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Abstract: The nutritional properties of Pleurotus mushrooms were studied to select the varieties
with the most favourable properties. These mushrooms have high nutritional value; they are rich
in carbohydrates, protein, minerals, vitamins, chitin and reducing compounds, such as phenols
and polyphenols. In this study, the polyphenol profiles of thirteen Pleurotus ostreatus cultivars were
established by the UHPLC-ESI-MS/MS technique. The results showed that 4-hydroxibenzoic acid,
caffeic acid, p-coumaric acid and vanillic acid were the most abundant polyphenolic components in
the samples. In addition, the Fourier-transformed near infrared (FT-NIR) spectra of the samples were
recorded and evaluated. The correlation between the differences in NIR spectra and the differences
in polyphenol patterns of the samples was investigated. The polyphenol results were subjected to
several statistical evaluations (Kruskal–Wallis test, Principal Component Analysis (PCA), Spearman
correlation analysis, cluster analysis) to detect possible differences between the samples. Relationships
between the polyphenol profile and antioxidant capacity (FRAP), total polyphenol content (TPC),
free amino acid content (fAA) and the values of each polyphenol component were examined. Based
on the results, an effort was made to group the varieties according to the attributes tested.

Keywords: mushroom; UHPLC-ESI-MS/MS; polyphenol profile; FT-NIR; chemometric evaluation;
classification options

1. Introduction

Mushrooms are organisms that are visible to the human eye, and they differ both
in their function and appearance. Their unique taste, texture and beneficial nutritional
composition have made them part of the human diet for centuries. Among the approxi-
mately 2000 edible species, the most popular mushrooms are button mushrooms (Agaricus
bisporus), shiitake mushrooms (Lentinula edodes) and oyster mushrooms (Pleurotus spp.) [1].
There are several species of oyster mushrooms, such as Pleurotus ostreatus, Pleurotus pul-
monarius and Pleurotus sajor-caju. China is the primary producer of these mushrooms,
accounting for around 87% of total production. Its popularity among breeders is due to
a number of positive attributes, such as shorter growing time compared to other species,
higher resistance to disease and pests and high yields [2]. In addition, it can be grown
on agricultural waste and requires less space and water compared to other agricultural
crops, making it cost-effective to produce [3]. However, it has the disadvantage of being
a highly perishable variety due to its high moisture content (~90%), so it can be stored at
room temperature for only 1–2 days [4]. It is low in calories, low in fat, high in protein and
fibre and rich in many vitamins, minerals and phenolic components [5–7]. Polyphenols
are secondary metabolites synthesised by plants that provide a protective function against
various stress conditions and pathogenic threats [8]. Since the production of polyphenols
is a response to stress on fungi, the quantity and quality of these compounds depends
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on many factors, such as climate, weather, the stage of development, species, etc., and
therefore also on their geographical and botanical origin. Furthermore, in the case of culti-
vated mushrooms, the quality of the compost, the stage of development and the pre- and
post-harvest stages also influence the chemical composition and nutritional value of the
mushrooms [9]. These factors verify the diversity of published data on the same mushroom
species [10]. The Pleurotus ostreatus’ fruiting body contains about 100 different bioactive
compounds, such as phenolic compounds (phenolic acids, flavonoids, hydroxycinnamic
acids, hydroxibenzoic acids, lignans, tannins, stilbenes and oxidised polyphenols) [11].
Polyphenol composition has been studied in a number of plant samples, showing that
not only the processing method, but also the botanical and geographical origin influences
their variability [12–14]. Due to the structural variability of different polyphenols and their
numerous derivatives, the main challenge in their determination is the selection of the
appropriate sample preparation method. Solvents of different polarities extract the various
components with different efficiencies. Consequently, after careful optimisation, a com-
promise procedure needs to be found that is effective for the most polyphenols and most
effective for the most relevant components [15]. High performance liquid chromatography
(HPLC) or ultra-high performance liquid chromatography (UHPLC) is used to separate
the polyphenol components in the prepared sample solution. After separation, UV, or
less frequently diode array (DAD) or photo diode array (PDA), or mass spectrometry
detection, are used. Phenolic compounds are measured in the wavelength range between
260 and 370 nm. However, the sensitivity of UV detection is not sufficient for the quan-
tification of compounds present in small quantities and does not allow the identification
of co-eluting components. Consequently, they are often used in combination with mass
spectrometry [16].

