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Abstract: This study reports, for the first time, the utilization of two-dimensional (2D) tellurium (Te)
nanosheets for the efficient nonenzymatic detection of hydrogen peroxide (H2O2). H2O2 acts as a
pivotal biomarker with widespread applications across environmental, biological, industrial, and
food processing domains. However, an excessive accumulation of H2O2 in the body poses a severe
threat to human life. Consequently, the imperative need for a selective, sensitive, and cost-effective
sensing platform for H2O2 detection has gained paramount significance. Employing a low-cost and
straightforward hydrothermal method, Te nanosheets were synthesized to address the escalating
demand for a reliable detection platform. The as-synthesized Te nanosheets are characterized through
Raman spectroscopy and atomic force microscopy techniques. The electrochemical performance of
the Te nanosheets integrated onto a glassy carbon (Te-GC) electrode was thoroughly investigated
using cyclic voltammetry, differential pulse voltammetry, and chronoamperometry. The experiments
were designed to evaluate the response of the Te-GC electrode in the presence and absence of H2O2,
alongside its performance in the detection of other pertinent interfering analytes. The sensor shows a
limit of detection of 0.47 µM and a sensitivity of 27.2 µA µM−1 cm−2 towards H2O2. The outcomes
of this study demonstrate the efficacy of Te nanosheets as a promising material for nonenzymatic
H2O2 detection in urine samples. The simplicity and cost-effectiveness of the hydrothermal synthesis
process, coupled with the notable electrochemical performance of the Te/GC electrode, highlight the
potential of Te nanosheets in the development of a robust sensing platform. This research contributes
to the ongoing efforts to enhance our capabilities in monitoring and detecting H2O2, fostering
advancements in environmental, biomedical, and industrial applications.

Keywords: hydrogen peroxide; sensing; tellurium; nanosheets; electrochemistry

1. Introduction

Hydrogen peroxide (H2O2) is a strong oxidizer and a volatile inorganic compound
of biological, clinical, and industrial importance [1–4]. For industrial uses, it is used for
bleaching, chemical synthesis, and water treatment [5–7]. Due to wide applications and
the natural formation of H2O2, it can be present in the environment, water surfaces, body
fluids, and food [8,9]. The amount of H2O2 present in the environment defines the quality
of air and water. In biological systems, it plays an important role in metabolism, signaling,
biosynthetic reactions, and oxidative stress [10,11]. H2O2 is involved in cellular signaling
processes at lower concentrations. However, excess levels can disrupt normal cellular
signaling pathways, leading to the dysregulation of various physiological functions. Excess
H2O2 in the body can lead to various adverse effects due to its potent oxidizing properties.
While H2O2 is produced as a byproduct of normal cellular metabolism and is involved in
certain physiological processes, an imbalance or excessive accumulation can be harmful.
H2O2 is a member of reactive oxygen species (ROS), and in excess, it can cause oxidative
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stress. This stress arises from an imbalance between the production of ROS and the body’s
ability to eliminate them. It is important to note that the body has defense mechanisms,
including antioxidant enzymes and molecules, to counteract the effects of reactive oxygen
species. Nonetheless, when the balance between oxidants and antioxidants is disrupted, the
risk of oxidative damage and associated health issues increases. Conditions that promote
the accumulation of excess H2O2 include certain diseases, environmental factors, and
exposure to certain chemicals.

According to the Occupational Safety and Health Administration (OSHA), the permis-
sible limit of H2O2 in the air is about 1 ppm and inhalation beyond 75 ppm can immediately
endanger health and life [12]. Oxidative stress can damage cellular components, including
proteins, lipids, and DNA, which may lead to impaired cell function and contribute to
various diseases. Elevated levels of H2O2 can trigger an inflammatory response in the
body. Recent studies suggest that the level of H2O2 present in human blood plasma can
be in the low range of 0.25 µM to a probable normal range of 1–5 µM, and a high range
of 30–50 µM in certain disease states (e.g., diabetes) or during chronic inflammation [13].
Intracellular H2O2 content under normal circumstances is usually ≤10 nM [14,15]. Chronic
inflammation is associated with numerous health conditions, including cardiovascular
diseases, neurodegenerative disorders (such as Alzheimer’s and Parkinson’s), and au-
toimmune diseases. The concentration of H2O2 in body fluids and exhaled breath can
determine health conditions, particularly pulmonary diseases and diabetes [16–19]. The
brain is particularly vulnerable to oxidative damage due to its high oxygen consumption
and lipid content. Excess H2O2 can contribute to the oxidation of low-density lipoprotein
(LDL), promoting atherosclerosis. H2O2 can interact with DNA, causing modifications and
mutations. This DNA damage can lead to the development of cancer and contribute to
aging-related symptoms. In addition, excessive H2O2 can affect the functioning of immune
cells, which may lead to a compromised immune system, making the body more susceptible
to infections and illnesses.

