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Abstract: This paper is a comprehensive review of the techniques for the detection of pancreatic
enzymes, which are common biochemical indicators of pancreatitis, including amylase, trypsin,
chymotrypsin, elastase, and lipase. Pancreatitis is a disease with self-digestion due to the abnormal
activation of digestive enzymes in the pancreas. Hospitalization is often required due to the lack
of convenient therapeutic agents. The main recent results are reported in this review, especially
the techniques that enable portability and Point-of-Care testing (POCT). This is because timely
diagnosis at the early stage and avoiding recurrence after recovery are the keys to treatment. It is
also important to reduce the rate of misdiagnosis and to avoid overtreatment. Various detection
methods are discussed, with particular attention given to the implementation of chemical sensing
and probe design. The new sensing technology for digestive enzymes makes it possible to perform
early screening for pancreatitis in remote areas or in one’s own home.
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1. Introduction
1.1. Pancreatitis

The pancreas is an essential part of the human digestive system. The pancreas secretes
pancreatic juice, which contains necessary digestive enzymes such as pancreatic amylase,
pancreatic protease, and pancreatic lipase, which digest proteins, fats, and sugars [1–3].
The pancreas also has many necessary roles: the bicarbonate contained in the pancreatic
fluid can enter the duodenum to neutralize stomach acid; the islets of the pancreas, as an
endocrine organ, secrete insulin and glucagon to regulate blood sugar in the body; and
pancreatic polypeptides control gastrointestinal motility, pancreatic fluid secretion, and
gallbladder contraction [4,5].

Pancreatic enzymes secreted by the pancreas are inactive as pancreatic zymogen
before being excreted with pancreatic juice. After entering the duodenum, it is transformed
into active digestive enzymes through bile and intestinal kinase [1]. Bile reflux into the
pancreatic duct due to gallstones and kinase released by bacterial infection may lead to the
abnormal activation of pancreatic zymogen in the pancreas [4]. The converted trypsin can
lead to self-digestion in the pancreatic tissue and cause pancreatitis [6,7]. This may lead to
impaired pancreatic function, necrosis, multi-organ failure, and death.

Acute pancreatitis (AP) is a disease that often requires hospitalization [8,9]. The in-
cidence of AP is 34 per 100,000 persons per year in high-income countries [10]. It was
found in 25.4–98.7 per 100,000 U.S. adults with health insurance during 2001–2013 [11].
Of all AP patients, 20% develop moderate and severe pancreatic or peripancreatic tis-
sue necrosis or organ failure, with a mortality rate of 20–40% [12–16]. AP is the fifth
leading cause of in-hospital death and the second leading cause of length of stay in the
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United States [17]. The mortality rate of pancreatitis has decreased in recent years with
the development of diagnostic and treatment techniques. However, the total number of
deaths caused by the rising incidence has not decreased and remains a major threat to
people’s health [18].

Gallstones are the most common cause of AP, and the remaining common risk factors
for pancreatitis include alcohol consumption, smoking, hypertriglyceridemia, drug reac-
tions, and genetics (Figure 1) [4,12,17–21]. It may lead to severe abdominal pain, diabetes,
malnutrition, bloating and diarrhea, endocrine dysfunction, and cardiovascular events [12].
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During COVID-19, many statistics also found an association with AP [22–25]. In
one statistic from China, pancreatic injury was present in 17% of COVID-19 patients [22].
SARS-CoV-2 induced by COVID-19 may cause AP [25]. In a Turkish statistic, 29.8% of
patients admitted to the hospital had high lipase activity. This group had an ICU admission
rate of 36.1% and a mortality rate of 24.6%, while the total ICU admission rate was 9.9%
and the mortality rate was 6.4% [26].

The diagnosis of some patients in high-risk groups who experience one or more
episodes of pancreatitis may turn into chronic pancreatitis (CP) (Figure 2). This results
in 3–35% of patients with AP progressing to CP [8,9,27,28]. CP is a chronic inflammatory
disease causing irreversible changes in the tissue and function of the pancreas. In addition
to AP, CP has different triggers. The mortality rate of common CP approaches 50% within
20–25 years after the onset of the disease [29,30].

Pancreatitis is also a high-risk factor for pancreatic cancer. Pancreatitis is a high-
mortality disease and is expected to be the second leading cause of cancer death in the
United States by 2030 [31].
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1.2. Diagnosis and Treatment of Pancreatitis

Diagnostic imaging such as computed tomography (CT) and nuclear magnetic res-
onance (MRI) can determine the status of the pancreas and thus diagnose and evaluate
pancreatitis [9,12,17,18,32]. Imaging methods using artificial intelligence to evaluate the
pancreas of CP patients versus the normal human pancreas have also been reported [33].
However, imaging methods have high equipment requirements and need to be performed
in a large hospital. Body fluid testing is a diagnostic modality that has the potential to be
more convenient. Pancreatic lipase and pancreatic amylase in blood and urine exceeding
three times the standard values are also common diagnostic criteria [34].