The success of mushroom production depends on the breeding of suitable cultivars
and the selection of strains with favourable characteristics such as high yields and excellent
nutritional quality [17]. There are several ways to improve the genetic properties, such as
intraspecific, interspecific or intergenetic hybridisation, gene transfer or selection [18,19].

The heteroallelic nature of mushrooms results in a wide variability in colour mor-
phology, spore formation, texture, etc. Taxonomically, this variability poses a challenge to
species identification, as misidentification can mislead mushroom growers in establishing
the right environmental factors for growing different species. As a consequence, researchers
face difficulties in selecting and breeding new strains with high yield potential [19]. In
addition, distinguishing edible from non-edible mushrooms and detecting adulteration
practices involving the mixing of high-quality mushrooms with poor quality ones for
economic gain is also a key objective [9].

Due to the above-mentioned facts, the demand for analytical methods to determine
and evaluate the quantity, quality and authenticity of food ingredients has increased
significantly. The widespread use of near-infrared spectroscopy as an environmentally
friendly, non-destructive “green” technique in agriculture is unquestionable. In combina-
tion with modern chemometric methods, nowadays it has become one of the key areas
of analytical practice for the determination of nutritional parameters and the detection of
adulteration [20].

The aim of this work is to detect possible differences between candidate varieties, as
different characteristics may have different nutritional values for the human diet. The cor-
relation between the differences in NIR spectra and the polyphenol patterns of the samples
was investigated. The polyphenol results were subjected to several statistical evaluations
(Kruskal–Wallis test, principal component analysis (PCA), Spearman correlation analysis,
cluster analysis) to detect possible differences between samples. Correlations between
polyphenol profiles and other nutritional characteristics (antioxidant capacity, total polyphe-
nol content, free amino acid content) were investigated by Spearman correlation analysis.
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2. Materials and Methods
2.1. Samples

The tested samples are interspecific hybrids of Pletorius ostreatus species. Thirteen
candidate cultivars, with five samples per cultivar for a total of sixty-five samples, were
investigated. The samples were grown under identical conditions and harvested and pro-
cessed at the same stage of production. Therefore, differences in chemical composition can
only be due to genetic differences [21]. The samples were analysed after gentle drying and
grinding. During the drying, samples were treated in an air-conditioned oven (Memmert,
Schwabach, Germany) at 60 ◦C for 19 h. The dried samples were then ground to a particle
size smaller than 315 µM (Bosch TSM6A017C, Bosch GMbH, Stuttgart, Germany) [21].

2.2. Chemicals and Reagents

The polyphenol standards used in the measurements were purchased from Sigma-
Aldrich, Cayman, Extrasyntese, Alfa Aesar, Merck and Fluka. The solid standards were
first dissolved in dimethyl sulfoxide, and single component solutions with approximately
40 mM concentration were prepared. These solutions were then further diluted with
methanol to a concentration of 1 mM. To prepare the standard mix solution with 20 µM
concentration, the single component methanolic polyphenol standards were mixed in
methanol and 0.1% v/v formic acid.

For the extraction of phenolic components, a 60:39:1 methanol:water: 0.1% v/v formic
acid extraction solvent was prepared. In all cases, high purity Milli-Q (18 MΩ·cm−1) (Merck-
Millipore, Milford, MA, USA) water was used for solution preparation and dilution. For
UHPLC separation, a gradient elution was used; eluent A was prepared from HPLC-grade
concentrated formic acid and eluent B was also HPLC-grade acetonitrile.

2.3. Polyphenol Determination by UHPLC-ESI-MS/MS

The extraction of polyphenols from the oyster mushrooms was performed as described
by Palacios et al. (2011) [22] with some modifications. First, 0.5 g of sample was dissolved
in 10 mL of extraction solvent (60% methanol, 39% water and 1% formic acid). It was then
shaken for 30 min (Heidolph Reax 2. 20 ◦C), and finally it was centrifuged (3000 rpm,
10 min, 4 ◦C). The supernatant fraction containing the extracted components was used to
prepare the standard addition solutions.

