure 2 shows compound 1 suspended in the different solvents, acetonitrile, 

ethanol, dimethylsulfoxide (DMSO), and tetrahydrofuran (THF). The dielectric 

constants of these solvents differ (Table 1) [17,34]. The average emission wavelength 

for compound 1 prepared in THF, ethanol, acetonitrile, and DMSO was 510, 555, 559, 

and 560 nm, respectively. The absorption and emission data of compounds 1 and 2 

in THF, ethanol, acetonitrile, and DMSO are presented in Table 1. Absorption and 

emission spectra for compound 2 are reported in the Supplementary Materials 

(Figure S1).  

 

Figure 2. (a) Absorbance and (b) emission spectra of compound 1 in different solvents (concentration 

of 1 × 10−5 mol/L): (1) Tetrahydrofuran (THF), (2) ethanol, (3) acetonitrile, and (4) dimethylsulfoxide 

(DMSO). 

As shown in Table 1, the dielectric constants (εr) of the studied solvents ranged 

from 7.52 (THF) to 47.2 (DMSO). The observed molar absorptivity values of 1 and 2 

did not vary appreciably in the different solvents and thus could not be correlated 

with a solvent effect. Figure 3a presents the peak absorbance (λabs) of compounds 1 

and 2 versus the dielectric constant of the various solvents, and a bathochromic shift 

in absorption peak was observed as a function of εr in both compounds. In 

compound 2, a deviation from the expected trend of increase was observed between 

ethanol and acetonitrile (Figure 3a). This finding can be rationalized regarding the 

prevailing type of force underlying the compound/solvent interaction. The sulfur 

atom amino acid side chain in 2 is poorly electronegative; thus, ethanol (a protic 
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solvent) is better able to stabilize the compound via its HBP and solvation than 

acetonitrile, which acts through dipole–dipole interactions [14,35]. 

Table 1. UV–vis and fluorescence data for 1 and 2 (1 × 10−5 mol/L) in tetrahydrofuran (THF), ethanol, 

acetonitrile, and dimethylsulfoxide (DMSO). 

 Solvent UV–vis 

λabs  (nm) 
Log ε Fluorescence 

λem max (nm) 
Stokes shift 

(nm) 
Quantum 

Yield φ 
Lifetime 

τ1 (ns) 
Dielectric 

Constant (εr) 

1 

THF 428 4.10 512 84 0.003 2.3 ± 0.2 7.52 
Ethanol 433 4.10 525 92 0.048 3.65 ± 0.02 24.3 

Acetonitrile 445 4.12 542 97 0.003 2.7 ± 0.1 36.6 
DMSO 449 4.06 547 98 0.010 4.03 ± 0.02 47.2 

2 

THF 431 4.01 518 87 0.006 2.49 ± 0.05 7.52 
Ethanol 435 3.89 516 81 0.043 3.29 ± 0.03 24.3 

Acetonitrile 431 4.01 521 90 0.004 2.97 ± 0.08 36.6 
DMSO 457 4.04 549 92 0.025 4.06 ± 0.02 47.2 

Figure 3b,c shows, the peak emission (λem max) and the Stokes shift of compounds 

1 and 2 as a function of the dielectric constant. The results show an expected trend 

of increase in the Stokes shift and λem max as the solvent polarity increases. 

Chromophores present a larger dipole moment in the excited state than in the 

ground state, especially for polar or highly functionalized chromophores, such as 

fluorescein [36,37]. Consequently, after excitation, the solvent dipoles can reorient 

around the excited state of the chromophore, lowering its energy. Thus, the energy 

difference between the excited and ground states is lower in DMSO than in THF. 

Also, several studies correlated solvent parameters (such as dielectric constant and 

refractive index) with the spectral Stokes shift [19,36,37]. The redshift of the 

fluorescence bands has been attributed to the difference between the charge 

distributions of the excited and ground states in the solvent, i.e., a stronger 

interaction in the excited states can occur with polar solvents [38]. 

 

Figure 3. λabs (a), λem max (b) and the Stokes shift (c) in function of the dielectric constant for compounds 

1 and 2 are presented for different solvents. 

In addition, the absorbance and fluorescence spectra of compounds 1 and 2 and 

free fluorescein in alkaline aqueous solution (pH~12.8) are typical of the dianion 

form [8,9,39], the experimental spectra are shown at Figure S2. The average emission 
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value for all compounds is (529.3 ± 0.6) nm and the peak emission is (512.3 ± 0.6) nm. 