In addition, the elevation of cytokines, C-reactive protein, and IgG are correlated
with pancreatitis [12,17,29,35]. In recent reports, microRNAs [36], short-chain fatty acids
produced by intestinal microbial metabolism [37], and the body’s circadian regulatory
system [38] have all been shown to be involved in the onset and progression of pancreatitis.
However, these studies are still a long way from helping to diagnose pancreatitis.

We still lack accurate staging and disease surveillance techniques for pancreatitis [9].
This manifests itself in two ways. One is the high rate of misdiagnosis, which leads to
delayed treatment. In one statistic, misdiagnosis was caused by the absence or slight eleva-
tion of early blood and urine amylase in some patients. In one study, the misdiagnosis rate
at the early admission stage was 17.58% and the misdiagnosis time was 2.2–4.1 days [39].
This is because pancreatitis causes a great impact on the overall metabolism of the body,
which makes the diagnosis difficult. Second, there is the occurrence of overmedication.
Of the 1660 high-risk individuals tested in one study, 257 underwent pancreatic surgery,
but there were only 59 high-risk lesions [40,41]. This demonstrates the difficulty of rely-
ing on imaging alone for correct diagnosis and the importance of biochemical testing to
avoid overtreatment.

Prompt diagnosis is essential for the treatment of pancreatitis. Early detection and
intervention can effectively reduce morbidity and mortality [18,42]. Patients who reach the
stage of pancreatic necrosis have a complication rate of 82% and a mortality rate of 23%. In
contrast, before this stage, the complication rate is only 6% and the mortality rate is 0% [32].
The timely diagnosis of pancreatitis is difficult in underdeveloped areas or scenarios where
medical resources are insufficient. Diagnosis based on abdominal pain, which has minimal
equipment requirements, may not determine the etiology due to poor localization [43].
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The development of AP is unpredictable, and health monitoring should be performed
for at least 48 h after complications [12]. Patients with AP can resume eating and drinking
when they subjectively feel hungry, but this may also cause a recurrence of pancreatitis [17].
During treatment with methods such as pancreatic enzyme replacement, tailored and
personalized medical treatment is recommended to cope with the high mortality rate and
to avoid surgical treatment whenever possible [12,29]. Pancreatic function should also
continue to be monitored after the end of treatment. Pancreatic function generally returns
to normal after three months of remission of AP, and the resumption of episodes leading to
CP should be avoided [9,17].

1.3. Point-of-Care Testing

In current clinical diagnostics, the definitive diagnosis of pancreatitis relies on three
criteria: (1) abdominal pain consistent with the features of pancreatitis, (2) serum lipase
or amylase levels three times higher than the upper limit of the standardized values, and
(3) signs of pancreatitis on imaging [34]. In a study of the International Classification
of Diseases, Tenth Revision (ICD-10) diagnostic codes for acute pancreatitis in the U.S.
healthcare system, the overall PPV was 61% [37]. This result is hardly ideal.

Pancreatitis often requires hospitalization due to the lack of convenient therapeutic
agents [9,19]. Starting treatment at the mild stage is an effective means of reducing mortality.
Therefore, it is important to perform quick and easy early screening to avoid delaying
treatment when symptoms such as abdominal pain occur. Currently, in all populations,
PPV is higher in hospitalized patients than in emergency and outpatient settings [37]. The
result flanks the need for more detailed testing for the diagnosis of pancreatitis.

In addition to the prompt treatment of severe cases, a more accurate classification of
pancreatitis can help to better treat patients with mild to moderate cases. Randomized
clinical trials on patients with mild to moderate AP have shown that starting a low-fat solid
oral diet within 24 h of admission to the hospital does not increase instances of negative
outcomes and may also provide positive benefits for patients with AP [44]. Therefore, it
may be beneficial to monitor the status of patients with pancreatitis more frequently to
resume this diet promptly when symptoms subside.

These needs have led to Point-of-Care testing (POCT), an important trend in the
development of medical technology today (Figure 3) [45–48]. We need technologies that
enable detection and diagnosis in real time and with ease. In order to cope with in-hospital
misdiagnosis and mortality, research on POCT to implement more timely and appropriate
treatment is relevant. This is also needed to facilitate people in areas with insufficient
medical resources to avoid the harm caused by untimely diagnosis or even misdiagnosis of
pancreatitis. People in areas with sufficient medical resources can also easily self-test when
minor abdominal pain or discomfort occurs.

In a recent review summarizing the effectiveness of multiple biochemical tests, urine
trypsinogen-2 levels can be highly accurate in diagnosing AP [49]. Advanced imaging
methods such as endoscopic ultrasound and artificial intelligence (AI) image analysis can
contribute to a better diagnosis [50,51]. But these tests, which can be performed only
in large hospitals, are not sufficient to solve the previously mentioned problem of the
unsatisfactory overall diagnosis and treatment of pancreatitis. There is still a need to look
into POCT technology.

For the diagnosis of pancreatitis, the most meaningful approach remains the sensing
of digestive enzymes. This is because pain determination is relatively subjective, and the
miniaturization of and ease of access to imaging equipment are often difficult. Among the
criteria for the clinical diagnosis of pancreatitis, pancreatic enzyme sensing is the easiest
way to achieve these goals.