Separations of the phenolic components were performed using a Phenomenex Kinetex
EVO C18 100 × 2.1 mM, 100 A, 2.6 µM, reversed phase stationary phase column (Phe-
nomenex, Inc., Torrance, CA, USA) and a corresponding SecurityGuard ULTRA Cartridges
(Phenomenex, Inc., Torrance, CA, USA) for UHPLC EVO C18 for 2.1 mM ID Columns.
For elution, water containing 0.1% v/v formic acid (‘eluent A’) and UHPLC-MS grade
acetonitrile (‘eluent B’) were used as solvents at a flow rate of 0.5 mL/min. The column
temperature was set to 30 ◦C. The injected sample volume was 10 µL. Gradient elution
with binary mobile phase was used for the analysis of polyphenols. A tandem (QQQ)
mass spectrometer equipped with an ESI ion source (electrospray ionization) was used
as a detector. The measurements were carried out in dMRM (Dynamic Multiple Reaction
Monitoring) mode.

2.4. Total Polyphenol Content (TPC)

The total polyphenol content of the dried samples was determined according to
Singleton V.L 1965 [23] using chromogenic redox reagent (Folin–Ciocalteou reagent) [21].

2.5. Antioxidant Capacity (FRAP)

The antioxidant capacity of the dried samples was determined by the Benzie FRAP [24]
method using iron-2,4,6-tris(2-pyridyl)-S-triazine (TPTZ) [21].
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2.6. Free Amino Acid Content (fAA)

Instrumental analysis of amino acids was performed using an automated amino acid
analyser (Amino Acid Analyzer AAA400, Ingos Ltd., Prague, Czech Republic) equipped
with an Ostion LCP5020 cation exchange column (200 × 3.7 mM). The AAA400 instrument
was operated with the chromatography software CHROMuLAN vs. 0.26 (PiKRONLtd,
Prague, Czech Republic). Determination was carried out in a strongly acidic medium
using a series of eluents of decreasing acidity with stepwise gradient elution. Detection
of amino acids was performed on the basis of their colour response to ninhydride by
spectrophotometry. Proline was analysed at 440 nm, while the other amino acids were
analysed at 570 nm [21].

2.7. Fourier-Transform near Infrared Spectroscopy (FT-NIR)

The gently dried and ground samples were subsequently measured on a Bruker MPA
Multipurpose FT-NIR analyser (Bruker Optik GmbH, Ettlingen, Germany) equipped with
a rotating quartz sample holder (d = 85 mM, 2 cm thick layer). Spectra were detected in
the 12,500–3800 cm−1 measuring range. The diffuse reflectance absorption spectra were
recorded with 8 cm−1 resolution and 10 kHz scanner speed. Each spectrum was detected
as the average spectrum of 32 subsequent scans. The internal background was measured
using the gold-coated surface of the integrating sphere.

Three spectra were recorded for each sample. As the prepared mushroom samples
have a granular texture, homogeneity is not necessarily ensured. To eliminate possible light
scattering phenomena due to grain size variation and to achieve a more ideal grain size
distribution, the sample was moved in the sample holder between spectral recordings.

2.8. Statistical Evaluation
2.8.1. Normality Test

Previously, a Shapiro–Wilk test was used to determine whether our data series was
normally distributed or not [25].

2.8.2. Correlation Analysis

The Pearson test can be used for normal distribution. We performed the Spearman cor-
relation test because our data were non-normally distributed. The direction and value of the
correlation (between −1 and +1) indicate the direction and the strength of the correlation.

2.8.3. Nonparametric Tests for Difference—Kruskal–Wallis

The Kruskal–Wallis H-test is the non-parametric equivalent of one-way ANOVA
and is usually used when the data are non-normally distributed. It is used to deter-
mine if there is a statistically significant difference between the medians of three or more
independent groups.

However, it does not determine where or how many differences actually occur. A
test procedure is therefore needed to make pairwise comparisons. A procedure often
used with the Kruskal–Wallis method is the Conover-Inman post-hoc procedure with
Bonferroni correction.

The test was also performed on the correlation between the studied polyphenol
components and the samples, as well as on the correlation between polyphenols [26].

2.8.4. Principal Component Analysis (PCA)

Principal component analysis was performed for both spectra and measured data. In
the first case the spectral outliers were investigated, and in the second case the dominant
polyphenol components were identified.

