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Abstract: The NH3 sensor is of great significance in preventing NH3 leakage and ensuring life
safety. In this work, the Pd-decorated ZnO hexagonal microdiscs are synthesized using hydrothermal
and annealing processes, and the gas sensor is fabricated based on Pd-decorated ZnO hexagonal
microdiscs. The gas-sensing test results show that the Pd-ZnO gas sensor has a good response to
NH3 gas. Specifically, it has a good linear response within 0.5–50 ppm NH3 at the optimal operating
temperature of 230 ◦C. In addition, the Pd-ZnO gas sensor exhibits good repeatability, short response
time (23.2 s) and good humidity resistance (10–90% relative humidity). This work provides a useful
reference for developing an NH3 sensor.
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1. Introduction

NH3 has important application in industry, but as a toxic gas, its leakage can pollute
the environment and even endanger life and health [1–3]. In addition, NH3 is also present in
the exhaled breath of kidney disease patients. By detecting the exhaled NH3, it is possible to
achieve an early diagnosis of kidney disease [4–6]. Therefore, the NH3 sensor has received
widespread attention and rapid development in recent years.

Gas-sensing materials are crucial for gas sensors. For widely reported semiconductor
NH3 sensors, the NH3 gas-sensing materials mainly include polyaniline (PANI) and its
composites [1,7–9], oxides (ZnO, SnO2, and TiO2) and their composites [10–16], and other
composite materials. Among them, the PANI-based gas sensors have good selectivity
for NH3 and can operate at room temperature, but their response/recovery speed and
stability are insufficient [1,3,5–9]. Until now, the oxides and their composites are still the
mainstream gas-sensing materials in the field of semiconductor NH3 sensors due to their
fast response/recovery speed and good stability [10–16]. Among various oxide gas-sensing
materials, n-type ZnO with a wide bandgap (3.37 eV) and good thermal/chemical stability
and its composites have been frequently used for developing semiconductor NH3 sen-
sors [10–12,17–33]. The NH3 sensing performances of the bare ZnO are usually poor [10–12].
Firstly, by selecting different materials and constructing ZnO composites, it is a conven-
tional strategy to improve the NH3-sensing performance of ZnO-based NH3 sensors, such
as poly(3-hexylthiophene)/ZnO [17], polymethyl methacrylate/reduced graphene oxide
(rGO)/ZnO [19], carbon/ZnO [20,27], poly-o-methoxyaniline/ZnO [21], rGO/ZnO [23],
CuO/ZnO [25], CuPc/ZnO [26], rGO/ZnO/Si [28], and WO3·H2O/ZnO [29]. Secondly,
the element doping and precious metal decoration are effective strategies to improve
the NH3 sensing performances of the bare ZnO, such as Cd-doped ZnO [18], Cr-doped
ZnO [22], Cu and La co-doped ZnO [24], Mn-doped ZnO [30], Pt-ZnO [31], Ag-ZnO [32],
and Au-ZnO [33]. In addition, the morphology structure of gas-sensing materials is also
closely related to their gas-sensing performance [34–37]. ZnO has rich morphology struc-
tures, such as nanoparticles [10,19,20,22–25,27–32], nanorods [11,17,18,21,23,26,33], and
nanoflakes [12], which have been widely used for fabricating NH3 gas sensors. Among var-
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ious methods for preparing micro- and nanomaterials, the hydrothermal method is a simple
and high-yield method widely used in the preparation of gas-sensing materials [38,39].

Based on the above analysis, this work aims to fabricate an efficient NH3 sensor based
on ZnO. Specifically, we synthesized ZnO hexagonal microdiscs using a mild hydrothermal
method at 80 ◦C. In order to further improve the NH3-sensing performances of ZnO hexag-
onal microdiscs, the Pd-decorated ZnO (Pd-ZnO) hexagonal microdiscs were synthesized
by combining annealing processes. The NH3-sensing performances of the ZnO and Pd-ZnO
sensors were tested at different working temperatures and NH3 concentrations. The results
show that the Pd-ZnO sensor has a good linear response within a wide range of NH3
(0.5–50 ppm) and exhibits a good humidity resistance at the optimal operating temperature
of 230 ◦C.