In order to achieve the goal of POCT, the blood amylase and lipase tests that are
now used in hospitals need to be transformed into sensing that can be implemented on
miniaturized and portable devices. The ratio of different digestive enzymes in pancreatic
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enzymes is not constant [3,52]. Therefore, the simultaneous testing of multiple digestive
enzymes can help better diagnose pancreatitis.
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After being secreted into the digestive tract, digestive enzymes also partially enter
into the bloodstream or through the glomerulus into urine [1,6,53,54]. In addition to blood
samples, the realization of mid-marker sensing in non-invasive samples such as urine and
saliva can also greatly improve ease of use.

1.4. Summary

This article summarizes the techniques for detecting pancreatic enzymes, a common
biochemical indicator of pancreatitis. These enzymes include amylase, protease, and lipase.
The main recent results are reported. Since digestive enzymes work mostly by catalyzing
the hydrolysis of chemical bonds in macronutrients, there is some commonality in their
detection methods. Compared to the diversity of proteins and lipids, the monomers of
starch are relatively unitary.

In Section 2, laboratory methods for detecting amylase and optical, mechanical, elec-
trical, and several other types of sensing ideas are described, with particular reference
to the principles of each method. Section 3 describes sensing three proteases: trypsin,
chymotrypsin, and elastase. The categorization of the studies is consistent with that of
amylase, and the principles already presented in Section 2 will not be repeated, but rather
the design of special probes, chemistries, and other principles specific to the proteases will
be emphasized. Section 4 describes the sensing of lipases, with a similar structure to the
previous two sections.

The principles, probe design, and methods of amplifying the signal are described for
each method. Finally, advances made for POCT are presented, including miniaturized and
portable devices or sensing that can be implemented with common devices such as cell
phones. Each section will summarize a table of POCT advances.

2. Detection of Amylase
2.1. Pancreatic Amylase

Approximately 40–50% of calorie intake in the diet comes from carbohydrates [55,56].
Since the human intestinal epithelium can only absorb small molecules of glucose, the
ingested large molecules need to be broken down by the action of enzymes [1].
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Pancreatic amylase is a hydrolase secreted by the pancreas that hydrolyzes the α-
1,4-glycosidic bond [1,57]. It is a type of α-amylase. It has no effect on α-1,6-glycosidic
bonds on branches. In ingested food, it can act on α-1,4-glucan, such as soluble starch,
straight-chain starch, and glycogen. The decomposition products are mainly maltose, with
a small amount of maltotriose as well as glucose produced. The activity of α-amylase
requires calcium ions and a pH suitable for its work [1,57].

Amylase is the only glycosidase secreted from human pancreatic juice [1,58,59]. The
human salivary glands also secrete alpha-amylase. Also, α-amylase can pass through the
glomerulus and be detected in urine. Therefore blood, saliva, and urine are body fluids
that can be tested for α-amylase [1]. However, for this reason, amylase is less specific than
markers such as lipase for the diagnosis of pancreatitis [57]. Amylase was detected in
72% of hand swabs in another study, demonstrating that sweat may also be available for
amylase sensing [60].

This section summarizes research on α-amylase sensing. It begins with a description
of the analytical methods commonly used in the laboratory, followed by a summary of
existing reports categorized according to optical, mechanical, electrical, and other methods.
For each method, the principles, the design of chemical sensing, and advances in the
portability of devices will be summarized separately.

2.2. Laboratory Chemical Analysis

Measurement of α-amylase in the laboratory can be conducted by a variety of more
general methods, including chromatography and spectroscopy. A basic approach is to mix
the sample to be measured with a substrate containing starch and, after a period of catalytic
reaction, use mass spectrometry and chromatography to detect the starch content and thus
analyze the concentration of amylase in the sample [61]. This method takes advantage of
the intrinsic property of α-amylase in that it can hydrolyze starch, which is also the basic
principle of many sensors. Barber et al. reported that substrates and digestion products in
enzyme activity assays could be quantified directly by high-performance anion-exchange
chromatography with pulsed amperometric detection (HPAE-PAD) [62].

Methods such as UV-visible spectrophotometry are also widely used for detecting
α-amylase, such as detecting α-amylase content and activity in drugs or food [63]. Since
starch, glucose, etc., do not have a distinct color in the visible range, color-developing
substances are often introduced for better measurement of amylase activity by chromatog-
raphy. In addition to directly detecting sugars, preparing substances with distinct colors by
chemical reactions is also an idea for detection. Weng et al. reported that the reaction of
maltose, a product of the amylase hydrolysis of starch, with 3,5-dinitro salicylic acid (DNS)
produced the brown product 3-amino-5-nitrosalicylic acid (3A5NA), and also reported a
method of detecting the reflected light spectrum. Based on the spectral results, especially
comparing the absorbance of reflected light at 520 nm, it was possible to analyze the maltose
concentration and thus obtain the amylase concentration and activity [64]. However, this
method has not been used for the detection of amylase secretion by the pancreas.