Furthermore, H2O2 can be found in processed and packaged food products. The
consumption of processed food with high concentrations of H2O2 can lead to serious
gastrointestinal diseases [7]. Food products containing folic acid can form H2O2 during
their decomposition and its high concentrations can affect the nutritional values [20]. Hence,
an additional process is required to decompose the excess H2O2 [21]. In this regard, many
countries have already established food safety regulations for the safe limit of H2O2 in the
final products [22–24]. The ingestion and inhalation of H2O2 above the safe limits can cause
severe health issues for human beings [25,26]. Therefore, the detection and determination
of H2O2 concentration in the environment, human body fluids, and food products to ensure
that the levels remain below the safe limit have great importance.

To ensure the accurate detection of H2O2 levels, a variety of analytical techniques
such as chromatography, titrimetry, spectrophotometry, colorimetry, fluorescence, and
phosphorescence have been developed and tested [27–31]. However, these analytical tech-
niques have their technical drawbacks, like their poor selectivity and sensitivity, complexity,
time-consuming nature, and expensive instrumentation. In recent years, electrochemical
sensors have been proven as a suitable choice due to their low cost, high sensitivity, ex-
cellent selectivity, and fast response, and offer a portable and convenient operation for
the accurate and selective sensing of H2O2 [10]. In comparison with conventional and
commercially used analytical techniques like chromatography, the use of electrochemi-
cal sensors is more favorable because of their compact size, cost-effectiveness, and fast
response, along with easy remote monitoring. The enzymatic electrochemical sensing
approach shows excellent sensing performance with good sensitivity and selectivity, but it
comes with the limitations of complex immobilization processes and instabilities driven by
physical conditions [32,33]. In enzymatic detection, the temperature and pH of the medium
alter the sensing performance dramatically [34]. Furthermore, the high cost of enzymes
is a limiting factor in the fabrication of an enzymatic biosensor and its wide applicability.
In recent years, huge efforts have been made to overcome the limitations of enzymatic
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biosensors, and have led to a nonenzymatic or direct electrochemical sensing approach [10].
The nonenzymatic biosensors modified with suitable catalysts show excellent detection
capabilities for different analytes or biomarkers [35]. A nonenzymatic biosensor offers ease
of fabrication, is inexpensive and robust, and has a longer life [36]. These sensors have less
impact of physical conditions on the sensing performance compared to enzymatic sensing.
Furthermore, the nonenzymatic sensors show direct charge transfer and enhanced surface
renewability.

In electrochemical sensing, catalysts significantly influence overall sensing perfor-
mance. Therefore, a variety of nanostructured materials, including metal oxides, metal
nanoparticles (NPs), 2D transition-metal dichalcogenides (TMDs), and monoelemental
nanomaterials, have been investigated for the nonenzymatic detection of H2O2.The use of
nanomaterials offers a higher surface area with fast charge transfer to promote the reaction
of analyte over the surface [37]. Hence, the controlled growth or synthesis of nanoma-
terials with lower dimensions can be a suitable approach to achieve improved sensing
performance in electrochemical sensing.

