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Abstract: Sotol is a traditional distilled alcoholic beverage produced in Mexico and the United States.
Unfortunately, local authorities have detected that these beverages are sometimes adulterated with
toxic substances such as ethylene glycol. This illegal practice of adulteration is dangerous and can
cause serious health problems for the end consumers. In this work, an alternative, reliable, and rapid
method is presented for identifying the presence of ethylene glycol in sotol samples using UV-Vis
spectroscopy and neural networks with an accuracy of up to 100%.
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1. Introduction

Beyond Tequila and Mezcal, it is often forgotten that Mexico is a true gastronomic
universe. Mixology is also gastronomy, “liquid gastronomy” as experts in the field call it,
and from the north to the south of the country, recipes and drinks that most people do not
know about can be found. In fact, many foreigners are unaware of the existence of sotol, an
emblematic distillate of ancestral origin from northern Mexico, mainly from the States of
Chihuahua, Durango and Coahuila. The drink is extracted from a plant that is only found
in these lands. Since 2002, the drink has had a Designation of Origin (DO). This allowed,
two years later, the receipt of a regulation that authorized sotol production in Mexican
territory. Although this recognition is relatively young, the history of this liquor goes back
hundreds of years. It is known that 800 years ago, sotol was used as a medicinal remedy
or as a drink in religious ceremonies by the indigenous people of the north of the country,
such as the Rarámuri and Anazasis ethnicities. Thus, its natural production area is located
in the physiographic province of the Central Plateau, which is located at an average of
1000 to 2000 m above sea level, between the Sierra Madre Oriental and the Sierra Madre
Occidental [1].

Sotol is a drink with a strong character. Its content ranges from 38% to 55% alcohol,
and it has a smoky flavor reminiscent of firewood and land. According to the estimates of
the Mexican Council of Sotol A.C. and the Sotol Certification Council, 500,000 L of sotol
ready for sale are produced annually. It is considered that this industry presents a growth of
5% annually [1]. In recent years, the production of distilled beverages has grown with the
tastes of local, national and foreign consumers and has moved from being a regional drink
to a traditional Mexican drink with recognition inside and outside of the national territory,
bringing with it demand in national and international markets. Given the growing demand
for the consumption of spirit drinks, there is a great opportunity with sotol. Different
producers in the state of Chihuahua have the DO declaration and therefore can market
their product with added value [1].
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Sotol is obtained according to the fermentation of rectified musts from the heads
of Dasylirion cedrosanum and/or D. duranguensis. This colorless or yellowish alcoholic
drink is manufactured in the north of Mexico in the states of Chihuahua, Durango, and
Coahuila and in the southern United States in the states of New Mexico and West Texas [2].
According to the Official Mexican Standard NOM-159-SCFI-2004, the sotol beverage is
classified into four categories: silver, gold, aged, and extra aged. Their main components
are alcohols, aldehydes, esters, and furfural (Table 1) [3,4]. Unfortunately, the Mexican
authorities have found substances of different concentrations than those allowed in the
regulations in alcoholic beverages [5]. One of these substances is ethylene glycol (C2H6O2),
which is a polyhydric alcohol solvent that is illegally added to alcoholic beverages with the
purpose of increasing the state of intoxication. Based on the published data, the minimum
human lethal dose of ethylene glycol has been estimated at approximately 100 mL for a
70 kg adult or 1.6 g/kg body weight (calculation of dose in mL/kg to mg/kg based on
EG density = 1.11 g/L) [6]. The most common symptoms of ethylene glycol poisoning
are nervous system depression, coma, renal failure, and cardiovascular collapse [7–9].
Therefore, the early identification of beverages adulterated with ethylene glycol is an
essential process to protect public health. In order to reduce the number of cases of people
poisoned by the ingestion of sotol adulterated with ethylene glycol, adulteration tests
should be carried out more frequently by the Mexican authorities, manufacturers, and
suppliers. To achieve this goal, it is desirable that the adulteration test be simple, low-cost,
and able to be carried out in a short time.

Table 1. Physicochemical specifications of sotol.

