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Abstract: The decolorization process plays a pivotal role in refining Ginkgo ketone ester by pri-
marily eliminating ginkgolic acids, a toxic component. Presently, the conventional testing method
involves sending samples for analysis, causing delays that impact formulation production. Hence,
the development of a rapid process control method becomes imperative. This study introduces a
swift detection approach for three ginkgolic acids during Ginkgo ketone ester’s decolorization. Ini-
tially, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)
method assessed ginkgolic acid C13:0, ginkgolic acid C15:1, and ginkgolic acid C17:1 concentrations
in 91 decolorized solution samples, establishing reference values. Subsequently, using a portable
Raman spectrometer, Raman spectra of the decolorized liquid within the 3200–200 cm−1 wavelength
range were collected. Ultimately, employing partial least squares regression (PLSR) and ResNeXt50
deep learning algorithms, two quantitative calibration models correlated the ginkgolic acid con-
tent to Raman spectral data. Both models exhibited high predictive accuracy, with the ResNeXt50
model demonstrating superior performance. The prediction set correlation coefficients (R2

p) for
ginkgolic acid C13:0, ginkgolic acid C15:1, and ginkgolic acid C17:1 were 0.9962, 0.9971, and 0.9974,
respectively, with root mean square error of prediction (RMSEP) values of 0.0144, 0.0130, and 0.0122
µg/mL. In contrast, the PLSR model yielded R2

p values of 0.9862, 0.9839, and 0.9480, with RMSEP
values of 0.0273, 0.0305, and 0.0545 µg/mL for the three ginkgolic acids. The ResNeXt50 model not
only showcased higher precision but also enhanced interpretability, as analyzed through gradient-
weighted class activation mapping (Grad-CAM). The integration of Raman spectroscopy and the
ResNeXt50 quantitative calibration model furnishes a real-time and precise approach to monitor
ginkgolic acid content in the decolorized solution during Ginkgo ketone ester preparation. This
significant advancement establishes a robust framework for implementing quality control measures
in the decolorization process.

Keywords: Raman spectroscopy; Ginkgo ketone ester; decolorization; ResNeXt50 network; quantitative
calibration models

1. Introduction

Ginkgo ketone ester, a prevalent Chinese medicine renowned for its significant medic-
inal properties, primarily consists of flavonoids and terpene lactones [1,2]. Extracted from
Ginkgo biloba leaves, it finds prominent use in treating conditions such as blood stasis-type
thoracic paralysis (angina pectoris of coronary heart disease) and blood stasis-type vertigo
resulting from mild cerebral atherosclerosis [2]. Within the realm of industrial production,
the decolorization process holds a pivotal role in preparing Ginkgo ketone ester formula-
tions. The toxicity of ginkgolic acid, such as embryotoxicity, cytotoxicity, and neurotoxicity,
has been comprehensively reported [3]. The primary objective of the decolorization process
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is the elimination of the toxic ginkgolic acids in the extract. The existing quality control prac-
tices for the decolorization process rely heavily on assessing the decolorized solution, yet
this method presents a drawback of delayed test results. Consequently, it fails to promptly
capture the dynamic changes in the ginkgolic acid during the actual decolorization process
of the Ginkgo ketone ester extract [4,5].

In 2002, the U.S. Food and Drug Administration (FDA) introduced Process Analytical
Technology (PAT) as an innovative approach aimed at enhancing process efficiency and
control. PAT involves monitoring critical process parameters either in situ, online, bypass, or
offline, ensuring they consistently fall within specified ranges to uphold the final product’s
quality [6,7]. This methodology has gained widespread acceptance in the quality control of
traditional Chinese medicine production processes. Raman spectroscopy, renowned for its
non-destructive and rapid detection capabilities [8,9], has been only partially utilized in
traditional Chinese medicine quality control. While it has found application in areas such
as herb origin identification [10,11], quantitative analysis of the active ingredients [12,13],
and detection of counterfeit medicines [14,15], its potential in overseeing the production
process’s quality control remains underexplored.