Metal nanostructure-based nonenzymatic sensors show excellent detection and se-
lectivity towards H2O2 [38]. Metal NPs also have been studied as composites with other
nanomaterials like carbon nanotubes (CNT) for the efficient detection of H2O2 [39,40].
Except for metal NPs, metal oxide composites such as NiO NPs/CNT have been reported
for the selective detection of H2O2 with a limit of detection (LOD) of 1 µM [41]. Recently,
Fe2O3/Graphene nanocomposite has been reported with a low LOD of 4.79 µM and de-
tectivity of 0.037 µA µM−1 cm−2 [42]. The TMDs-modified electrode, MoS2/graphene
nanocomposite, demonstrated high sensitivity and selectivity towards H2O2 in the presence
of interfering analytes with a wide linear response from 0.25 to 16 mM H2O2 [43]. Com-
posites and metal NPs-modified catalysts have always been the prime choice for detection
applications, but to reduce the complexity and improve the scalability, other approaches
like doping have also been explored for sensitive and selective electrochemical detection.
Nitrogen doping in carbon nanofibers has been demonstrated for the selective detection of
H2O2 with a sensitivity of 357 µA µM−1 cm−2 [44].

Te is a p-type semiconductor having a band gap of ~0.32 eV with excellent physical
and chemical characteristics [45,46]. Te nanostructures have been reported for optical,
piezoelectric, thermoelectric, electrochemical, and sensing properties [47–50]. The synthe-
sis of Te nanostructures has been reported and optimized over the years using different
synthesis methods with controlled dimensionalities [46,47,51]. Nanostructured Te has been
reported for its good catalytic and storage properties. The application of Te nanoparticles
and nanowires for the nonenzymatic detection of H2O2 has been investigated by various
research groups [45,50–55]. As previously discussed, the sensing performance is notably
influenced by nanostructure dimensions [52]. To attain superior H2O2 detection perfor-
mance, this study introduces the use of 2D Te nanosheets for nonenzymatic electrochemical
detection. The low-cost synthesis approach of 2D Te nanosheets makes it suitable over the
other direct growth approaches.

2. Material and Methods
2.1. Materials and Reagents

Sodium tellurite pentahydrate (Na2TeO3·5H2O) from Tokyo Chemical Industries
(Tokyo, Japan), hydrazine hydrate (N2H4·H2O, Hydrazine, 64%) from Thermo Scientific
(Fair Lawn, NJ, USA), and ammonium hydroxide solution (NH4OH) from Fisher Scien-
tific (Fair Lawn, NJ, USA) and polyvinylpyrrolidone (PVP, K85-95, MW 13,000,000) were
purchased and used in the synthesis reaction without further purification. De-ionized
water (DI water, <18 Ω) was used for synthesis, cleaning, and solution preparation. H2O2
(30%, Fisher, Fair Lawn, NJ, USA), dopamine hydrochloride (C8H11NO2·HCl, 99%, Alfa
Aesar, Ward Hill, MA, USA), ascorbic acid (C6H8O6, Ward’s Science, Rochester, NY, USA),
uric acid (99%, Alfa Aesar, Ward Hill, MA, USA), and sodium chloride (NaCl, Fisher
Scientific, Fair Lawn, NJ, USA) were procured and used as analytes for sensing without
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further purification. Phosphate-buffered saline (PBS, pH 7.4, 1X molarity) was used as an
electrolyte medium.

2.2. Synthesis of Te Nanosheets

Te nanosheets were synthesized by a conventional hydrothermal route, as shown in
Figure 1. Initially, 3 g of PVP was dissolved in 30 mL of DI water under continuous stirring
until a clear solution was obtained. Further, 10 mM of Na2TeO3·5H2O was added to the
PVP solution and stirred for 4 hrs. Afterward, 3.2 mL of NH4OH and 1.7 mL of N2H4·H2O
were added to the above solution and stirred for 1 h. The final solution was then transferred
to the Teflon-lined autoclave and heated at 180 ◦C for 24 h. After 24 h, the autoclave was
taken out for natural cooling and the collection of the final product. The collected solution
was washed with water and purified by centrifugation at 5000 rpm for three cycles. After
cleaning, the Te nanosheets solution appears in a silver gray color. The final product shows
the formation of a few Te nanowires along with Te nanosheets.

Chemosensors 2024, 12, x  4 of 15 
 

 

Lawn, NJ, USA) were procured and used as analytes for sensing without further purifica-
tion. Phosphate-buffered saline (PBS, pH 7.4, 1X molarity) was used as an electrolyte me-
dium. 