2. Materials and Methods
2.1. Synthesis and Characterizations of ZnO and Pd-ZnO Hexagonal Microdiscs

Zinc acetate dihydrate (ZnCH3COO)2· 2H2O, ≥99.0%) and palladium chloride (PdCl2,
≥99.0% metals basis) were purchased from Shanghai Aladdin Chemical Reagent Co., Ltd.
(Shanghai, China). Ammonia solution (AR, 25%) was purchased from Chengdu Jinshan
Chemical Reagent Co., Ltd. (Chengdu, China).

Figure 1a shows the schematic diagram of the preparation process of ZnO and Pd-ZnO
hexagonal microdiscs. Firstly, 1.756 g ZnCH3COO)2· 2H2O was added to 40 mL deionized
water and vigorously stirred for 5 min to form 0.2 mol/L zinc acetate suspension. Secondly,
the diluted ammonia solution was slowly added to zinc acetate suspension and stirred
until the pH was about 9.5. Thirdly, the above zinc acetate suspension was transferred to a
polytetrafluoroethylene lined stainless steel autoclave and heated to 80 ◦C for 20 h. Finally,
the ZnO hexagonal microdiscs were obtained by washing with ethanol and deionized water
several times and centrifugation, which was followed by drying in an oven at 60 ◦C. In
order to obtain ZnO hexagonal microdiscs with a Pd decoration ratio of 0.1 wt%, 8.3 mg
PdCl2 and 0.5 g of the above-synthesized ZnO hexagonal microdiscs were dissolved in
ethanol solution (1 mL) and thoroughly mixed. The mixture was dried in air at 80 ◦C and
annealed at 350 ◦C for 1 h to finally obtain Pd-ZnO hexagonal microdiscs.
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Figure 1. (a) Schematic diagram of the preparation process of ZnO and Pd-ZnO hexagonal microdiscs.
(b) Schematic diagram of sensor structure.

ZnO and Pd-ZnO hexagonal microdiscs were characterized using field emission
scanning electron microscopy (SEM, FEI Inspect F, Hillsboro, USA), X-ray diffractometer
(XRD, Empyrean, PANalytical, Netherlands; λ = 0.15406 nm) and X-ray photoelectron
spectroscopy (XPS, Thermo Scientific, Waltham, USA).

2.2. Fabrication and Gas-Sensing Performances Testing of Sensors

The ZnO and Pd-ZnO gas sensors were fabricated by a brush-coating method, and
the detailed process can refer to our previous works [40,41]. The schematic diagram
of the sensor structure is shown in Figure 1b, which is mainly composed of a heating
layer, ceramic substrate, electrodes, and gas-sensing film. In short, the ZnO and Pd-ZnO
hexagonal microdiscs were ground into pastes using deionized water and mortar. Then, the
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ZnO and Pd-ZnO pastes were evenly brushed onto the Al2O3 ceramic substrates (length,
width, and height: 1.5 mm, 1.5 mm, 0.25 mm) with a pair of Au interdigitated electrodes
(electrodes width and distance: 0.3 mm). Finally, the ZnO and Pd-ZnO gas sensors were
obtained by drying at 60 ◦C for 1 h. According to our previous test result [40], the thickness
of the gas-sensing film is approximately 40 µm.

The gas-sensing evaluations of ZnO and Pd-ZnO gas sensors were completed through a
homemade dynamic gas-sensing measurement system, which can be found in detail in our
previous works [40–43]. Different gas concentrations (0.5–50 ppm NH3) and relative humidity
(RH) were controlled by three mass flow controllers (NH3 (or selective gas) pipeline, humidity
gas pipeline, dry air pipeline), and the resistance value of the sensor was recorded by a digital
multimeter (Keithley 2700). According to the response characteristics of n-type ZnO and
Pd-ZnO gas sensors to reducing gases, the response of the sensor is defined as Ra/Rg (Ra
and Rg are the resistances of the gas sensors in air and target gas, respectively) [44,45]. The
response and recovery times are defined as the time required for a 90% change in resistance
of the sensor during adsorption and desorption processes [44–46]. Except for the humidity
influence test (10–90% RH), all other tests were conducted at 50% RH.