Silver Gold Aged Extra Aged
Min Max Min Max Min Max Min Max

Alcohol content at 20 ◦C (% Vol. Alc.) 35 55 35 55 35 55 35 55
Dry extract (g/L) 0 0.2 0 15 0 15 0 15

Higher alcohols (mg/100 mL) 1 20 400 20 400 20 400 20 400
Methanol (mg/100 mL) 0 300 0 300 0 300 0 300

Aldehydes (acetaldehyde) (mg/100 mL) 0 40 0 40 0 40 0 40
Esters (ethyl acetate) (mg/100 mL) 2 270 2 350 2 360 2 360

Furfural (mg/100 mL) 0 4 0 4 0 4 0 4
1 Fusel oil or alcohols of a higher molecular weight than ethyl alcohol (in amyl alcohol) [3].

Before now, the most widely used technique for the identification of alcoholic beverage
adulterants such as ethylene glycol has been gas chromatography [10]. The main advantage
of this analytic technique is its high sensitivity and resolution, which depend on the type of
detector incorporated into the gas chromatograph equipment, allowing in some cases the
identification of substances with concentrations as low as 1 × 10−12 g. However, there are
also other non-destructive techniques that could be considered for the same purpose [11].
These techniques include (a) infrared spectroscopy (analysis of the interaction of infrared
light with molecules) [12], (b) Raman spectroscopy (analysis of the inelastic scattering of
photons by matter after laser excitation) [13], (c) fluorescence spectroscopy (analysis of the
light emissions which take place after the excitation of the electrons in a material) [14], (d) an
electronic tongue (this is a multisensor system based on various sensor arrays with limited
selectivity and allowing for advanced mathematical data analysis) [15], (e) nuclear magnetic
resonance spectroscopy (analysis of the molecular structure of a material by observing and
measuring the interaction of nuclear spins when placed in a powerful magnetic field) [16],
(f) an electronic nose (captures the fingerprints of volatile organic compounds present in an
alcoholic beverage sample using an array of semi-selective sensors) [17], (g) a colorimetric
sensor array (produces a chemical interaction between the active center and analyte, which
results in chemo-responsive changes in color) [18], (h) a combination of sensors (involves
a data fusion approach with various sensors to acquire an optimal response) [19] and
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UV-Vis spectroscopy [20], which is the selected analytical technique carried out in the
present work.

UV-Vis spectroscopy measures the amount of ultraviolet or visible electromagnetic
radiation that is absorbed by a sample. This absorbance is influenced by the sample
composition and, according to Beer’s law, is proportional to the concentration of the
absorbing species. Unlike gas chromatography equipment, the spectrophotometers used
for this technique do not require the use of an inert carrier gas, and in some cases, the
sample does not require initial preparation [21]. However, sometimes, it is difficult to relate
the absorbance bands to the concentration of a specific analyte, especially in cases in which
the concentration of the analyte is very low or is found within another substance that has
similar absorption bands. In this complicated scenario, the use of computational algorithms
has proven to be an alternative solution [22,23].

Regarding tequila beverages, the application of chemometric algorithms is a crucial
step for identifying specific compounds that distinguish between various types of tequila,
including authentic and counterfeit versions, as well as for distinguishing tequila from
other similar products. In the work [24], nonlinear models were employed to analyze the
UV-Vis spectra of certified tequilas. The most effective approaches utilized Classification
and Regression Trees, Random Forest, and Support Vector Machines, achieving accuracies
exceeding 0.98 for calibration and 0.94 for validation.

In [25], the identification and authentication of whiskies using a dynamic evaporative
headspace analysis were applied. The compounds of the whisky are obtained using a NIST
library search. Based on these compounds, the brand of the whisky can be determined
using headspace analysis. In this research, principal component analysis and a two-layer
artificial neural network were implemented, where it was found that the artificial neural
network had a better accuracy (over 95%).

In this work, an alternative, reliable, and rapid method is presented to identify the
presence of ethylene glycol in sotol samples using UV-Vis spectroscopy and neural networks.
For this purpose, a database was first created with the absorbance spectra of sotol samples
with different concentrations of ethylene glycol. After that, each absorbance spectrum was
analyzed and classified correctly using artificial neural networks. It is expected that this
method could be used by Mexican authorities, manufacturers, or suppliers interested in
identifying sotol adulteration. In addition, an alternative method for the determination
of the presence of ethylene glycol in sotol using gas chromatography–mass spectrometry
(GC-MS) was introduced.