Presently, the integration of spectroscopy and machine learning has become pervasive
in the pharmaceutical sector, encompassing applications like qualitative identification [16,17]
and quantitative detection [18,19]. The ResNeXt50 algorithm, introduced by Kaiming He’s
team in 2017, represents a fusion of deep residual networks (ResNet) and Inception networks.
Diverging from the manual design intricacies of the Inception structure, the ResNeXt50
algorithm adopts a uniform topology across its branches. The key strength of the ResNeXt50
deep network lies in its utilization of a multi-branch convolutional operation, enabling
enhanced learning of diverse scales and types of features. This, in turn, augments the
network’s expressive power, constituting a notable advantage in terms of both expressive
capability and generalization performance.

Herein, we introduce a swift and effective approach for determining the concentrations
of three ginkgolic acids during the decolorization phase of Ginkgo ketone ester preparation.
Initially, an ultra-high-performance liquid chromatography-tandem mass spectrometry
(UPLC-MS/MS) method was employed to quantify the levels of the three ginkgolic acids
in the decolorized solution, which were used as a reference value for modelling. Subse-
quently, Raman spectral information from the decolorized Ginkgo ketone ester solution
was collected using a portable Raman spectrometer. The competitive adaptive reweighting
sampling (CARS) algorithm, in conjunction with partial least squares regression (PLSR),
was then utilized to establish a quantitative PLSR correction model for the ginkgolic acid
contents in the decolorized solution. Furthermore, we developed a quantitative calibra-
tion model based on the ResNeXt50 deep network. To enhance the interpretability of the
model’s decision-making process, we employed the Grad-CAM algorithm, providing a
visual representation for a clearer understanding of the model’s functionality.

2. Materials and Methods
2.1. Chemicals and Reagents

Methanol was purchased from the Shanghai Aladdin Chemical Reagent Co. (Shanghai,
China) and Merck, German (Darmstadt, Germany). Formic acid was purchased from
the Shanghai Aladdin Chemical Reagent Co. Reference substances, including ginkgolic
acid C13:0, ginkgolic acid C15:1, and ginkgolic acid C17:1, were purchased from the
Sichuan Weikeqi Biological Technology Co. (Chengdu, China). 91 batches of Ginkgo ketone
ester decolorizing solution were supplied by the Shanghai Shangyao Xingling Technology
Pharmaceutical Co. (Shanghai, China).

2.2. Determination of Three Ginkgolic Acids by UPLC-MS/MS

1 mL of the decolorized solution was transferred into a 1.5 mL centrifuge tube and cen-
trifuged at 13,000 rpm for 5 min. Following centrifugation, 800 µL of the supernatant was
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filtered through a 0.22 µm microporous filter membrane into a sample bottle, constituting
the test solution.

The UPLC-MS/MS analysis was conducted using a Waters Acquity UPLC H-Class
Xevo TQ-S micro ultra-high-performance liquid chromatography-mass spectrometry sys-
tem (Waters Corporation, Milford, MA, USA). This instrument integrates UPLC with a
high-resolution mass spectrometer and is equipped with an electrospray ionization (ESI)
source. Chromatographic conditions comprised an ACQUITY UPLC BEH C18 column
(2.1 × 50 mm, 1.7 µm) with mobile phases of 0.1% formic acid-water (A) and methanol (B)
using isocratic elution (10% A-90% B). The flow rate was maintained at 0.2 mL/min, with a
column temperature of 35 ◦C, and an injection volume of 5.0 µL.

Mass spectrometry conditions employed the negative ion mode for detection. The
capillary voltage was set at 2.50 kV, the ion source temperature at 150 ◦C, and nitrogen
served as the desolvation gas at a flow rate of 650 L/Hr and a temperature of 350 ◦C.
The cone pore gas was nitrogen at a flow rate of 1 L/Hr, and argon was employed as
the collision gas. Sample analysis utilized a multiple reaction monitoring model (MRM).
Key mass spectral parameters for the three ginkgolic acids are detailed in the following
Table S1.