2.2. Synthesis of Te Nanosheets 
Te nanosheets were synthesized by a conventional hydrothermal route, as shown in 

Figure 1. Initially, 3 g of PVP was dissolved in 30 mL of DI water under continuous stirring 
until a clear solution was obtained. Further, 10 mM of Na2TeO3·5H2O was added to the 
PVP solution and stirred for 4 hrs. Afterward, 3.2 mL of NH4OH and 1.7 mL of N2H4·H2O 
were added to the above solution and stirred for 1 h. The final solution was then trans-
ferred to the Teflon-lined autoclave and heated at 180 °C for 24 h. After 24 h, the autoclave 
was taken out for natural cooling and the collection of the final product. The collected 
solution was washed with water and purified by centrifugation at 5000 rpm for three cy-
cles. After cleaning, the Te nanosheets solution appears in a silver gray color. The final 
product shows the formation of a few Te nanowires along with Te nanosheets. 

 
Figure 1. Schematic of the hydrothermal synthesis protocol for 2D Te nanosheets and electrode fab-
rication. 

2.3. Material Characterizations 
A high-resolution optical microscope (Olympus BX61, Olympus, Tokyo, Japan) was 

used to capture the optical images of the obtained Te nanosheets. The topography, mor-
phology, and thickness profile of the Te nanosheets were recorded using AIST-NT Smart 
SPM integrated with a RAMAN microscope (Horiba semiconductor, Piscataway, NY, 
USA). The Horiba LabRAM Evolution RAMAN microscope was used to obtain the Raman 
spectra of the Te nanosheets. 

2.4. Electrode Modification and Sensing Characterization 
The glassy carbon electrode (GCE) from BAS Inc. with a 3 mm inner diameter was 

used for sensing characterizations. Before use, the GCE was polished using the alumina 
slurry of different particle sizes followed by ultrasonication in DI water for 5 min. Finally, 
the GCE was rinsed with ethanol and DI water and dried in the oven. 

Then, 1 mg/mL of chitosan solution was prepared in diluted acetic acid (1% aqueous) 
solution by sonication for 30 min. Sonicated Te nanosheets suspension (150 µL) was mixed 

Figure 1. Schematic of the hydrothermal synthesis protocol for 2D Te nanosheets and electrode fabrication.

2.3. Material Characterizations

A high-resolution optical microscope (Olympus BX61, Olympus, Tokyo, Japan) was
used to capture the optical images of the obtained Te nanosheets. The topography, mor-
phology, and thickness profile of the Te nanosheets were recorded using AIST-NT Smart
SPM integrated with a RAMAN microscope (Horiba semiconductor, Piscataway, NY, USA).
The Horiba LabRAM Evolution RAMAN microscope was used to obtain the Raman spectra
of the Te nanosheets.

2.4. Electrode Modification and Sensing Characterization

The glassy carbon electrode (GCE) from BAS Inc. with a 3 mm inner diameter was
used for sensing characterizations. Before use, the GCE was polished using the alumina
slurry of different particle sizes followed by ultrasonication in DI water for 5 min. Finally,
the GCE was rinsed with ethanol and DI water and dried in the oven.