3. Results and Discussion
3.1. Characterization

Figure 2 shows the SEM images of ZnO and Pd-ZnO. The ZnO is formed by stacking
hexagonal microdiscs, which is attributed to the suppression of growth along the C-axis
([0001]) [47–49]. The diameter of hexagonal microdiscs is about 2 µm. Similarly, the Pd-
ZnO is also formed by stacking hexagonal microdiscs, and due to the introduction of Pd
and the annealing process, some micro- and nanoparticles are scattered on the surface of
hexagonal microdiscs.
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Figure 2. SEM images of (a) ZnO and (b) Pd-ZnO hexagonal microdiscs.

Figure 3a shows the XRD patterns of ZnO and Pd-ZnO. All diffraction peaks match
well with the standard JCPDS card of ZnO (No. 36-1451), indicating that the synthesized
ZnO can be attributed to the wurtzite ZnO with hexagonal structure [50–52]. It should
be noted that there is no significant difference in the diffraction peaks between Pd-ZnO
and ZnO, as the content of Pd is very low (0.1 wt%) and difficult to detect by XRD [53]. To
confirm the elemental compositions of the materials, Figure 3b shows XPS full spectrums of
ZnO and Pd-ZnO, revealing the expected Zn and O elements. In addition, the Pd element
can also be seen in the Pd-ZnO spectrum (~340 eV), confirming its existence.

The O 1s spectrums of ZnO and Pd-ZnO are shown in Figure 3c,d, which can be
divided into the chemisorbed oxygen species (OC), oxygen vacancy (OV) and lattice oxygen
(OL), respectively [13,15,21,42,45,54]. Compared to ZnO, the oxygen vacancy content in
Pd-ZnO is higher, which may be attributed to the strong oxygen-binding capacity of
Pd [43]. Oxygen vacancies are beneficial for adsorbing gas molecules, so the Pd-ZnO gas
sensor with higher oxygen vacancy content is expected to achieve a better gas-sensing
response [13,15,21,42,45,54].
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3.2. Gas-Sensing Performances

For oxide semiconductor gas sensors, their response is usually affected by the operat-
ing temperature [31,42,44,45]. Figure 4a shows the response values of ZnO and Pd-ZnO
sensors toward 50 ppm NH3 under different working temperatures. As the working tem-
perature increases, the response values of ZnO and Pd-ZnO sensors first increase and then
gradually decrease, exhibiting a typical “volcanic” response characteristic [31,42,44,45].
Overall, the response of the Pd-ZnO sensor is greater than that of the ZnO sensor. At 230 ◦C,
the Pd-ZnO sensor has a maximum response of 3.9. Therefore, the working temperature for
subsequent testing of the Pd-ZnO sensor is fixed at 230 ◦C. Figure 4b shows the resistive
response and recovery curves of the Pd-ZnO sensor for 0.5–50 ppm NH3, demonstrating
its good response and recovery characteristics. Based on the response resistance values at
different NH3 concentrations in Figure 4b, the response results can be obtained as shown in
Figure 4c. According to the linear fitting line, the Pd-ZnO sensor has a good linear response
in a wide range NH3 (0.5–50 ppm). Figure 4d shows that the Pd-ZnO sensor has a good
repetitive response at 50 ppm NH3. Through an amplified response and recovery curve
in Figure 4e, the response and recovery times of the Pd-ZnO sensor are about 23.2 s and
271.8 s at 50 ppm NH3. As shown in Table 1 [55–60], the proposed Pd-ZnO NH3 sensor has
competitive performances in response value, detection range and response speed compared
to some of the reported oxide-based NH3 sensors at heating operation. In addition, the
response value and low concentration detection of the Pd-ZnO sensor also have certain
advantages compared to some commercial oxide-based NH3 sensors (MQ137 (Winsen),
TGS826 (Figaro), TGS2444 (Figaro) and TGS824 (Figaro)).
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Table 1. Comparisons of the proposed Pd-ZnO NH3 sensor with the reports and commercial
NH3 sensors.

Materials Working
Temperature (◦C)

Response
(Resistance Ratio)

Detection
Range (ppm)

Response
Time (s) Refs.