These results are in agreement with the reports of a maximum emission from 510 to 

520 nm [9] and corroborate the results of our previous study [22]. The addition of 

water disrupted the amino acid functionalization of fluorescein (acetonitrile with 

~9%–50% water in the presence of Hg2+), and in the present study, compounds 1 and 

2 in aqueous solutions were mainly found in the dianion form. Therefore, the 

aqueous alkaline solution was not considered when studying the dependence on the 

solvent used to suspend compounds 1 and 2.  

For both compounds (1 and 2), time-resolved photoluminescence spectroscopy 

was performed to measure the lifetime of the excited state, and experimental setup 

is presented as Supplementary Materials. Figure 4 presents the transient 

measurement obtained for compound 1 in different solvents. For the solvents THF, 

ethanol, acetonitrile, and DMSO, the fluorescence decays were fitted with a double 

exponential law with a χ2 value less than 1.2 for compounds 1 and 2. These results 

suggest the presence of two different species in the excited state, which are 

attributed to the planar and perpendicular conformations of the xanthene relative to 

the benzene moiety [22,40]. The average lifetime values of compounds 1 and 2 in 

different solvents are presented in Table 2. Similarly, to the peak absorption and the 

Stokes shift, the lifetime values were also dependent on the solvent polarity and 

ranged from 2.3 ns to 4.06 ns. A deviation of the increasing trend was observed 

between ethanol and acetonitrile, because in this case, the excited state was more 

efficiently stabilized by the HBP in the ethanol solution than in acetonitrile, causing 

an increase in the lifetime. Also, for the neutral lactone form of fluorescein, the 

lifetime of the free acid varied between 2.5 and 3.4 ns for the same set of solvents. 

The exciton lifetimes of fluorescein and its derivatives in different solvents have 

been reported elsewhere [13,18]. 

 

Figure 4. Lifetime measurements of compound 1 in THF (a), ethanol (b) and alkaline aqueous 

solutions (c) (concentration of 1 × 10−5 mol/L). The time calibration is 5.487 × 10−11 s/ch. 

Table 2. Lifetime results for compound 1 and compound 2 in different solvents (λe = 460 nm). The 

lifetimes were obtained by fitting to A + B1 x Exp(−t/τ1) + B2 x Exp(−t/τ2). 

 Compound 1 Compound 2 
 τ1 (ns) τ2 (ns) χ2 τ1 (ns) τ2 (ns) χ2 
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B1 (Rel. Amp.%) B2 (Rel. Amp.%) B1 (Rel. Amp.%) B2 (Rel. Amp.%) 
THF  2.3 ± 0.2 0.08 ± 0.02 0.98 ± 0.09 2.49 ± 0.05 0.110 ± 0.005 1.01 ± 0.09 

(C4H8O) 1.9 98.1  3.3 96.7  

Ethanol  3.65 ± 0.02 0.788 ± 0.009 1.01 ± 0.04 3.29 ± 0.03 0.90 ± 0.06 1.1 ± 0.1 
(C2H6O) 40 60  93 7  

Acetonitrile  2.70 ± 0.06 0.231 ± 0.006 1.03 ± 0.08 2.97 ± 0.08 0.357 ± 0.003 1.0 ± 0.1 
(CH3CN) 5.6 94.4  6 94  

DMSO  4.03 ± 0.02 0.13 ± 0.08 1.09 ± 0.07 4.06 ± 0.02 0.65 ± 0.02 1.02 ± 0.07 
((CH3)2SO) 79 21  48 52  

For comparison, the free fluorescein in alkaline aqueous solution (pH 12.8), the 

transient emission was a good fit with just a single exponential with a value of (4.06 

± 0.01) ns and χ2 = (1.1 ± 0.1), in agreement with the reported results. For example, 

for the sodium fluorescein dianion, the value was 4.16 ns [21]; for fluorescein in 0.1 

M and 0.01 M NaOH, the values were 4.02 ns [41], and (4.0 ± 0.2) ns [13], respectively. 

For compounds 1 and 2 in alkaline aqueous solution (pH 12.8), the fluorescence 

transients, as expected, also fit well with just one exponential (Figure 4c), and the 

obtained lifetimes were (4.06 ± 0.01) ns and (4.08 ± 0.02) ns, respectively.  

In addition, the relative quantum yield of fluorescence was determined for both 

compounds; the results are presented in Figure 5a as a function of the dielectric 

constant of the solvents. However, the φ values for compounds 1 and 2 and 

fluorescein in THF, acetonitrile, and DMSO were low, in agreement with the results 

of other studies of fluorescein and its derivatives [2,6,12,18]. The decreases of φ 

values for fluorescein derivatives have been reported and attributed to the 

photoinduced electron transfer due to a group linked to the fluorophore of the 

xanthene or phenyl ring [42]. Figure 5b shows the behavior for the lifetime and φ of 

compound 2 as a function of the dielectric constant. 