These methods often require large laboratory instruments. But this idea of using the
properties of digestive enzymes to break down the substrate for sensing and using the
rest of the substrate to amplify the signal is very important. In order to achieve portable
detection or to adapt to Point-of-Care application scenarios, this paper summarizes more
studies that have the potential for miniaturization.

2.3. Optical Methods
2.3.1. Amylose-Iodine Colorimetry

The formation of blue complexes with iodine is an important property of starch, and
they disappear as it is hydrolyzed. This is a simple and effective method for amylase sensing.
The colorimetric method is a simplification of the chromatographic method. For colors
with obvious absorption peaks, the measurement results can be obtained conveniently by
comparing the absorbance at the wavelength of the absorption peak. Colorimetric methods
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often require compounds designed with distinct colors, and the end result can be captured
directly by the human eye or a cell phone camera, thus enabling portable measurements.

The combination of starch and iodine results in a Prussian blue solution. This reaction
has good stability and can be preserved by being applied to paper. Dutta et al. reported that
when a sample containing amylase is applied to paper, it hydrolyzes the starch, causing the
blue color to fade [65]. The amylase content can then be analyzed by shining a light source
on the paper and detecting the intensity of the transmitted or reflected light (e.g., using a
photoresistor). Ascorbic acid will keep the reaction of starch with iodine because it is easily
oxidized when iodine is present again. Therefore, human blood samples must be pretreated
with sufficient KIO3 solution to neutralize ascorbic acid. This method’s minimum detection
limit and linearity may not be optimal, but there is good potential for portability.

The advantage of this method is that paper-based sensors are less expensive to manu-
facture, but the distribution of α-amylase during the infiltration of liquid specimens into
the paper needs to be considered. Hyung et al. conducted a study on this and found that
α-amylase aggregates at the head of the paper [66]. Applying starch only to the head of the
paper, they found that there was also no α-amylase distribution at the end where there was
no starch, indicating that the amylase had been depleted previously. This study illustrates
that paper-based sensors, if using a passive diffusion method, should consider different
α-amylase distributions at different sites.

The paper-based platform technique of Adhikary et al. had a detection limit of
70 mg/mL for a 5 min reaction. Visible switch structures were formed by preparing
ionic gels formed by chitosan-triphosphate nuclei encapsulated with starch–iodine shell-
structured bioaffinity particles. The coated test strips had a 30 min detection line of
1.25 mg/mL [67]. This technique has good stability and can be used in areas such as
forensic investigations and also has great potential for rapid pancreatitis screening in
non-large-hospital scenarios.

2.3.2. Special Substrate Colorimetry

Colorimetric methods have been investigated in two ways: more pronounced ab-
sorbance changes and more portable measuring devices.

By designing substrates or products of different colors, colorimetry can be performed at
different wavelengths, and there are already many amylase-sensing implementations based
on this principle. Fuentes et al. used a kinetic spectrophotometric assay to determine alpha-
amylase. The method uses 4,6-ethylidene(G7)-p-nitrophenol(G1)-alpha-D-maltoheptaoside
(ethylideneG7PNP) as a substrate of the enzyme. The intermediate product of the substrate
hydrolysis reacts with alpha-glucosidase, giving p-nitrophenol as the final product of the
reaction. The rate of p-nitrophenol formation is directly proportional to the alpha-amylase
activity of the sample and can be determined by measuring the absorbance at 405 nm [68].
Visvanathan et al. developed a red quinone based on the reaction of maltose with glucose
oxidase (GOD). After calibrating the wavelength at which the absorbance peak was located,
the absorbance of the solution after the reaction of amylase with maltose was measured,
and then the concentration of the reaction product glucose was measured. They used this
method to analyze α-amylase inhibitors [69].

Such a line of thought can be carried further. The signal can be further amplified if,
instead of forming a colored compound by forming a colored compound with the reaction
product, the reaction product is allowed to further catalyze the production of a colored
compound from something else in the substrate. The resulting tetramethylbenzidine (TMB)
oxidation method has many applications in the colorimetric sensing of digestive enzymes
and is summarized in Section 3.2. Starch can act as a stabilizer for nanoparticle clusters
of copper and gold. These nanoclusters exhibit a strong peroxidase-like activity and are
able to catalyze the oxidation of 3,3,5,5-tetramethylbenzidine in the presence of hydrogen
peroxide (H2O2), resulting in a blue solution. The α-amylase detection mechanism is based
on the digestion of starch by α-amylase, which leads to the aggregation of nanoclusters
(NCs), resulting in an increase in nanoparticle size and, thus, a decrease in Cu/Au NCs
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peroxidase-like activity. It was shown that the gradual addition of α-amylase resulted
in a linear decreasing trend of peroxidase activity. The method enables the colorimetric
detection of α-amylase with a detection limit of 0.04 U/mL, which has good selectivity
for α-amylase in serum [70]. Chen et al., on the other hand, used γ-cyclodextrin (γ-
CD) as an amylase probe in combination with a specially designed MOF-929-NH2 with
strong peroxidase properties [71]. The detection limit was reduced by more than 300-fold
compared to the starch–gold nanoparticle combination.