2.3. Method Validation

Accurate quantities of ginkgolic acid C13:0, ginkgolic acid C15:1, and ginkgolic acid
C17:1 were individually weighed and dissolved in methanol, forming control mother
liquors. From each control mother liquor, an appropriate volume was diluted with methanol
to create a mixed control stock solution. This mixed control stock solution was then incre-
mentally diluted with methanol to generate six concentration gradients of the mixed control
solution, aligning with proposed chromatographic and mass spectrometry conditions for
sample determination. Utilizing the obtained peak area (y) as the vertical coordinate and
mass concentration (x) as the horizontal coordinate, standard curves were constructed.
Simultaneously, the limits of quantification (LOQ, S/N = 10) and detection (LOD, S/N = 3)
for the three ginkgolic acids were determined.

Intra-day precision was assessed through six consecutive injections of the same mixed
control solution within a single day. Inter-day precision involved two consecutive injections
of the same mixed control solution on one day and three consecutive injections on consecu-
tive days. Method reproducibility was gauged by preparing six parallel test solutions from
the same decolorized solution and injecting them based on the proposed chromatographic
and mass spectrometric conditions. Sample stability was determined by injecting the same
sample solution at intervals of 0, 2, 4, 8, 12, and 24 h.

To evaluate average recovery, precisely aspirated 1 mL of a decolorized solution with
a known content of each component was combined with an appropriate amount of mixed
control solution at low, medium, and high concentrations. Subsequently, the sample was
injected following the proposed chromatographic and mass spectrometric conditions.

2.4. Raman Spectrum Acquisition

Raman spectra acquisition was accomplished using a FI-FO portable Raman spectrom-
eter (Beijing Zhuo Li Han Guang Instrument Co., Ltd., Beijing, China). The raw Raman
spectra were collected by taking 2 mL of decolorized liquid in a liquid phase vial and
placing it in the liquid detection cell of the Raman spectrometer. The laser wavelength was
785 nm; the laser power was 25 mW; the Raman scanning range was 3200~200 cm−1; the
integration time was 0.1 s; and the number of integrations was 3 times.

2.5. Establishment of the CARS-PLSR Model

The CARS-PLSR model was developed as a comparative analysis alongside the
ResNeXt50 model, aiming to assess the predictive performance of the ResNeXt50 model.
The CARS algorithm was employed to identify characteristic wavelengths through a multi-
step process: (1) Monte Carlo sampling; (2) elimination of wavelengths with small weights
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in the absolute value of the regression coefficients using the exponential decay function
(EDF); (3) selection of wavelengths with substantial absolute values of the regression coeffi-
cients in the PLS model through adaptive reweighted sampling (ARS); and (4) application
of interactive validation to identify the subset with the lowest root mean square error of
cross-validation (RMSECV) values as the characteristic wavelengths [20]. In this investiga-
tion, Monte Carlo sampling was conducted 50 times with 10-fold cross-validation, leading
to the establishment of the PLSR quantitative correction model. This comprehensive ap-
proach allowed for a rigorous evaluation of the ResNeXt50 model’s predictive capabilities
in comparison to the CARS-PLSR model. The software used for data analysis is Anaconda
3.0 and the programming language is Python 3.9.