PCA is a commonly used statistical method that transforms several independent
variables into a smaller number of new independent variables compared to the original
ones by means of a linear transformation. This means that the originally observed variables
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are combined into a smaller number of principal component variables (PC) based on
their correlation.

The first principal component (PC-1) explains the variability of the data with the
largest possible variance. Each subsequent principal component explains the remaining
variability of the data with the largest possible variance. It is used to represent the spatial
distribution and clustering of variables. The principal component variables, calculated by
considering the concentrations of the polyphenol components under study together, can be
used to identify the dominant polyphenol components. For spectra, outliers can be easily
identified [27].

2.8.5. Software Applications

Spectra were recorded with OPUS 7.2 (BRUKER, Ettlingen, Germany), a normality
test, correlation analysis and a Kruskal–Wallis test with XLSTAT 2019 statistical and data
analysis solution (Addinsoft (2019), Boston, MA, USA, https://www.xlstat.com); PCA was
evaluated with UNSCRAMBLER 10.4 (CAMO, Oslo, Norway) software.

3. Results
3.1. Polyphenol Composition

Nineteen components commonly found in edible mushrooms and Pleurotus ostreatus
were selected for quantitative analysis. The polyphenol profiles of the thirteen Pleuro-
tus ostreatus cultivar candidate mushrooms are summarised in Table 1. It can be seen
that 4-hydroxibenzoic acid, caffeic acid, p-coumaric acid and vanillic acid were the most
abundant polyphenolic components in the samples. It was observed that p-coumaric acid
(2.80–50.41 mg/kg) and 4-hydroxibenzoic acid (10.62–98.23 mg/kg) were present in all
13 candidate varieties, but their concentrations showed a high variability. Vanillic acid
was found in measurable amounts only in the third and seventh variety candidates, while
for caffeic acid only four variety candidates (6,8,9,12) did not contain these components.
Both caffeic acid and vanillic acid were therefore present in the above-mentioned candidate
varieties three and seven.

Table 1. Polyphenols in Pleurotus ostreatus cultivars.

Compounds
Polyphenol Concentration of Cultivars (mg/kg)

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 12th 13th 14th

4-Hydroxibenzoic acid 10.62
± 0.81

98.23 ±
13.43

33.44
± 1.47

26.44
± 0.45

22.49
± 1.12

17.72
± 0.13

12.09
± 0.41

27.90
± 1.64

24.46
± 0.78

19.99
± 0.76

11.62
± 0.29

22.18
± 0.62

23.94
± 0.94

(-)-Catechin <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
5-CQA* <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Apigenin <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Caffeic acid 0.59 ±
0.02

0.97 ±
0.12

1.54 ±
0.54

0.15 ±
0.01

0.10 ±
0.01 <0.01 0.04 ±

0.01 <0.01 <0.01 0.34 ±
0.02 <0.01 <0.01 0.24 ±

0.02
Ellagic acid <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09 <0.09
Ferulic acid <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02
Hesperetin <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Isorhamnetin <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Kaempferol <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06 <0.06
Myricetin <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Naringin <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02 <0.02

p-Coumaric acid 5.93 ±
0.09

39.13 ±
0.32

50.41
± 0.85

11.44
± 0.50

6.47 ±
0.80

2.80 ±
0.52

5.60 ±
0.51

38.26
± 1.06

4.06 ±
0.82

18.08
± 0.45

3.41 ±
0.50

7.43 ±
0.69

6.03 ±
0.80

Quercetin <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01

Rosmarinic acid <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Rutin <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01
Sinapic acid <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03 <0.03
Syringic acid <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05 <0.05

Vanillic acid <0.07 <0.07 0.29 ±
0.11 <0.07 <0.07 <0.07 0.13 ±

0.06 <0.07 <0.07 <0.07 <0.07 <0.07 <0.07

Note: The values “<” in the table represent the LOD values for each component. * chlorogenic acid.