Multilayer Artificial Neural Networks

Automatic Learning (AL) and Deep Learning (DL) are machine learning techniques
that are based on the human brain. AL and DL algorithms analyze data using a logical
structure similar to that used by human beings. AL and DL use smart systems called
Multilayer Artificial Neural Networks (ANNs) to process data according to layers. Data
flow from the input layer through one or more hidden neural network layers before arriving
at the output layer. The layers are ANN nodes which work like the neurons of the human
brain. Each node or artificial neuron is connected to another node, and it has an associated
value number and value threshold. When there is an activation, the node sends its value
number as input to the next layer. It is activated only if its output is above the specified
value threshold. Otherwise, no data are transmitted [26,27]. An artificial neuron with n
inputs, consisting of:

• A set of inputs xi = x1, x2, x3, . . ., xn.
• The synaptic weights wi = w1, w2, w3, . . ., wn corresponding to each input.
• An aggregation function, ∑.
• An activation function f (x).
• An output.

The artificial neuron can adapt to the surrounding environment and learn from it by
modifying the value of its synaptic weights, and for this reason, they are known as the free
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parameters of the model since they can be modified and adapted to perform a specific task.
In this model, the neural output Y is given by (1).

Y = f

(
n

∑
i=1

xiwi

)
(1)

The activation function is chosen according to the task performed by the artificial
neuron. Among the most common within the field of artificial neural networks, we can
highlight the sigmoidal function, linear function, hyperbolic tangent sigmoid function,
and rectified linear unit function. For training the artificial neural network, the back-
propagation method is often used to update the weights of the artificial neurons in each
epoch. The algorithm for learning can be the descendent gradient, with the variants of
learning rate, momentum, and optimizer, among others.

2. Materials and Methods
2.1. UV-Vis Spectroscopy and the Artificial Neural Network: The Proposed Method

For this study, a bottle of Sotol ONÓ (produced by “Destilados y Productos Noa Norte”
from Mexico) was purchased at a conventional store located in the city of Chihuahua, and
a bottle of ethylene glycol (HOCH2CH2OH, GC purity greater than 99% and water content
less than 0.20%) from J.T. Baker (Phillipsburg, NJ, USA). In order to evaluate the presence
of ethylene glycol (EG) in the sotol, 13 different mixtures were prepared by changing the
volume percentage of ethylene glycol, defined as the amount of ethylene glycol (in mL)
present in 100 mL of sotol (v/v%). Each mixture represents a group of samples with similar
characteristics, labeled as class 1–13; see Table 2. For instance, class 1 represents a group of
samples of pure sotol, and class 2 a mixture of 95 mL of sotol and 5 mL of ethylene glycol.
The absorbance spectra of each class were acquired 50 times using UV-Vis equipment (Hach
UV-Vis model DR 5000 spectrophotometer, Hach Company, Loveland, CO, USA) in the
interval from 200 nm to 1100 nm with a step of 1 nm. In all the experiments, a quartz
rectangular cell with a 10 mm pathlength was filled with the sample. Prior to measurement,
the surfaces of the cell were cleaned with lens paper wetted with spectro-grade ethanol.
Special care was taken to avoid scratching and leaving fingerprints on the surface of the
cell. The total number of samples generated from the mixture of sotol and ethylene glycol
was 650, 50 of each one of the 13 classes.

Table 2. Volume percentage of ethylene glycol in each class.

Class

1 2 3 4 5 6 7 8 9 10 11 12 13
v/v% 0 5 10 15 20 25 30 35 40 45 50 60 100

For the classification experimentation, the entire absorption spectrum of the samples
was used in the training and testing, like the input for the artificial neural network, with
its output allowing the classification of the corresponding class. In order to evaluate the
effect of the number of training/testing samples on the accuracy of the classification, the
dataset was partitioned into three training and test databases as follows: 80% training and
20% testing (520 training and 130 testing), 50% and 50% (325 training and 325 testing) and
20% and 80% (130 training and 520 testing).