Then, 1 mg/mL of chitosan solution was prepared in diluted acetic acid (1% aqueous)
solution by sonication for 30 min. Sonicated Te nanosheets suspension (150 µL) was mixed
with 1 mL of the chitosan solution, drop cast on GCE, and dried at 60 ◦C for 30 min. A total
volume of 5 µL of the mixture was dropped on GCE for the modified electrode.
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The electrochemical sensing characterization of the Te nanosheets/GC-modified elec-
trodes (Te-GC) was carried out using the Voltammetric Analyzer (CV-50W, Bioanalytical
Systems, Inc., West Lafayette, IN, USA). The sensitivity of the instrument was set at
100 µA/V for all measurements. The sensing measurements were recorded using the
conventional three-electrode configuration with platinum (Pt) as the counter electrode and
Ag/AgCl (3.5 M KCl) as the reference electrode. Three-electrode assembly was connected
to the cell stand (C3, BAS Inc., West Lafayette, IN, USA) with controlled stirring and gas
purging. Cyclic voltammetry (CV), differential pulse voltammetry (DPV), and chronoam-
perometry (CA) signals were recorded to examine the sensing performance towards H2O2
and other analytes (uric acid, NaCl, dopamine, and ascorbic acid). For the electrochemical
measurements, 15 mL of PBS was taken in the voltammetric cell and purged with nitrogen
for 30 min, with stirring at 400 rpm. Once the electrodes were connected, the stirring
and purging was momentarily stopped to record the CV and DPV scans. The initial CV
and DPV scans of the electrode, in blank electrolyte, i.e., without H2O2 addition, were
performed. Subsequently, 150 µL of H2O2 from 20 µM stock solution was added. The
effective concentration of H2O2 in the electrolyte was 100 times lower. Purging and stirring
were continued for 5 min with each addition of H2O2. For the chronoamperometry tests,
analytes of 1 M concentrations were prepared. Since uric acid has negligible solubility in
water, a 0.39 M solution of this analyte was prepared. 150 µL of these analyte stock solutions
was periodically added at 100 s time intervals. The concentration of the interferant analytes
(uric acid, NaCl, dopamine, and ascorbic acid) was purposefully kept high to study the
efficacy of the Te sample towards H2O2 detection. The chronoamperometry test was also
conducted with a 2 µM concentration of the interferants, which is within the normal range
in human specimens.

3. Results and Discussion
3.1. Microscopic and Spectroscopic Characterization of Te Nanosheets

Optical microscopy is a widely accepted way to confirm the formation of large area
2D nanosheets. Initially, the formation of Te nanosheets was confirmed using a high-
resolution optical microscope. We also observed the formation of a few nanowires along
with nanosheets. Figure 2a illustrates a typical optical image of the sample. The reaction
yields a higher number of nanosheets compared to nanowires, approximately in an 80% to
20% ratio, and we found that the length of nanosheets was >20 µm and width >5 µm, as
shown in Figure 2b.

Atomic force microscopy (AFM) serves as an invaluable tool for characterizing nano-
materials due to its high-resolution imaging capabilities and precise topographical analysis.
Tellurium, a semiconductor material, when synthesized into nanosheets, exhibits unique
properties that can be elucidated through AFM. By utilizing a sharp probe that scans the
surface of the nanosheets, AFM generates topographic maps revealing the morphology,
thickness, and surface roughness at the atomic or near-atomic scale. This comprehensive
analysis through AFM plays a pivotal role in advancing the understanding and potential
applications of Te nanosheets in various fields, including electronics, optoelectronics, and
energy storage. We transferred the Te nanosheets to the SiO2 substrate to examine the
morphological and thickness profile. A 10 µm × 10 µm area containing Te nanosheets
was selected to obtain the surface morphology imaging (Figure 2c) and height profile data
(Figure 2d). A silicon (Si) tip with a length 225 µm and a tip radius < 40 nm was used for
scanning. We scanned the sample with a scan rate of 0.3 Hz in the noncontact mode. The
average surface roughness on the Te nanosheets was 0.3 nm and the height profile showed
a thickness of ~80 nm.



Chemosensors 2024, 12, 17 6 of 14

Chemosensors 2024, 12, x  6 of 15 
 

 

electronic and optical behavior due to their ultrathin nature and quantum confinement 
effects. The Raman spectra of Te nanosheets unveil invaluable insights into their phonon 
modes, stacking configurations, and layer thickness. The distinct peaks observed in the 
spectra correspond to the vibrational modes associated with the lattice vibrations and pro-
vide crucial information about the crystalline quality and structural integrity of the 
nanosheets. Additionally, Raman spectroscopy aids in identifying any potential doping, 
defects, or strain present in these nanomaterials, contributing significantly to their char-
acterization and potential applications in various fields, including electronics, optoelec-
tronics, and sensing technologies. The Raman spectrum for Te nanosheets was recorded 
using 532 nm laser excitation. Te nanosheets exhibit characteristic Raman peaks related to 
their crystal structure.  

 
Figure 2. Optical image from (a) optical microscope and, (b) Raman microscope. (c) AFM image, (d) 
height profile from AFM, (e) Raman spectrum, and (f) PL spectrum of Te nanosheets. 