Ucar and Karadag (2019) also investigated the polyphenol composition of oyster mush-
rooms and identified gallic acid (56.08 ± 5.40 µg/g), protocatechuic acid (14.12 ± 3.89 µg/g),
p-hydroxibenzoic acid (8.00 ± 1.32 µg/g), chlorogenic acid (11.08 ± 0.19 µg/g), p-coumaric

https://www.xlstat.com
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acid (3.01 ± 0.86 µg/g) and o-coumaric acid (5.91 ± 1.40 µg/g) in the samples [4]. min-Young
et al. (2008) investigated the polyphenol pattern of edible and medicinal mushrooms using
HPLC-DAD [28]. They identified gallic acid (7 µg/g), homogentisic acid (16 µg/g), protocate-
chuic acid (18 µg/g), chlorogenic acid (19 µg/g), naringin (9 µg/g) and myricetin (21 µg/g),
but in contrast to our results, p-coumaric acid, p-hydroxibenzoic acid, caffeic acid and vanillic
acid were not found in their samples. They also did not detect chlorogenic acid, syringic acid,
ferulic acid, rutin, quercetin, kaempferol and hesperetin in the samples, which is in good
agreement with our results. Oyster mushrooms were also analysed using the HPLC-DAD
technique by Palacios and co-workers (2011) [22]. Several polyphenols were identified in the
samples, including p-coumaric acid (11.15 ± 0.85 mg/g), ferulic acid (20.16 ± 0.16 mg/g),
gallic acid (290.34 ± 3.61 mg/g), gentisic acid (292. 62 ± 3.42 mg/g), p-hydroxibenzoic acid
(4.69 ± 1.59 mg/g), homogentisic acid (629.86 ± 1.54 mg/g), myricetin (21.99 ± 0.89 mg/g)
and protocatechuic acid (19.32 ± 0.84 mg/g).

It can be seen that the polyphenol profile of these mushrooms is very diverse, indicat-
ing that many parameters other than botanical origin may influence this.

3.2. Spectrum Profiling

The raw spectra of the dried, ground 13 cultivars of Pleurotus ostreatus are shown in
Figure 1. The figure shows a narrowed range (9000–3800 cm−1), since the wavenumber
range 12,500–9500 cm−1 has no evaluable region. The spectra structure correlations in the
7500–4300 cm−1 region are presented in Table 2.
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Table 2. Spectra structure correlations in 7500–4300 cm−1 region [29,30].

Wavenumber,
cm−1 Spectra Structure Material Type

7353 C–H methyl second combination band Aliphatic hydrocarbons

7300 Combination of first overtone of methyl C–H stretching and CH3 bending Aromatic hydrocarbons

7194 Combination of first overtone of methyl C–H stretching and CH3 bending Aliphatic hydrocarbons

7168 C–H methylene second combination band Aliphatic hydrocarbons

7163 Combination of first overtone of methyl C–H stretching and CH3 bending Aliphatic hydrocarbons

7200–7100 First overtone of O–H stretching modes Alcohols

7140–6940 First overtone of O–H stretching modes from phenols Phenolic O–H

7085–7067 Combination of first overtone of methylene C–H stretching and methylene C–H
bending modes Aliphatic hydrocarbons

7057 Combination of first overtone of C–H and aryl C–H Aromatic hydrocarbons

7040 First overtone of O-H Phenolic O–H

6835, 6743 First overtone of N-H and CONH2 Amide/protein

6805 N-H combination band from primary amides (R-C=O-NH2) Amide

6705–6683 First overtone of NH2 Aromatic amine

5550–4550 O-H broad band, which is combination of the stretching and bending of the O-H Polyols

5263 Second overtone of C=O, C=OOH Carboxylic acids

5208 Second overtone of C=O, C=ONH Amide

5181 O-H stretching and HOH bending combination Polysaccharides

4878 N-H in-plane bend and C-N stretching and N-H in-plane bend combination Amides/proteins

4866 N-H stretching and C=O stretching (amide I) combination Amides/proteins

4854 Stretching combination of second overtone of N-H and N-H Amides/proteins

4762 O-H bending and C-O stretching combination Polysaccharides

4655–4615 Combination of C-H stretching and C-C bending C-H aryl

4400 CONH2 specifically due to peptide β-sheet structures Proteins

4365–4370 CONH2 specifically due to the α-helix peptide structure Proteins

4360 First overtone of CH stretching and C–H bending modes C–H aryl

4348 Second overtone of C–H stretching mode Amides

4333 Combination of first overtone of CH2 asymmetric stretching and CH2
bending modes Aliphatic hydrocarbons

4314 Combination of first overtone of CH2 asymmetric stretching and CH2
bending modes Aliphatic hydrocarbons

Differences in the shape of the spectra can already be seen in this figure. This difference
is clearly visible in the first, but even more pronounced in the second derivative spectral
image (Figure 2a). In Figure 2b,c, the ranges showing the typical differences are zoomed in.