A multilayer artificial neural network (ANN) was implemented for classification.
Three different architectures were developed for the three databases created. The architec-
tures were created with 2 hidden layers: for 80% training/20% testing samples, the first
layer with 325 neurons and the second layer with 163 neurons; for 50%/50%, the first layer
with 130 neurons and the second layer with 65 neurons and for 20%/80%, the first layer
with 65 neurons and the second layer with 33 neurons.



Chemosensors 2024, 12, 46 5 of 12

In the three architectures, the activation functions used in the first, second, and output
layers were sigmoidal tangent, sigmoidal tangent, and sigmoidal logarithm, respectively;
the goal error and epochs number were 0.000001 and 8000, respectively. Gradient descent
with momentum and an adaptive learning rate (GDX), gradient descent with an adaptive
learning rate (GDA), and scaled conjugate gradient (SCG) were the learning algorithms
for backpropagation used for the training of the artificial neural network. An architecture
of the artificial neural network for the classification of sotol adulteration is presented in
Figure 1.
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ation which was created with two hidden layers of 65 and 33 neurons and 13 outputs.

To measure the efficiency of the classification models, the accuracy, precision, and
recall metrics are implemented. Accuracy is the percentage of predictions that the model
performs correctly. Accuracy is defined in Equation (2):

Accuracy =
Numbers o f correct classi f ications

Total number o f possible classi f ications
(2)

Precision represents the percentage of positive classifications of each class that are
identified correctly. Precision is defined in Equation (3):

Precision =
TP

TP + FP
(3)

Recall represents the percentage of positive classifications of each class that are identi-
fied correctly. Recall is defined in Equation (4):

Recall =
TP

TP + FN
(4)

where:

• TP = True Positive, indicates correct identification of the class.
• FP = False Positive, indicates incorrect identification of the class.
• FN = False Negative, indicates incorrect identification of another class.
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Also, to test the robustness of the architectures of the artificial neural networks (ANN)
implemented in this work, a 10-fold cross-validation test was performed. The cross-
validation consisted of generating 10 variations of the database with the same proportions
and evaluating and calculating the average of the 10 variations with the proposed architec-
tures for an ANN.

2.2. Gas Chromatography–Mass Spectrometry: An Alternative Method

Ethylene glycol (EG) was used to prepare solutions of EG in sotol at the same concen-
trations employed for the UV-Vis test (from 0 to 60%). Due to the high concentrations of
the EG solutions, ethanol (Sigma-Aldrich, Saint Louis, MI, USA) was used to prepare the
working samples, diluting 100-fold the solutions of EG in sotol. Therefore, 50 µL of the
solutions of EG in sotol was added to 4.9 mL of ethanol. An EG standard (0.1% of EG in
ethanol) was run to identify its retention time. Butyl acetate (Honeywell, Seelze, Germany)
was employed as an internal standard. A stock solution of butyl acetate was prepared at
5000 ppm in ethanol, and 50 µL was added to each solution to obtain a concentration of
500 ppm.

For the determination of the presence of ethylene glycol in the sotol at several concen-
trations, the Agilent 5975C chromatography–mass spectrophotometer equipment (Agilent
Technologies Manufacturer, Santa Clara, CA, USA) was employed. The GC-MS was pro-
vided for using an Agilent HP-INNOWax column 30 m × 0.25 mm, 0.25 µm. The injector
and the detector were set at 250 ◦C and 230 ◦C, respectively. The method used was set
according to [28] with modifications. The oven temperature was initially set at 100 ◦C
(1 min), raised to 170 ◦C at a rate of 10 ◦C/min, then raised to 230 ◦C at a rate of 30 ◦C/min
and held for 4 min. One µL of the sample was manually injected at a split ratio of 10:1.
Helium was used as the carrier gas with a flow rate of 2.0 mL/min. Ethylene glycol was
detected in split mode without solvent delay. Selected Ion Monitoring mode (SIM) was set
in the MS detector to obtain the data for the chromatogram. The monitored fragments were
at m/z 31 and 43 for EG and 45 and 58 for butyl acetate.