The Raman peaks observed in Te nanosheets at 92.05, 123.47, and 143.56 cm−1 related 
to E1-To, A1g, and E phonon mode vibrations, as shown in Figure 2e. Te nanosheets show 
different Raman-active phonon vibration modes due to their high atomic number and the 
existence of electronic polarizability. The Te unit cell contains three atoms, and it leads to 
an infinite chain parallel to the c-axis. The most intense peak at 123.47 cm−1 for the A1 mode 
is due to symmetric intrachain stretching, compression, and bending in the basal plane 
[52,53]. The second strong peak at 92 cm−1 is due to the chain orientation along the a- and 
b-axis named the E1 mode. The peak at 143.56 cm−1 for Te nanosheets is assigned to the E2 
mode and it usually arises due to asymmetric expansion along the c-axis. The Raman 

Figure 2. Optical image from (a) optical microscope and, (b) Raman microscope. (c) AFM image,
(d) height profile from AFM, (e) Raman spectrum, and (f) PL spectrum of Te nanosheets.

Raman spectroscopy serves as a powerful tool in characterizing the structural and
vibrational properties of Te nanosheets. These two-dimensional materials exhibit a unique
electronic and optical behavior due to their ultrathin nature and quantum confinement
effects. The Raman spectra of Te nanosheets unveil invaluable insights into their phonon
modes, stacking configurations, and layer thickness. The distinct peaks observed in the
spectra correspond to the vibrational modes associated with the lattice vibrations and
provide crucial information about the crystalline quality and structural integrity of the
nanosheets. Additionally, Raman spectroscopy aids in identifying any potential doping,
defects, or strain present in these nanomaterials, contributing significantly to their charac-
terization and potential applications in various fields, including electronics, optoelectronics,
and sensing technologies. The Raman spectrum for Te nanosheets was recorded using
532 nm laser excitation. Te nanosheets exhibit characteristic Raman peaks related to their
crystal structure.

The Raman peaks observed in Te nanosheets at 92.05, 123.47, and 143.56 cm−1 related
to E1-To, A1g, and E phonon mode vibrations, as shown in Figure 2e. Te nanosheets show
different Raman-active phonon vibration modes due to their high atomic number and the
existence of electronic polarizability. The Te unit cell contains three atoms, and it leads to
an infinite chain parallel to the c-axis. The most intense peak at 123.47 cm−1 for the A1
mode is due to symmetric intrachain stretching, compression, and bending in the basal
plane [52,53]. The second strong peak at 92 cm−1 is due to the chain orientation along the
a- and b-axis named the E1 mode. The peak at 143.56 cm−1 for Te nanosheets is assigned
to the E2 mode and it usually arises due to asymmetric expansion along the c-axis. The
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Raman spectrum for Te nanosheets shows good agreement with the existing literature with
slight shifting in the peaks [52]. Raman spectra confirm the crystalline and phase pure
nature of the synthesized Te nanosheets.

The photoluminescence (PL) spectra for Te nanosheets were recorded using a 473 nm
laser excitation to examine optical properties. The PL spectrum of bulk Te does not exhibit
any PL emission due to the small bandgap (~0.32 eV) in the far infrared (IR) range [54]. In
contrast, recently Nyugen et al. found that the PL spectrum of the Te nanocrystals shows
a broad PL peak in the visible range owing to the quantum confinement of excitons [55].
The PL spectra (Figure 2f) of our synthesized Te nanosheets also show a broad peak in
the visible range and can similarly originate from the quantum confinement of excitons.
During relaxation, these electrons recombine with holes in the valence band and emit light
in the visible range due to the alteration of the density of state near the edges.