For the samples marked with broken lines (2, 3, 8, 10, 13), a difference in the spectral
pattern was observed. This divergence is either a peak shift or the appearance of a new peak.
In the 7500–6500 cm−1 region (Figure 2b), overtones and combinations of stretching and
bending vibrations associated with aliphatic and aromatic C-H bonding are predominant,
while in the 5500–5000 cm−1 and 4800–4600 cm−1 regions, combinations of O-H bonding
and normal vibrations associated with aliphatic and aromatic amino acids and proteins are
typically observed (Table 2). The 4400–4300 cm−1 spectral shift (Figure 2c) is related to the
chitin content of the samples. Spectral images indicate that samples 2, 3, 8, 10, 13 show a
qualitative difference compared to the other samples tested, mainly in terms of polyphenol
and amino acid profiles.
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Furthermore, it is important to emphasise that chitin, a characteristic component of
mushrooms, is also an infra-active component, so differences in chitin content may also
contribute to differences in spectra.

The specific polyphenol and amino acid parameters of these samples are summarised
in Table 3.

Table 3. Amino acid and polyphenol patterns of samples with different spectra.

Sample Amino Acid * Polyphenol

Sample 2 highest total free amino acid (13.6 ± 0.4 g/100 g) highest concentration of 4-hydroxibenzoic acid
(98.23 ± 1343 mg/kg)

highest content of methionine (216 ± 7.0 mg/g)

Sample 3

highest concentration of cysteine (185.8 ± 2.6 mg/100 g),
glutamic acid (2076 ± 162 mg/100 g)
high total free amino acid
(12.1 ± 0.2 g/100 g)

highest concentration of
p-coumaric acid (50.41 ± 0.85 mg/kg),
caffeic acid (1.54 ± 0.54 mg/kg),
vanillic acid (0.29 ± 0.11 mg/kg)

Sample 8 highest concentration of ornithine (1128 ± 204 mg/100 g) high concentration of
p-coumaric acid (38.26 ± 1.06 mg/kg)

Sample 10

the lowest concentrations of the following amino acids:
proline (68.1 ± 2.08 mg/100 g),
glycine (55.6 ± 3.9 mg/100 g),
valine (69.7 ± 11.8 mg/100 g),
methionine (27.3 ± 3.3 mg/100 g), isoleucine (84.4 ± 10.1 mg/100 g),
leucine (82.9 ± 2.2 mg/100 g),
tyrosine (95.1 ± 9.8 mg/100 g), phenylalanine (73.3 ± 8.9 mg/100 g),
histidine (80.2 ± 3.5 mg/100 g),
serine (130 ± 15.3 mg/100 g)

difference from the others is not supported by the
measured content parameters

Sample 13 difference from the others is not supported by the measured content parameters

* Detailed data in Fodor et al. (2020) [21].

3.3. Chemometric Evaluation of Polyphenol Data
3.3.1. Normality Testing

With the exception of sinapic acid, the data on polyphenols showed a non-normal
distribution, so the data were treated as uniformly non-normally distributed for uniform
data management.

3.3.2. Correlation Analysis

Our non-normally distributed polyphenol data, as well as TPC, FRAP and free amino
acid values from previous studies [21], were subjected to Spearman correlation analysis.

The results of the analysis showed that the concentrations of sinapic acid were not
significantly correlated with any of the other polyphenol components tested, nor with the
previously established TPC results. A middle strong negative correlation (−0.620) was
found between the vanillic acid and catechin.

A very strong positive significant correlation was found between the following
polyphenol components: rutin–chrysin (0.956), chrysin–isorhamnetin (0.929), rosmarinic
acid–conifer–aldehyde (0.918), rutin–quercetin (0.912), rutin–kaempferol (0.907), quercetin–
rosmarinic acid (0.901).