In addition to designing chemical principles, improving sensors is also an important
research direction. Specialized colorimetric equipment tends to have a large size and
weight, limiting its application. A colorimetric detection device that can be miniaturized
was also designed by Hsiao et al. A handheld instrument with a chemical colorimetric
strip was used to detect reducing sugars from starch hydrolysis in the substrate using a
DNS assay (Figure 4) [72]. A good correlation was achieved compared to a commercial
ultraviolet-visible spectroscope. All these studies have greatly expanded the application
scenario of colorimetric methods. Thongprajukaew et al. also achieved good detection
using the camera of an iPhone (Figure 4d), which greatly enhanced the portable use of
the colorimetric method. They used a standard DNS staining method to label maltose.
The amylase changes the concentration of maltose upon the addition of the sample, which
in turn changes the overall absorbance of the liquid. There was no significant difference
in the results using the iPhone camera compared to the spectrophotometer, with a Pear-
son correlation coefficient close to 1 (r = 0.999, n = 36, p < 0.0001) [73]. Based on the
same color-development method, Dangkulwanich et al. also implemented UV-vis spec-
troscopy using a smartphone [74]. Students used this method to realize the measurement of
amylase activity.
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The popularity of smartphones has facilitated the measurement aspect of colorimetric
methods. But the need to have colored compounds leads to the necessity of sample pre-
processing. The colorimetric method’s detection limit is inferior to the fluorescence method.

2.3.3. Fluorescence Methods

The colorimetric method requires an external light source to illuminate and detect
the projected or reflected light. In contrast, if the marker is fluorescently labeled, it can be
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self-luminous, and thus the structure of the light source in the system can be subtracted
(Figure 5) [75]. By designing probes with fluorescent properties in the substrate, the effect
caused by the enzyme on the optical properties of the substrate can be further enriched,
and the miniaturization potential of the device can be further increased.
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The core of the fluorescence method is that it allows the presence of amylase to
modulate the occurrence or absence of fluorescence. Based on this, there are two main
ideas. One is to design probes that can be quenched by the starch in the substrate so that
fluorescence cannot be emitted in the absence of amylase, and fluorescence is activated
after the amylase hydrolyzes the starch. The second is to design fluorescent probes that
can be quenched by starch hydrolysis products, where the fluorescence is emitted in the
absence of amylase and quenched after the starch is hydrolyzed.

An example of the first approach is realized by Wang et al. They achieved fluorescence
detection by AIE luminescence, achieving 0.007902 U/mL for α-amylase detection. They de-
signed TTAM with high fluorescence quantum yield and assembled it with β-cyclodextrins
(β-CD) as a supramolecular system. TTAM spins freely within the β-CD cavity, leading
to fluorescence quenching. A-Amylase breaks down the complex and reorganizes TTAM
into aggregates, reverting to the yellow fluorescence generated by the AIE property [76]. In
addition to starch, specially designed probes that can be recognized by amylase have also
been reported. Shi et al. designed a rapid, highly sensitive fluorescent assay to directly de-
termine α-amylase in human body fluids. They used an aggregated luminescence method
with a probe composed of two methoxy-substituted tetraphenyl ethylene (TPE) core chains
and a maltose unit. The probe is soluble in water molecules and does not fluoresce. A-
Amylase catalyzes the cleavage of the α-1,4 glycosidic bond in the probe, and the maltose
unit is released. The chromophore 4-(2,2-bis(4-methoxyphenyl)-1-phenylethenyl) phenol
aggregates, which in turn fluoresces by aggregation-induced emission (AIE) [77].

Fluorescent polymers that can be quenched by α-amylase were designed by Li
et al. [78]. Perylene is a classic organic chromophore with strong π–π stacking. The
α-cyclodextrin (α-CD) molecules can form four hydrogen bonds because there is a glucose
unit in the position of the distortion. The α-CD plays a key role in the specific response of
the α-amylase. The combination of these substances activates the fluorescent structure. The
fluorescence is extinguished after the polymer is broken down by amylase (Figure 6). Attia
et al. reported a study using fluorometric detection. The α-amylase enzyme was measured
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to react with the starch in the substrate to produce maltose. Maltose significantly affected
the fluorescence quenching of CdS nanoparticles (NPs). The a-amylase activity in saliva
samples was effectively assessed [79]. They presented an improved method in 2016 using
the reaction product of a-amylase with the substrate to quench the fluorescence lumines-
cence of the binuclear complex. With a correlation coefficient of 0.999 and a detection limit
of 7.4 × 10−10 mol/L, it was effective in detecting amylase activity in the urine and serum
of patients with pancreatitis. α-Amylase biomarkers showed a significant improvement in
early diagnostic sensitivity (96.88%) and specificity (94.41%) [80].
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and irradiation using a UV lamp, fluorogenic phenomena occur and are captured by the 
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As can be reflected in the above introduction, the fluorescence detection method of 
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Figure 6. Different ideas for fluorescence detection methods. (a) The introduction of α-amylase
causes the fluorescence to be quenched and the brightness to decrease. Reproduced with permission
from [80], copyright 2016 by Elsevier Ltd. In (b–d), fluorescence is activated after the introduction of
α-amylase. The principles of quenching fluorescence include limiting the travel of structures where
fluorescence can occur and immobilizing a substance on the fluorescent substance that can quench
fluorescence. (b) The substrate restricts the aggregation of the fluorescent substance. Reproduced with
permission from [77], copyright 2018 by American Chemical Society. (c) The substrate immobilizes
the fluorescent material near the MGO material, which can quench the fluorescence. Reproduced
from [81] under the terms of the CC-BY Creative Commons Attribution License, copyright 2020
MDPI. (d) Reacts to produce fluorescent chemicals. Reproduced with permission from [82], copyright
2022 by Elsevier Ltd.