3.2. Electrochemical Sensing Performance

The fabrication process of the sensor and the suggested mechanism for H2O2 sensing
based on Te nanosheets are illustrated in Figure S1 (Supporting Information). The CV and
DPV scans were measured simultaneously at a particular concentration in the potential
range of 600 to −900 mV with respect to the Ag/AgCl reference electrode. The scans were
carried out at a scan rate of 10 mV/s in a negative polarity setting from the high potential
to low potential region. The CV scans are plotted (according to the US convention) in
Figure 3a,b. The CV scans of blank GC, Te-GC without H2O2, and Te-GC with 0.2 µM H2O2
are plotted in Figure 3a. The CV signal for Te-GC shows the distinct redox peaks. The
concentrations of H2O2 tested were in the range of 0.2–5 µM, which is the normal range
found in human blood plasma [13]. We observe two prominent peaks at 235 and −405 mV,
which can be assigned to oxidation and reduction reactions, respectively. This indicates
that these peaks originate from an irreversible conversion of Te to TeO2 and vice versa.
It is well established that metallic nanostructures develop a thin oxidized layer on their
surface when processed in ambient conditions. Considering the centrifugation, storage,
and electrode preparation in an aqueous environment, the partial surface oxidation of the
metallic Te nanosheets is inevitable. The reduction peak could be attributed to the reduction
of TeO2 to metallic Te. In the reverse CV scan, Te metal converts back to TeO2. The redox
reactions can be represented by the following equations [56]:

Te + 2H2O ↔ TeO2 + 4H+ + 4e− (oxidation) (1)

TeO2 + 4H+ + 4e− → Te + 2H2O (reduction) (2)

In the presence of H2O2, the oxidation of Te to TeO2 becomes more prominent. The
oxidizing environment provided by H2O2 is expected to inhibit the reduction of TeO2 to
Te, leading to a decrease in signal (at negative potential) in both CV and DPV with higher
H2O2 concentrations. The concentrations of H2O2 tested were in the range of 0.2–5 µM,
which is the normal range found in human blood plasma [13].

As can be observed in Figure 3b,c, the peak current of both the redox peaks decreases
with increasing H2O2 concentration. Manikandan et al. [56] also observed the decreasing
trend in peak current intensity with increasing H2O2 concentration using Te nanoparticles,
although no possible reason was mentioned by them. This observation of decreasing
intensity also aligns with the findings of Teodoro et al. [57], who used UV Vis spectroscopy
to detect H2O2 with Ag nanoparticles. They observed the decrease in spectral intensity
with increasing H2O2 concentration, which was ascribed to the degradation on the Ag
nanoparticles at higher concentrations of H2O2. Since the H2O2 can undergo a dispro-
portionation reaction to form H2O (reduction) and O2 (oxidation), it is possible that the
metal nanoparticle catalyst can get oxidized at higher concentrations. However, this may
not be the only plausible reason. The saturation of active sites (i.e., passivation at high
analyte concentration) on the metal catalyst can also lead to decreased sensitivity, which is
observed in our study as a saturation stage in the CV and DPV profiles.
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Figure 3. (a) CV scans of blank GC, blank Te-GC, and Te-GC in the presence of 0.2 µM H2O2, (b) CV
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The DPV results also show a similar trend to the CV scans (Figure 3c). Since the
sensitivity of the DPV technique is higher as compared to CV [57], the analysis of the LOD
and sensitivity (S) were performed using the DPV data. DPV eliminates the capacitive
contribution of the current response and thus, it shows lower values than the CV scans in
our case. The LOD and sensitivity (S) can be obtained from the plot of the peak current
with respect to the concentration of the analyte [58,59], as per the equations below.

LOD = 3.3 ∗
(σ

k

)
(3)

S =
k
A

(4)

where, σ is the standard deviation of the response, k is the slope of the calibration curve,
and A is the area of the working electrode in cm2.

As can be observed from Figure 3d, the plot of the peak current vs. the concentration
of H2O2 has two distinct linear regimes: one below the concentration of 1 µM and another
in the range of 1–5 µM. The LOD and S evaluated in the lower concentration range were
found to be 0.47 µM and 27.2 µA µM−1 cm−2, respectively. The LOD and S in the higher
concentration range were evaluated as 0.19 µM and 2.2 µA µM−1 cm−2, respectively. It
is understandable that Te nanosheets are more suitable for H2O2 detection at the low
concentrations. At high concentrations, the saturation of active sites and the reduction of
TeO2 to metallic Te are inhibited, resulting in a decrease in sensitivity. Consequently, two
linear ranges are observed. Two sets of DPV experiment results (Figure S2, Supporting
information) showcase the reproducibility of H2O2 sensing. The lower potential range
demonstrates superior sensitivity and less inhibition, as depicted in Figure S2 of the
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Supporting Information. Table 1 presents a comparative analysis of various Te-based
sensors for H2O2 detection.