2.6. Establishment of ResNeXt50 Model

The ResNeXt50 network, introduced by Kaiming He’s team in 2017, represents an
enhanced iteration of the deep residual network, integrating aggregated residual structures
and a grouped convolution approach. This design significantly reduces computational
demands while preserving information richness. In our study, the original Raman map
serves as the model input. The initial convolutional layer employs a 7 × 7 convolutional
kernel with a stride of 2, succeeded by a 3 × 3 max-pooling layer with a stride of 2. The sec-
ond convolutional module incorporates three types of convolutions: a 1 × 1 convolutional
kernel with 128 channels; a 3 × 3 convolutional kernel with 128 channels partitioned into
32 groups of convolutions; and a 1 × 1 convolutional kernel with 256 channels. This set is re-
peated in three groups. The third convolution module comprises a 1 × 1 convolution kernel
with 256 channels, a 3 × 3 convolution kernel with 256 channels divided into 32 groups of
convolutions, and a 1 × 1 convolution kernel with 512 channels, organized in four groups.
The fourth convolution module features a 1 × 1 convolution kernel with 512 channels, a
3 × 3 convolution kernel with 512 channels divided into 32 groups of convolutions, and a
1 × 1 convolution kernel with 1024 channels, repeated in six groups. The fifth convolution
module includes a 1×1 convolution kernel with 1024 channels, a 3 × 3 convolution kernel
with 1024 channels divided into 32 groups of convolutions, and a 1 × 1 convolution kernel
with 2048 channels, repeated in three groups. Ultimately, following the average pooling
layer and the fully connected layer, the model outputs the results for the three chemical
compositions. Figure 1 illustrates the detailed architecture of the ResNeXt50 network.
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2.7. Visualization of the Model

The interpretability of deep learning algorithms is a crucial aspect for comprehending
their functioning. In this study, the Grad-CAM algorithm was employed to enhance
interpretability by visualizing images through the selection of features extracted from
the final convolution layer of the ResNeXt50 model. This process sheds light on the
critical aspects of the model’s decision-making process, providing valuable insights into
the relationships between input features and the final predictions.

2.8. Evaluation of the Model

The assessment of the model performance relies on four key metrics, which are the
correlation coefficient of calibration (R2

c ), the root mean square error of calibration (RMSEC),
the correlation coefficient of prediction (R2

p), and the root mean square error of prediction
(RMSEP) [21]. Here, the larger the R2

c and R2
p, the smaller the RMSEC and RMSEP, the

better the model’s fitting and prediction ability. RMSE and R2 can be calculated according
to Equations (1) and (2).

RMSE =

√
1
m ∑m

i=1(yi − ŷi)
2 (1)

R2 = 1 − ∑i(yi − ŷi)
2

∑i(yi − yi)
2 (2)

where yi is the predicted value of sample i, ŷi is the measured value of the sample i, m is
the number of samples, and yi is the average of the measured values of the samples.

3. Results
3.1. Quantitative Assay of Three Ginkgolic Acids

The UPLC-MS/MS method was used to determine the contents of three ginkgolic
acids (ginkgolic acid C13:0, ginkgolic acid C15:1, and ginkgolic acid C17:1) in 91 batches
of decolorized solution. The chemical structures of the three ginkgolic acids are shown in
Figure 2. The three ginkgolic acids were well separated as shown in Figure 3, which shows
the chromatograms of the mixed control solution and the sample solution.
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The methodology was systematically investigated, affirming its feasibility for deter-
mining the content of the three ginkgolic acids in the decolorized solution. The linearity of
the three ginkgolic acids was initially scrutinized, revealing excellent linearity within their
respective ranges, with linear correlation coefficients surpassing 0.9990 (Table 1). Precision,
reproducibility, and stability were also thoroughly assessed. Table 2 showcases that the
relative standard deviation (RSD) values for the concentrations of the three ginkgolic acids
were all ≤4.66% in six injections within the same day, attesting to the precision of the
instrument. Further, the RSD values remained ≤4.81% when employing two consecutive
injections over one day and three consecutive days, confirming robust instrumental pre-
cision. The method’s reproducibility was evident, with RSD values ≤ 3.86% following
the preparation of six parallel test solutions. Additionally, the stability of the solution
within 24 h was validated, with RSD values ≤ 4.61% for all three ginkgolic acid concentra-
tions. The method’s results for the three ginkgolic acids were systematically analyzed, and
spiked recoveries were examined, yielding average values ranging from 96.33 to 104.89%,
with RSD values all ≤3.89% (Table S2). These findings affirm the method’s suitability for
accurately determining the content of the three ginkgolic acids in the decolorized solution.