A strong positive significant correlation was observed in the following cases: 5-
CQA-ferulic acid (0.879), genistein–rutin (0.874); rosmarinic acid–rutin (0.868); 5-CQA–
naringin (0.863); quercetin–isorhamnetin (0.863); apigenin–luteolin (0.863); quercetin–
chrysin (0.857); chrysin–apigenin (0.835); isorhamnetin–genistein (0.824); quercetin–conifer–
aldehyde (0.813); chrysin–genistein (0.808); isorhamnetin–apigenin (0.808) (File S1).

Based on the results, TPC values only show a middle strong positive significant
correlation with the concentration of genistein and myricetin among the polyphenols. FRAP
values did not show significant correlation with any of the tested polyphenol components.
The results are explained by the fact that both TPC and FRAP also measure reducing
compounds other than polyphenols.
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Spearman correlation analysis was also performed for polyphenols–amino acids.
Positive significant correlations of varying strengths were found between the following
polyphenols and amino acids: hesperetin–lysine (0.791); hesperetin–asparagine (0.753);
myricetin–cysteine (0.717); hesperetin–arginine (0.698); p-coumaric acid–glutamine (0.692);
hesperetin–serine (0.670); hesperetin–valine (0.665); hesperetin–phenylalanine (0.659);
hesperetin–tyrosine (0.643); hesperetin–total free amino acid (0.621); chrysin–total free
amino acid (0.621); hesperetin–1-methyl-histidine (0.599); hesperetin-histidine (0.593);
myricetin–proline (0.566); chrysin–glycine (0.560). However, a strong negative signifi-
cant correlation (−0.713) was observed between ellagic acid and cysteine.

3.3.3. Kruskal–Wallis Test

The Kruskal–Wallis non-parametric statistical procedure was performed for each
polyphenol component tested (3–3 parallel values) and also for the comparison of samples.
For 4-hydroxibenzoic acid, caffeic acid and p-coumaric acid, a significant difference between
samples was found at the 95% significance level. For 4-hydroxibenzoic acid, samples 1–2,
for caffeic acid, samples 2–13 and samples 3–13 and for p-coumaric acid, samples 3–12 and
samples 3–6 are different. This result can be compared with the differences seen in the
spectra. Based on the Kruskal–Wallis result, it can be assumed that the different spectra
in sample 2 may be related to the concentration of 4-hydroxibenzoic acid and caffeic acid,
and in sample 3 to the concentration of caffeic acid and p-coumaric acid (Files S2–S4). The
polyphenol patterns of the samples were compared; the results are reported in Table 4. This
shows that the polyphenol patterns of sample 2, samples 5, 12 and 13 and sample 1 are
different and form a distinct group.

Table 4. Multiple pairwise comparisons using the Conover–Iman procedure/two-tailed test.

Sample Frequency Sum of Ranks Mean of Ranks Groups

2nd 23 6148 267.304 A
13th 23 3948 171.652 B
5th 23 3930 170.870 B

12th 23 3898 169.478 B
3rd 23 3784 164.522 B C
10th 23 3690 160.435 B C
9th 23 3312 144.000 B C
6th 23 3290 143.043 B C
8th 23 3121 135.696 B C

11th 23 2811 122.217 B C
4th 23 2457 106.826 B C
7th 23 2382 103.565 B C
1st 23 2079 90.391 C

The relation of each sample to the other is shown in Table 5.

Table 5. Significant differences between samples based on polyphenol profile.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 12th 13th 14th

1st No Yes No No Yes No No No No No No Yes Yes

2nd Yes No Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

3rd No Yes No No No No No No No No No No No

4th No Yes No No No No No No No No No No No

5th Yes Yes No No No No No No No No No No No
6th No Yes No No No No No No No No No No No

7th No Yes No No No No No No No No No No No
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Table 5. Cont.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 12th 13th 14th

8th No Yes No No No No No No No No No No No

9th No Yes No No No No No No No No No No No

10th No Yes No No No No No No No No No No No

12th No Yes No No No No No No No No No No No

13th Yes Yes No No No No No No No No No No No

14th Yes Yes No No No No No No No No No No No

3.3.4. Principal Component Analysis

The PCA analysis on spectral data was used to identify spectral outliers. It was carried
out on the average spectra of the thirteen candidate varieties. Based on Hotelling’s T2 and
F-residual values, no spectral outliers were detected, and thus the candidate varieties can
be considered as one sample population from a spectral point of view.