The chronoamperometry tests were conducted with a fresh working electrode. The
Te-GC electrode showed no response for uric acid and NaCl (Figure 4a,b). However,
positive and negative current responses were observed for dopamine and ascorbic acid,
respectively. Tsai et al. utilized Te nanowires for the detection of dopamine [60], so our
results are in line with their observation. Ascorbic acid, being a reducing agent, should
show an opposite response compared to H2O2. The chronoamperometric response for low
concentrations of H2O2 is very weak in the presence of highly concentrated interferants. A
positive response was visible only beyond 1 mM H2O2 concentrations, which is effectively
1/10th times the interferant concentration. In the presence of interferants at concentrations
of 0.2 µM (within the normal range in humans), the signals from dopamine and ascorbic
acid were too faint to distinguish from the background. Interestingly, in this scenario,
the signal from 100 µM H2O2 is still clearly visible. The chronoamperometric response at
different concentrations of H2O2 in PBS solution without the interferants notably showed
a detectable signal for a 10 µM concentration (see Figure 4b,c). However, a clear signal is
observed for a concentration of 100 µM.
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Table 1. Comparison of the figure of merits of some reported nanostructures for H2O2 sensing. # Unit
reported in µA µM−1.

Sensing Material Sensitivity
(µA µM−1 cm−2)

LOD
(µM)

Detection
Range (µM) pH Ref.

CuO@Cu2O-
NWs/PVA/GCE 2.793 # 0.35 1–3000 7 [61]

Te Microtube/Pt 2.0 0.001 0.5–100 7 [62]
TeO2 NWs/Pt 130.6 0.6 2–16,000 7 [63]

Te NPs/Nafion/GCE 0.83 0.3 0.67–8.04 7 [56]
Te NWs/ITO 0.181 --- 200–1750 7.4 [47]

Te NSs/Chitosan/GC 27.2 0.47 0.2–5 7.4 This Work

3.3. Analysis of Real Samples

To assess the practical applicability of our sensor, DPV measurements were conducted
on urine samples from two individuals (Figure 5). The urine samples needed to be diluted
to observe a signal within the potential window of 600 to −900 mV. When using very high
amounts of urine in the test solution, the signal was faint (Figure 5c). The analysis indicates
that for this Te nanosheets-based sensor, the optimal amount of testing analyte should be
in the range of 100–500 µL (in 15 mL of PBS). This corresponds to an H2O2 amount in the
range of 0.5–4 µM/mL of urine.
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4. Conclusions

The synthesis of Te nanosheets was successfully achieved through a facile, one-pot
hydrothermal method, resulting in nanosheets with an approximate thickness of 80 nm.
The crystallinity and purity of the Te nanosheets were verified through the analysis of the
Raman spectrum. Subsequently, the nonenzymatic detection capabilities of a GCE modified
with Te nanosheets were systematically investigated. The Te nanosheets-modified electrode
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underwent characterization through CV and DPV, revealing exceptional sensitivity and
selectivity towards H2O2. The electrode exhibited a LOD of 0.47 µM and a sensitivity of
27.2 µA µM−1 cm−2. These findings underscore the efficacy of Te nanosheets in facilitating
the detection of H2O2. Importantly, the results suggest the practical application of Te
nanosheets in detecting H2O2 within human body fluids. This holds significant promise
for diagnostic and monitoring purposes in healthcare. Furthermore, the two-dimensional
nature of these nanosheets opens avenues for their potential use in the development of
flexible and wearable biosensors. In conclusion, the successful synthesis of Te nanosheets,
their effective modification of electrodes, and the promising electrochemical performance
indicate the feasibility of incorporating these nanomaterials into practical applications,
especially in the realm of biosensing. The versatility demonstrated in this study not only
enhances our understanding of Te nanosheets, but also paves the way for innovative
advancements in the field of nanotechnology and sensor development.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/chemosensors12020017/s1, Figure S1: Top: Illustration depicting
the sensor fabrication process. Bottom: Proposed mechanism for H2O2 sensing utilizing Te nanosheets.
Figure S2: Two sets of DPV experiment results demonstrate the reproducibility of H2O2 sensing. The
lower potential window exhibits superior sensitivity and less inhibition.
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