Table 1. Calibration curves, correlation coefficients, linearity ranges, LOD, and LOQ of the UPLC-
MS/MS method.

Analytes Calibration Curves r2 Linear Ranges (ng/mL) LOD (ng/mL) LOQ (ng/mL)

Ginkgolic acid C13:0 y = 51,566x + 445.51 0.9997 2.005–4500 0.602 2.005
Ginkgolic acid C15:1 y = 11,974x − 283.44 0.9997 3.411–22,400 1.023 3.411
Ginkgolic acid C17:1 y = 87,844x − 1854.40 0.9997 2.024–2700 0.607 2.024

Table 2. Precision, repeatability, and stability of the UPLC-MS/MS method (n = 6).

Analytes
Precision Repeatability

(RSD%)
Stability
(RSD%)Intra-Day Inter-Day

Ginkgolic acid C13:0 1.80 1.48 1.63 4.02
Ginkgolic acid C15:1 4.66 1.35 1.70 3.39
Ginkgolic acid C17:1 3.11 4.81 3.86 4.61
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3.2. Division of Training Sets and Test Sets

The original Raman spectral images were collected using a portable Raman spectrom-
eter. As shown in Figure 4, the Raman spectra of 91 decolorization solution samples are
roughly the same, indicating that there is not much difference between them.
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The 91 batches of sample data were divided into a training (calibration) set and a test
(prediction) set using the Kennard–Stone algorithm [22] in the ratio of 4:1, with a total
of 73 samples in the training set and 18 samples in the test set. As shown in Table 3, the
maximum, minimum, and mean values of the training set and the test set are not much
different, indicating that there is no significant difference between the two data sets.

Table 3. Content range of the three ginkgolic acids in the training set and test set.

Analytes
Training Set Test Set

Min Max Mean Min Max Mean

Ginkgolic acid C13:0 0.0006 2.3776 0.2040 0.0071 2.5955 0.4189
Ginkgolic acid C15:1 0.0268 16.6380 1.4233 0.0354 17.1615 3.0254
Ginkgolic acid C17:1 0.0211 0.8079 0.1079 0.0217 0.8638 0.2136

3.3. Performance of CARS-PLSR Model

Given the intricate chemical composition within the decolorized solution, the col-
lected Raman spectral data encompasses not only pertinent information about the sample
but also extraneous factors such as instrument-generated noise and background inter-
ference. To address this, preprocessing of the raw spectral data becomes imperative. In
our approach, we employed MinMaxScaler normalization and Savitzky–Golay smoothing
techniques. MinMaxScaler normalization serves as a method to standardize the data within
the training set, ensuring uniformity and mitigating challenges during model training.
Meanwhile, Savitzky–Golay smoothing plays a key role in eliminating noise and achieving
data smoothing, refining the spectral data for more accurate analysis.

Subsequent to this, a total of 241 feature wavelengths were meticulously identified
through the CARS algorithm. Leveraging raw data preprocessing and the discerned feature
wavelengths, we successfully established a quantitative calibration model for Raman
spectroscopy based on the CARS-PLSR algorithm. The model results are shown in Table 4,
the R2

p values of the three ginkgolic acids were 0.9862, 0.9839, and 0.9480, respectively,
and the values of RMSEP were 0.0273, 0.0305, and 0.0545 µg/mL, respectively. These
results underscored the efficacy of the CARS-PLSR model in predicting ginkgolic acid
concentrations accurately. Figure 5a shows the correlation diagram of the predicted and
measured values of the three ginkgolic acid contents in the CARS-PLSR model. As shown
in the figure, the predicted and measured values are basically on both sides of the slash
line, indicating that the predictive ability of the model is good.
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Table 4. The accuracy of the CARS-PLSR model and the ResNeXt50 model.