Similar to colorimetric methods, the measurement of fluorescence often requires the
use of specialized optical equipment. To achieve portability, a study reported sensing
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using a smartphone camera. Wells et al. implemented a fluorometric measurement of
α-amylase with a detection limit of 2 pM using a Samsung GALAXY S20+ cell phone. α-
Amylase activates an α-amylase-activated PQQ-dependent glucose dehydrogenase (Amy-
GDH) on the surface of the sensor. The glucose oxidation reaction with a poly-maleimide
reduction is catalyzed using the Amy-GDH enzyme. After shaking in the HEPES buffer
and irradiation using a UV lamp, fluorogenic phenomena occur and are captured by the
smartphone camera [82].

As can be reflected in the above introduction, the fluorescence detection method of
digestive enzymes often uses nutrients as the material connecting the fluorescent sub-
stance to the quenched substance (Figure 6) [81]. Fluorescence is released in the pres-
ence of digestive enzymes. This has many applications in the sensing of the remaining
digestive enzymes.

Fluorescence methods have a wealth of signal amplification methods that allow for
high sensitivity. However, as the reaction becomes more complex, the processing of the
sample tends to increase.

2.3.4. Liquid Crystal Phase Transition Methods

Pham Thi Kim et al. designed a novel liquid crystal-based sensor to achieve the
detection of α-amylase at 100 ng/mL in an aqueous solution and 500 ng/mL in urine
samples. [83]. These devices are characterized by long-term stability, taglessness, and
ease of use. Specifically, in the microvasculature LC droplets are oriented parallel to
each other at the interface with water, forming two bright lines. α-Amylase decomposes β-
cyclodextrin and releases its encapsulated sodium dodecyl sulfate (SDS). SDS is a surfactant
molecule. SDS induces LC droplets to align at the vertical interface when in contact with
the surfactant solution, forming a tetra valve-shaped optical image. The liquid crystal
phase change method allows the action of amylase to be visualized (Figure 7).
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Figure 7. The hydrolysis of the substrate by amylase affects the arrangement of the liquid crystal
molecules, showing different patterns. (A) Two bright lines indicate the planar orientation of the
LC at the LC-aqueous interface after adding a synthetic β-CD/SDS solution, (B) four petal-shaped
texture indicates a switch to the homeotropic orientation after the addition of a α-amylase hydrolyzed
solution of β-CD/SDS. Scale bar = 200 µm.Reproduced with permission from [83], copyright 2020 by
Elsevier Ltd.

2.3.5. Surface Plasmon Resonance

Finally, there is a special optical detection method, surface plasmon resonance (SPR)
(Figure 8) [84–87]. It utilizes electromagnetic waves coupled to oscillations of carriers
within a conductor, which in turn transforms the chemical signal into a change in the
intensity of reflected light.
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Its basis is that when a nanometallic layer receives electromagnetic wave irradiation,
its carriers undergo an overall oscillation due to electric field forces. The resonance occurs
when the frequency of the incident light coincides with the intrinsic frequency of the carrier
oscillation, and in turn, a distinct absorption peak can be observed in the reflected light.
The dielectric constant and refractive index of the environment in which the metal is located
affect the carrier oscillation frequency, affecting the intensity of the absorption peak and the
frequency at which the peak is located. By immobilizing a substrate on the metal surface,
the change in intensity of reflected light can be manifested when the marker binds or reacts
with the substrate. Compared to colorimetric methods that measure the absorbance of
the compound itself, the SPR method applies optical measurements to the detection of
antigen–antibody binding reactions and has the potential to provide a more sensitive and
selective assay [88]. The combination of fiber optics and other technologies also promotes
the low-cost and convenient application of SPR technology [89,90].

Studies utilizing the SPR method to detect amylase have been reported. On the
surface of a 60 nm gold layer, anti-amylase antibodies were immobilized by Qasquardini
et al., and they formed self-assembled monolayers by α-octyl sulfate and immobilized
the antibodies by forming covalent bonds with the surface via acetamide-carbodiimide
coupling (Figure 8d) [88]. The plastic-optical-fiber-based SPR sensor used has a very
low manufacturing cost, allowing fast and accurate detection [89]. This sensor detects
amylase levels in fluid samples drained from drains after pancreatitis surgery with a limit
of detection (LOD) of 0.5 U/L, which was log-linear in the 0.8–25.8 U/L range. As a simple,
rapid, and inexpensive method, it has 92% accuracy compared to the gold standard.
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2.3.6. Chemiluminescence Methods

In addition to colorimetric and fluorescence methods, Zhang et al. reported a chemilu-
minescence (CL)-based method for α-amylase detection. Similar to the work of Dehghani
et al. [70], they also exploited the fact that starch can stabilize Cu/Au nanoclusters. The α-
amylase hydrolysis of starch leads to nanoparticle clusters that exhibit reduced peroxidase-
like activity. The reaction rate of catalytic H2O2 generation of reactive oxygen species is
reduced, resulting in a weakened CL signal. The minimum LOD was 0.006 U/mL, and the
detection range was 0.05 to 8 U/mL [91].