 

Figure 5. (a) Relative quantum yield of compounds 1, 2 and fluorescein at λe = (432 ± 7) nm as a 

function of the dielectric constant. (b) Lifetime and φ of compound 2. 

The φ values for 1, 2 and fluorescein in different solvents (THF, acetonitrile, and 

DMSO) do not seem to exhibit any polarity-based relationship (0.3%–2.5%, Table 1). 

However, in ethanol, the quantum yield was significantly higher (~4.8% and 4.3% 
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for 1 and 2, respectively, Table 1), which is attributed to the protic character of the 

solvent and the presence of water. This attribute contributes to the stabilization of 

the excited states and molecular symmetry, preventing non-radiative decay [43,44]. 

In addition, higher φ values were obtained for fluorescein and compounds 1 and 2 in 

alkaline aqueous solutions (pH 12.8), in good agreement with the values reported in 

the literature (72%) [45,46]. 

Finally, as a preliminary study, compound 2 was explored in the presence of a 

gold colloidal solution. A previously synthesized Au-NPs colloidal solution 

suspended in absolute ethanol [32] was added to a solution of 2. The emission of 

compound 2 was wholly quenched, as a result of the substantial energy transfer 

between the metal core and the chromophore [47]. This result confirms the charge 

interaction between compound 2 and the Au-NPs surface. Additionally (Figure 6), a 

new absorption band appeared at c.a. 650 nm with a positive Z-potential. This 

finding is consistent with the formation of a nanostructured chain due to the 

aggregation effect upon interaction of the chromophore to the metal core [30,47]. The 

color of the solution changed from red to purple confirming the aggregation of this 

system. The positive Z-potential determined after ligand interaction (23.3 mV and 

16.9 mV), suggests the formation of a destabilized solution (Figure 6b,c). These 

results indicate that the Au-NPs interacted via surface charge variation with the S-

cysteine functionalized fluorescein, which provided reduced colloidal stability 

[48,49]. For comparison, Au-NPs successfully coated with a positively charged 

capping layer of L-cysteine methyl ester hydrochloride show positive Z-potential 

between 33.2 and 49 mV dependent on the NPs and hydrodynamic diameters, 

indicating their electrostatic stability [50]. 

 

Figure 6. (a) Absorbance spectra of Au-NPs in ethanol and of centrifuged compound 2 homogenized 

with Au-NPs for (b) 5 min with sonication and (c) with 20 h of magnetic stirring. The insets show the 

emission for (a–c) and compound 2 in ethanol (1 × 10−5 mol/L) (d) at λe = 430 nm and the Z-potential 

values (Zeta in mV). 

4. Conclusions 
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The spectroscopic characteristics, lifetime, and fluorescence quantum efficiency 

of two fluorescein derivatives in different solvents were successfully determined. 

The absorbance, emission, and lifetime measurements showed a slight dependence 

on the dielectric constant of the solvent. The relative quantum efficiency was 

determined, and the results do not seem to indicate any relationship with the solvent 

polarity. However, in ethanol, the quantum efficiency was far higher (~4.8% and 

4.3% for 1 and 2, respectively), which is attributed to the protic character of the 

solvent. Finally, compound 2 was employed to explore in the presence of Au-NPs. 

Strong quenching of the emission was observed in addition to a change in the color 

due to simultaneous aggregation, confirmed by a positive average Z-potential of (20 

± 5) mV. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Synthesis of 

compounds 1 and 2; Spectroscopy characterization of compound 2 in different solvents; Spectroscopy 

characterization of the free fluorescein, 1 and 2 in alkaline solutions; and Time-resolved photoluminescence 

measurements: Experimental setup. Scheme S1: Synthesis of compounds 1 and 2 in 86% and 90% yields are 

presented respectively. Figure S1: (a) Absorbance and (b) normalized emission spectra of the compound 2 in 

different solvents (concentration of 1 × 10-5 mol/L): (1) THF, (2) ethanol, (3) acetonitrile and (4) DMSO. Figure S2: 

Absorbance and emission spectra for compound 1 (a), compound 2 (b) and fluorescein (c) in alkaline water pH 

12.8 (e = 430 nm). Figure S3: Time-resolved photoluminescence setup. F(t) is photon time distribution obtained 

from photomultiplier detector using a time-correlated single-photon counting (TCSPC). Figure S4: Lifetime 

measurements of (a) compound 1 in alkaline aqueous solutions (concentration of 1 × 10−5 mol/L) and (b) Ludox 

(Time calibration is 5.487 × 10−11 s/ch). Fitting the experimental results, the parameters τ1 = (4.057 ± 0.005) ns, B1= 

100 Rel. Ampl., and χ2 = 1.01 were obtained. 
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