Algorithms Evaluation Metrics Ginkgolic Acid C13:0 Ginkgolic Acid C15:1 Ginkgolic Acid C17:1

CARS-PLSR

Training set R2
c 0.9849 0.9779 0.9480

RMSEC (µg/mL) 0.0217 0.0261 0.0414

Test set
R2

p 0.9862 0.9839 0.9480
RMSEP (µg/mL) 0.0273 0.0305 0.0545

ResNeXt50
Training set R2

c 0.9885 0.9929 0.9944
RMSEC (µg/mL) 0.0189 0.0148 0.0136

Test set
R2

p 0.9962 0.9971 0.9974
RMSEP (µg/mL) 0.0144 0.0130 0.0122

3.4. Performance of ResNeXt50 Model

A quantitative calibration model for the Raman spectra of the three ginkgolic acids in
the decolorized solution was developed based on the ResNeXt50 algorithm. The results are
shown in Table 4. The R2

p values of the three ginkgolic acids were 0.9962, 0.9971, and 0.9974,
respectively, and the values of RMSEP were 0.0144, 0.0130, and 0.0120 µg/mL, which
indicate that the ResNeXt50 model has a good prediction ability. Compared with the results
of the CARS-PLSR model, the R2

p values of the three ginkgolic acids were larger, while
RMSEP values were smaller, indicating that the ResNeXt50 model had better prediction.

Figure 5b shows the correlation diagram of the predicted and measured values of the
three ginkgolic acid contents in the ResNeXt50 model. As shown in the figure, the predicted
values and measured values are basically on the diagonal line with better fitting, indicating
that the model has a good prediction effect and can be used for real-time monitoring of the
three kinds of ginkgolic acids in the discoloration process of Ginkgo ketone ester.

3.5. Visualization of the Model

An interpretability analysis of the ResNeXt50 quantitative calibration model was
conducted using the Grad-CAM algorithm, with Figure 6 providing a visualization of the
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band weights associated with the three ginkgolic acids in the decolorized solution. The
horizontal coordinates depict the band numbers, while the vertical coordinates represent the
weights, reflecting the extent of contribution from different bands to the predicted output.
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three ginkgolic acids of decolorized solution. (a) Ginkgolic acid C13:0; (b) Ginkgolic acid C15:1;
(c) Ginkgolic acid C17:1.

In Figure 6, it is evident that specific Raman bands played a substantial role in pre-
dicting the content of each ginkgolic acid. For ginkgolic acid C13:0, the influential Raman
wave numbers are 321.74, 1694.67, 1696.16, 1711.08, and 3068.27 cm−1. The wavenumbers
of 1694.67, 1696.16, and 1711.08 are ascribed to the carbon-carbon double bond of the
benzene ring. The wavenumber of 3068.27 cm−1 corresponded to the O-H stretching of the
hydroxyl group. Similarly, for ginkgolic acid C15:1, the significant Raman wave number
is 2187.02 cm−1, which corresponded to the O-H stretching of the carboxyl group. Lastly,
for ginkgolic acid C17:1, the impactful Raman wave numbers are 1645.01, 2116.63, 2117.97,
2575.88, and 2577.06 cm−1. The wavenumbers of 2116.63 and 2117.97 cm−1 corresponded
to the O-H stretching of the carboxyl group. These results emphasize the critical influence
of the mentioned bands in shaping the final decisions of the respective component models.