2.4. Mechanical Methods

Mechanical methods are also a common class of detection techniques. When the type
and concentration of a substance change it changes the viscosity of the solution or the mass
of the probe. This type of change in mechanical properties alters the mechanical response of
a solution to an external force, for example, the intrinsic frequency of mechanical vibrations,
flow velocity, etc., which in turn can be sensed mechanically.

2.4.1. Resonance Methods

A class of resonant sensors was realized based on mechanical vibrations or the res-
onance of acoustic waves. The quartz crystal microbalance (QCM) takes advantage of
the piezoelectricity of the material to realize the coupling of mechanical vibrations of the
surface with electrical signals. The change in surface mass will affect the system’s resonant
frequency [92–96]. In shear test mode, it is also possible to characterize the viscosity of the
liquid in contact with the sensor [97–99]. Related studies are reported in Section 3.3.

Ventura et al. realized a study to implement a pancreatic amylase assay using a QCM.
This is also a sensor device with good durability and ease of use, suitable as a portable HAS
detection device. The principle is based on a thin gold layer, which was functionalized
using the photochemical immobilization technique (PIT). In this way, vertically oriented an-
tibodies are immobilized, exposing their binding sites, which affects the system’s resonant
frequency after the marker is bound. Their improvement is the formation of a sandwich
structure by binding the antibody to amylase, which allows further signal amplification
and achieves an LOD of 10 U/L. The sensor can be applied to the detection of amylase
concentrations in body fluids such as serum and urine at levels higher than 20 U/L [100].

2.4.2. Viscosity Methods

Zhao et al. reported an α-amylase assay based on changes in solution viscosity,
achieving an LOD of 0.017 U/mL [101]. In branched starch solutions, the proportion of
hydrolyzed branched starch affects the overall viscosity of the solution, which in turn
changes the diffusion length of the aqueous solution on the pH test paper (Figure 9).
This method uses paper that is commonly and inexpensively available and does not
require pretreatment of the pH test paper, such as substrate fixation, making it an ideal
portable assay.

2.5. Electrical Methods

Optical methods have a large volume of light sources and photoelectric sensors.
Electrical information of the sample solution, such as conductivity, current, etc., can be
measured directly to achieve portability or even wearable sensors. Electrical sensors can
have a high level of integration and digitize the electrical signal directly.

2.5.1. Resistance Measurement

A flexible patch sensor was prepared by Bhattacharjee et al. Vortex currents were
generated within the droplet by applying a thermal gradient containing starch and an FeSO4
substrate in the liquid. As the amylase hydrolyzes the starch, it changes the concentration
of ions within the droplet, which changes the conductivity of the droplet. The change in
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resistance can be detected between the electrodes of the patch sensor. The sensitivity of the
sensor is almost three times higher than that of the optical sensor [102].
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Mandal amplified the resistance changes by NPs. The sensor was composed of a glass
substrate coated with an electrically conducting polyaniline-emeraldine-salt film covered
with starch-coated AuNPs. The amylase causes an increase in the resistance of the device
after consuming the starch layer. The detection range of this method is from 25 to 110 U/L.
The chloride ions and AuNPs catalyze the reaction of amylase with starch [103].

2.5.2. Giant Magnetoresistive Sensors

In addition to changes in electrical conductivity, changes in magnetic conductivity can
also be used to measure chemical substances [104,105]. The giant magnetoresistive (GMR)
sensor is a promising biosensor [106–108]. However, this approach often requires magnetic
particles to label marker molecules and has high sensitivity for green-synthesized Fe3O4
nanoparticle tags because of their ferromagnetic properties. A 0.098 mV/mg/mL detection
was also achieved by Mabarroh et al. using Fe3O4 tags labeled with α-amylase [109].

2.5.3. Electrochemical Methods

Electrochemical methods are also one form of translating chemical reaction occurrence
directly into electrical signals.