3. Results
3.1. Absorbance Spectra

Figure 2 shows the absorption spectra of the pure substances of sotol and ethylene
glycol. The spectrum of sotol presents a strong absorption band centered at 278 nm and
two small shoulders at 908 nm and 987 nm. On the other hand, the absorbance results
for ethylene glycol show three small shoulders of absorption around 268 nm, 925 nm,
and 1011 nm. In order to compare the absorbance results, the area under the curve of
each absorption band was calculated, and the results are presented in Table 3. In the
near-ultraviolet region, the area under the absorbance curve of sotol is 23 times higher
than that of ethylene glycol, but in the near-infrared region, they are very similar, at a ratio
of 1.6.

Table 3. Area under the absorbance curve for sotol and ethylene glycol in the near-ultraviolet
(230–425 nm) and near infrared region (850–1100 nm).

Sample Near-Ultraviolet (u2) Near-Infrared (u2)

Sotol 194.2 11.9
Ethylene glycol 8.5 7.6

Figure 3 shows the evolution of the absorption spectra depending on the concentration
of ethylene glycol. It is observed that the intensity of the main absorption band at 278 nm
decreases with an increasing ethylene glycol concentration. As mentioned before, the
absorbance of ethylene glycol in this region is very weak, and therefore the intensity of
this band decreases proportionally to the sotol concentration. In addition, small changes
in both the position and peak intensity of the absorbance bands at 908 nm and 987 nm
are observed.
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For the purpose of improving the analysis of the figure, curves with concentrations of (v/v%) 5, 15,
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3.2. The Artificial Neural Network

The accuracy results obtained from the artificial neural network for the datasets 80%
training and 20% testing, 50% training and 50% testing, and 20% training and 80% testing
are presented in Table S1, Table S2 and Table S3, respectively. It is worth mentioning that
50 experiments were performed for each dataset but only 10 experiments were presented
in these tables.
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The accuracy results for the dataset with 80% training and 20% testing show that a
100% average classification accuracy can be achieved using any of the three algorithms.
This means that all the testing samples (130) in this dataset were classified correctly.

The same average classification accuracy (100%) was achieved in the second 50%
training and 50% testing dataset (Table S2) using the scaled conjugate gradient algorithm,
but a small decrease, less than 2%, in the average classification was observed when using
gradient descent momentum and an adaptive learning rate and gradient descent with
adaptive learning rate algorithms, which indicates that the optimal learning algorithm for
this classification model is the scaled conjugate gradient algorithm. This algorithm uses
second-order derivatives, which usually improve the speed of convergence in backpropa-
gation. This could have accelerated the learning of the experimental data and therefore the
accuracy of the classification model.

On the other hand, it is observed that the average classification accuracy decreases
when the number of total training samples is less than 325, that is, 25 training samples
for each class. The best accuracy and the average classification accuracy obtained for the
20% training/80% testing dataset were 99.81% and 96.38%, respectively (Table S3). These
results indicate that some of the predicted values were falsely predicted; these errors are
best known as false positives (the actual value was negative, but the model predicted a
positive value) or false negatives (the actual value was positive, but the model predicted a
negative value).

In order to show an example of the origin of this error, a confusion matrix for experi-
ment #1 is presented in Figure 4. This is a square NxN matrix, where N = 13 corresponds
to the number of different classes, the columns represent the original or expected class
distribution, the rows represent the predicted or output distribution by the classifier and
each of their elements contain the predicted value.
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The confusion matrix shows that of a total of 520 testing samples, only 1 from class
10 was classified incorrectly as class 12. It is worth mentioning that no type of data
preprocessing was necessary to achieve 100% accuracy. However, this technique could
be used or recommended if the number of adulterant substances increases or the training
data decreases.

The precision in the experiments undertaken for each class in the three datasets is
presented in Table S4. Precision represents the percentage of correct classification when a
sample is classified as one class; for example, for the 20/80 dataset with the SCG algorithm,
this indicates that when a class was identified, it was correct on average 99.81% of the time
at the moment when an attempt was made to identify it.

The recall in the experiments obtained for each class in the three datasets is presented
in Table S5. Recall represents the percentage of correctly identified classes; for example, for
the 20/80 dataset with an SCG algorithm, the model presents on average a recall of 99.81%,
namely correctly identifying 99.81% of the samples of the classes.