3.6. Trends in the Content of the Three Ginkgolic Acids

Figure 7 illustrates the variation in the content of the three ginkgolic acids across
different batches of decolorized solution throughout the entire two-day decolorization
process. Commencing from point 0 (before extraction initiation), the concentrations of
ginkgolic acid C13:0, ginkgolic acid C15:1, and ginkgolic acid C17:1 in each batch’s de-
colorized solution progressively decreased with the advancement of the decolorization
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process. Furthermore, noteworthy consistency was observed in the trends of the three
ginkgolic acids’ content changes among different batches of decolorized liquids. These
trends harmonized with the alterations in the relative intensities of the original Raman
spectra, indicating a correlation between the decolorization progress and the diminishing
concentrations of the ginkgolic acids.
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4. Discussion

Numerous techniques exist for ginkgolic acid detection in Ginkgo biloba or its ex-
tracts, including on-line mass spectrometry [23], high performance liquid chromatography
(HPLC) [24,25], and UPLC-MS/MS [26]. In our study, Raman spectroscopy, chosen for its
rapid and non-destructive traits, stands out. This method, widely utilized in traditional
Chinese medicine, demonstrates efficiency in discerning counterfeit medicines and tracing
medicinal material origins. Our focus, however, centered on the decolorization process
within Ginkgo ketone ester production. This emphasis aimed to enable swift detection
throughout the production phase.

Of particular importance is the decolorization process in the production of Ginkgo
ketone ester preparations, which plays a critical role in eliminating toxic substances. In
this investigation, 91 samples of Ginkgo ketone ester decolorized liquid were meticulously
collected. Raman spectral information and toxicity component data (contents of ginkgolic
acid C13:0, ginkgolic acid C15:1, and ginkgolic acid C17:1) were obtained from these
samples. The acquired Raman spectral data were correlated with the content data, leading
to the development and comparison of the CARS-PLSR quantitative calibration model and
the ResNeXt50 quantitative calibration model. The ultimate findings underscored that the
ResNeXt50 deep network-based quantitative calibration model exhibited higher accuracy
and precision. Conversely, the lower accuracy and precision of the PLSR model could be
attributed to the limited sample size, indicating insufficient model training.

Furthermore, we applied the Grad-CAM algorithm to visualize and analyze the
ResNeXt50 deep network, attempting to demystify the model’s inner workings by discern-
ing the bands that significantly contribute to its predictive prowess.

The above findings underscore that the integration of Raman spectroscopy with the
ResNeXt50 deep learning network proves effective for the swift determination of the three



Chemosensors 2024, 12, 6 11 of 12

ginkgolic acid contents during the decolorization process of Ginkgo ketone ester. Neverthe-
less, it is imperative to acknowledge the limitation posed by the relatively small sample size
in this experiment. Practical application in a Ginkgo ketone ester decolorization workshop
demands an increase in the sample size to enhance the robustness and generalizability of
the model.

5. Conclusions

In this study, a rapid detection method for three ginkgolic acids during the decoloriza-
tion of Ginkgo ketone ester was developed, employing Raman spectroscopy and a deep
learning algorithm. This method offers a viable alternative to traditional HPLC, UPLC-
MS/MS, and GC methods, delivering swiftness and non-destructive analysis. Utilizing
Raman spectra from the decolorized solution, we established a quantitative calibration
model following spectral preprocessing and band screening in modeling. Notably, the
quantitative calibration model constructed using ResNeXt50 outperformed the CARS-PLSR-
based prediction model. The resultant prediction models based on ResNeXt50 algorithm
displayed R2

p values of 0.9962, 0.9971, and 0.9974, alongside RMSEP values of 0.0144, 0.0130,
and 0.0120 µg/mL for the three ginkgolic acids, respectively. These findings signify the
models’ high accuracy and predictability, demonstrating their utility in swiftly detecting
these ginkgolic acids during the decolorization process. Moreover, this rapid detection
method, amalgamating Raman spectroscopy with deep learning algorithms, proves advan-
tageous for monitoring pharmaceutical production quality. Its application contributes to
ensuring production continuity and maintaining uniform product quality.
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