The polyphenol data were normalised before PCA (Figure 3), since the data values for
some components differed by an order of magnitude from the others. Based on Figure 3,
groups can be clearly distinguished, but the composition of the groups differs from the
group recognition based on the spectral data.
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Samples 1, 3, 10 were also grouped together in this case, but they were supplemented
by samples 7, 8 and 12. Sample 2 was completely separated. The PCA test provides an
opportunity to determine which polyphenol components are primarily responsible for the
variance (Figure 4a,b).

Correlation loadings were computed for each variable for the displayed principal
components. In addition, the plot contains two ellipses that indicate how much variance is
taken into account. The outer one is the unit-circle and shows 100% explained variance.
The inner ellipse represents 50% of explained variance.

The importance of individual variables is visualised more clearly in the correlation
loadings plot compared to the standard loadings plot.
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It can be concluded that 4-hydroxibenzoic acid, p-coumaric acid and hesperetin are
mainly responsible for the variance. The polyphenolic components located in the area
between the two ellipses have a smaller but not negligible effect.

The first principal component is defined by p-coumaric acid (Figure 5a), the sec-
ond principal component by 4-hydroxibenzoic acid (Figure 5b) and the third principal
component by hesperetin (Figure 5c).
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3.3.5. Pattern Recognition by Cluster Analysis

For the polyphenol data (Figure 6), complete linkage clustering using Euclidean
distance cluster analysis was performed, resulting in three clusters. Based on the results,
sample 2 is separated, samples 3 and 8 form a separate group, and the remaining samples
are placed in the third group.
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The cluster analysis of the normalised values of the amino acid data resulted in a new
clustering. Namely, samples 9, 12 and 13 form one cluster, samples 8 and 10 form another
cluster, and the remaining samples can be grouped into a single cluster (File S5).

This can be interpreted as an explanation for our hypothesis that the observed quali-
tative differences in the spectra of the candidate varieties are not only influenced by the
polyphenol and amino acid profile, but also by other components (e.g., polysaccharide and
fibre content).

4. Discussion

The aim of the work was to detect possible differences between thirteen Pleurotus
ostreatus cultivar candidate varieties based on their polyphenol patterns and to explore the
possible relationship between polyphenol patterns and other nutritional characteristics.
The 4-hydroxibenzoic acid, caffeic acid, p-coumaric acid and vanillic acid were the most
abundant polyphenolic components in the samples.

Principal component analysis for polyphenol concentrations clearly separated sample
2 from the others, which were put into two further groups. The first principal component is
determined by p-coumaric acid (67%), the second principal component by 4-hydroxibenzoic
acid (29%) and the third principal component by hesperetin (3%).

Based on Kruskal–Wallis analysis, a significant difference was found between the
samples at 95% significance level for 4-hydroxibenzoic acid, caffeic acid, p-coumaric acid.
Considering the total polyphenol pattern, sample 2 was found to be significantly different
from the others, forming a separate group.

The candidate variety 2 was also grouped separately by the cluster analysis for
polyphenol concentrations, clearly distinguishing it from the other varieties.

Finally, the samples can also be divided into three groups based on the NIR spectra,
one of which is represented by sample 2, with differences in the 6900–6700 cm−1 and
5500–5000 cm−1 range.

In summary, although the statistical methods used for the polyphenol profile grouped
the samples slightly differently, the results were definitely consistent for several cases. The
candidate variety 2 was clearly distinguishable by all statistical methods in terms of its
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positive nutritional characteristics. The distinction of mushroom cultivar candidate varieties
based on their polyphenol profiles can be considered as a promising research direction;
therefore, this work could be the starting point of a larger-scale study. Expanding the
number of samples and the number of tested polyphenolic components and investigating
other nutritional parameters such as chitin content could create the opportunity to select
varieties with the best nutritional characteristics. These results could greatly assist the work
of breeders.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors12020019/s1, File S1: Spearman correlation matrix.
File S2: Kruskal–Wallis test—4-hydroxibenzoic acid. File S3: Kruskal–Wallis test—caffeic acid. File
S4: Kruskal–Wallis test—p-coumaric acid. File S5: Cluster analysis of cultivated Pleurotus ostreatus
samples based on amino acid concentrations.
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