ZnO nanoparticles 150 ~1.57 (600 ppm) 50–600 160 [55]

TiO2 nanospheres 250 ~2 (300 ppm) 100–400 5 [56]

Pd-TiO2 nanoparticles 500 ~1.8 (400 ppm) - 150 [57]

WO3 nanoparticles 400 4 (50 ppm) 25–100 - [58]

SnO2 nanowires 400 ~1.6 (40 ppm) 10–40 >120 [59]

Mo-SnO2 nanoparticles 350 3.1 (50 ppm) 20–100 21 [60]

SnO2 - ~2 (50 ppm) 5–500 ~8 MQ137 (Winsen)

SnO2 - ~0.55 (150/50 ppm) 30–300 - TGS826 (Figaro)

SnO2 - ~0.84 (100/30 ppm) 10–100 - TGS2444 (Figaro)

SnO2 - ~0.5 (150/50 ppm) 30–300 - TGS824 (Figaro)

Pd-ZnO hexagonal microdiscs 230 3.9 (50 ppm) 0.5–50 23.2 This work

Although the comfortable environment humidity is about 50% RH, the humidity in
the environment is variable. For this reason, the resistive response and recovery curves
of the Pd-ZnO gas sensor for 50 ppm NH3 were tested under different RHs, as shown
in Figure 5a. Under low humidity (10% and 30% RH), the recovery speed of the sensor
is slow and incomplete. To observe changes of baseline and response resistance values,
Figure 5b shows the base and response resistance curves of the Pd-ZnO gas sensor. As
the RH increases, the baseline resistance of the sensor decreases due to the adsorption of
water molecules [42]. More intuitively, Figure 5c shows the response and recovery curves
from resistive response and recovery curves in Figure 5a. Correspondingly, the response
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values of 50 ppm NH3 under different RHs are shown in Figure 5d. Overall, within a wide
humidity range of 10–90% RH, although the response of the Pd-ZnO gas sensor decreases
due to the competitive adsorption of water molecules, the change is not significant, and it
exhibits a good humidity resistance. Figure 6 shows that the Pd-ZnO gas sensor has certain
selectivity and long-term stability. Selectivity is a major challenge faced by metal oxide
semiconductor gas sensors, including ZnO, and we need to continuously seek solutions.
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3.3. Gas-Sensing Mechanism

As a typical n-type gas-sensing material, the gas-sensing mechanism of ZnO has
been widely discussed. Combining with Pd decoration, the enhanced NH3 response
mechanism of the Pd-ZnO gas sensor is discussed as follows. Firstly, according to the
working temperature of 230 ◦C, the main type of adsorbed oxygen is O− (100–300 ◦C) [61].
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As shown in Figure 7a, when the Pd-ZnO gas sensor is exposed to air, the oxygen will
adsorb on the surface of ZnO to form adsorbed oxygen (O2 + 2e−→ 2O−), resulting in the
electrons consumption and resistance increase in the Pd-ZnO gas sensor. When the Pd-ZnO
gas sensor is exposed to NH3 gas, the NH3 gas will adsorb on the surface of ZnO and release
electrons (2NH3 + 7O− → 3H2O + 2NO2+ 7e−), resulting in an increase in electrons and a
decrease in sensor resistance, forming NH3 sensing response (Figure 7b) [12]. Secondly, the
introduction of Pd forms more oxygen vacancies in ZnO, which helps to adsorb NH3. In
addition, the catalytic effect of Pd is conducive to the NH3 oxidation and electrons release.
Therefore, the Pd-ZnO gas sensor has a better NH3 sensing response than the ZnO gas
sensor [31–33].
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4. Conclusions

In summary, we synthesized ZnO hexagonal microdiscs using a simple hydrothermal
method and investigated its NH3 sensing performances. In order to improve the NH3
sensing response of bare ZnO hexagonal microdiscs, the Pd-decorated ZnO hexagonal
microdiscs were prepared by combining mechanical mixing and annealing processes. The
results show that the Pd-ZnO sensor has a larger NH3 sensing response than that of the
bare ZnO sensor at an optimal working temperature of 230 ◦C. The Pd-ZnO sensor exhibits
a wide detecting range (0.5–50 ppm NH3), good repeatability, short response time (23.2 s)
and good humidity resistance. The enhanced NH3 sensing response is explained by the
catalytic effect of Pd. This work provides useful guidance for developing an NH3 sensor.
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