In machine learning, the cross-validation technique to evaluate the performance of
a model on the database of a certain problem is commonly used. This technique consists
of dividing the database utilized into k-folds or subsets, using part of the folds for the
testing set and the remaining part for training the model. The process of dividing k-
folds is repeated k times, each time generating a different subset for the testing and
training set. Finally, the average of the results for each testing set is calculated to obtain
robustness in the model performance. In this work, we used the k-fold cross-validation
technique [29]. The results of the 10-fold cross-validation are presented in Table S6. Cross-
validation is performed for the model with the best results in terms of accuracy in each
database implemented, which is the architecture of an artificial neural network with a
scaled conjugated gradient (ANN-SCG) using a different number of neurons in the two
hidden layers. A total of 50 experiments were performed for the three datasets, but only
3 experiments were presented. The average for the datasets 80/20 and 50/50 decreases
in comparison with that obtained in Tables S1 and S2, but the results maintain a good
performance of above 99% for classification; the results for the dataset 20/80 decreased by
4 points in comparison with those obtained in Table S3.

3.3. Gas Chromatography–Mass Spectrometry

Gas chromatography–mass spectrometry was employed to determine the EG intention-
ally added in several concentrations to sotol. Figure 5 shows the chromatograms obtained
for several concentrations of EG in sotol displayed one after another. Retention times of
1.88 and 6.11 correspond to butyl acetate and EG, respectively. The chromatogram showed
an appropriate distance between both peaks. An acceptable peak shape was achieved by
modulating the gas flow rate in the split mode, and it follows a regular relation: the higher
the concentration of ethylene glycol in the working sample, the larger the areas of the peak
in the chromatogram.
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4. Conclusions

A reliable and rapid method is presented to identify the concentration of ethylene
glycol in sotol samples using UV-Vis spectroscopy and artificial neural networks. For this
purpose, three different learning algorithms and partitions of the dataset were evaluated.
The best accuracy results were obtained using the scaled conjugate gradient learning
algorithm and a dataset partition of 50% for training and 50% for testing, which means that
at least 25 samples of each class are required for training the machine. The results indicate
that it is possible to classify samples of sotol with concentrations of ethylene glycol as low
as 5 v/v% with an accuracy of 100%. This high performance could be explained by the
process of weight updates generated using the SCG allowing for a better convergence of
the gradient and therefore resulting in better weights, which allows for better classification
learning. It is worth mentioning that these results apply exclusively to the sotol ONÓ
adulterated with ethylene glycol, and new datasets would be needed to identify ethylene
glycol in other sotol varieties, but good results could be expected considering the current
performance of the neural network.

In addition, the presence of EG in the sotol samples was determined using GC-MS,
which is a method with a high selectivity, amply recommended for application to adulterant
control in spirit beverages. Nevertheless, further work is required to develop a method
involving GC-MS and artificial neural networks.
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Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/chemosensors12030046/s1. Table S1. Results on accuracy, precision,
and recall obtained from the artificial neural network using scaled conjugate gradient (SCG), gradient
descent momentum, and an adaptive learning rate (GDX) and gradient descent with adaptive
learning rate (GDA) learning algorithms for the dataset with 80% training and 20% testing samples.
Table S2. Results on accuracy obtained from the ANN using SCG, GDX, and GDA algorithms for
the dataset with 50% training and 50% testing samples. Table S3. Results on accuracy obtained from
the ANN using SCG, GDX, and GDA algorithms for the dataset with 20% training and 80% testing
samples. Table S4. Results on precision for the best accuracy obtained for each class from the ANN
in Tables S1–S3, using SCG, GDX, and GDA learning algorithms for the datasets with 80% training
and 20% testing (80/20), 50% training and 50% testing (50/50) and 20% training and 80% testing
(20/80) samples. Table S5. Results on recall for the best accuracy obtained for each sample class from
the ANN in Tables S1–S3, using SCG, GDX, and GDA learning algorithms for the datasets with 80%
training and 20% testing (80/20), 50% training and 50% testing (50/50) and 20% training and 80%
testing (20/80) samples. Table S6. Results on accuracy for the 10-fold cross-validation obtained using
the ANN using a SCG for the three datasets.
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