First, electrochemical sensing can detect antigen–antibody binding reactions with
appropriate signal amplification methods. This is more difficult with optical methods,
especially colorimetric methods. The advantage of this method over detecting changes in
the hydrolysis reaction is that the effect of temperature, collection time, and other factors
on amylase activity can be excluded. But the technique of antibody immobilization and
preservation is critical. The amplification of electrochemical reaction signals was studied
by Martins et al. They detected the reaction between α-amylase and α-amylase antibodies
immobilized on an electrode (Figure 10a). The addition of zinc oxide and copper oxide
was found to amplify the electrochemical signal collected by the graphite electrode by 40%
with a minimum LOD of 0.00196 U/mL [110]. The large surface area, high conductivity,
and biocompatibility of graphene were used by Teixeira et al. to design high-performance
electrochemical sensors. They used polyaniline for electropolymerization on the graphene
surface and immobilized antibodies on polymer films for the detection of the presence
of α-amylase. Cyclic voltammetry (CV) and electrochemical impedance spectroscopy
(EIS) measurements were used for electrochemical analysis. The response was linear for
α-amylase concentrations in the 1~1000 international units/L (IU/L) range with an LOD
of 0.025 IU/L [111].
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Then, the idea of detecting the concentration of substrate and hydrolysis products, and
thus analyzing the concentration of amylase, still applies. Garcia et al. detected salivary
α-amylase (sAA) in human saliva samples using screen-printed carbon electrodes (SPCE).
Basically, the first reaction is the hydrolysis of starch by sAA to produce maltose. Then, the
generated reducing sugar promotes the conversion of [Fe(CN))6]3− into [Fe(CN)6]4− in a
second reaction. The method has a minimum LOD of 1.1 U/mL and accuracy between
90% and 97% [113]. The glucose assay was designed by Min et al. using copper oxide
and boron-doped graphene oxide as electrodes. The copper oxide was oxidized to Cu(III)
at an oxidation peak of +0.4 V (Figure 10b). Cu(III) ions act as electron transfer carriers
upon the addition of glucose, rapidly transferring electrons from glucose to the electrode.
The LOD for glucose was 0.7 µM, and its cost-effective, simple, and reliable properties
are also expected to be used for α-amylase activity detection [112]. Mahosenaho et al., on
the other hand, used a combination of more enzymes. They used three enzymes, GOD,
alpha-glucosidase (GD), and mutarotase, immobilized on a Prussian-blue-modified screen-
printed electrode. The screen-printed electrode had a working electrode of graphite, a
counter electrode, and a silver reference electrode. The response of the sensor was improved
six-fold by the addition of the combined enzymes [114].

Finally, similar to optical sensing, some researchers have made efforts to miniaturize
electrical sensing devices. Electrochemical test strips for testing amylase concentration
were designed by Sun et al. [115] A carefully designed microfluidic channel allows a
saliva sample that has reflected the starch in the sample for some time to flow through
two channels. Both channels contained [Fe(CN)6]3−, but one was in the alkaline condition
and the other was neutral. In the presence of amylase, the hydrolyzed maltose reduces
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[Fe(CN)6]3− to [Fe(CN)6]4− and causes a potential difference between the two channels.
The convenience of the electrical measurement method was demonstrated by the study of
a smartphone-powered potential reader that reads potential information directly and sends
it directly to the cell phone through the USB port, as reported by Zhang et al. The substrate
reagents included starch, K3[Fe(CN)6], and NaOH. The measured potential was linearly
correlated with the logarithm of the α-amylase concentration with a correlation coefficient
of 0.995. The minimum LOD was 0.12 U/mL, with a good fit in the 30 U–1 kU/mL range.
The cost of a single device is less than USD 0.2, the substrate is stable at room temperature,
and it only needs to be plugged into a cell phone to work, providing good ease of use
and portability [116].

The great advantage of the electrical method is that electrical signals can be processed
by computers or intelligent devices with relative ease. Equipment for electrical measure-
ments is also often superior in size to optical systems that require the construction of
light paths.

2.6. Other Methods
2.6.1. Blood Glucose Meter Methods

Many studies for detecting α-amylase are based on the use of α-amylase and coen-
zymes to break down polysaccharides into glucose and thus measure glucose concentration.
The portable glucose meter is an existing and well-established method for glucose con-
centration detection. Wang et al. used maltopentaose as the substrate, and α-amylase in
the sample would break it down into maltotriose and maltose. α-Glucosidase added as a
coenzyme would further break it down into glucose, which was detected by the glucose
meter. The LOD obtained by this method is 20 U/L [117]. Due to the low equipment
requirement of this method, it is suitable for the Point-of-Care field, especially in rural areas
where laboratory conditions are lacking.

2.6.2. Antigen Test Strip Methods

The Rsidtm saliva test, reported by Casey et al., is a lateral flow immunochromato-
graphic strip test (Figure 11a). Two human salivary amylase monoclonal antibodies are
used, which upon binding to amylase form a red line on the strip, allowing direct reading
of the results by the human eye. The LOD for amylase in salivary body fluids can be as low
as 50 ng/mL [118].
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2.6.3. Isothermal Titration Calorimetry

Isothermal titration calorimetry (ITC) is a commonly used technique for the study of
molecular interactions and is of increasing importance in enzyme kinetic studies due to its
general applicability and sensitivity [121–123]. Compared to methods such as spectropho-
tometry and chromatography, it allows direct measurement of reaction rates [123–125].
However, it requires relatively specialized equipment. If there are future advances in
portability, it will have great potential for POCT applications.

2.6.4. Molecularly Imprinted Polymer Methods

Molecularly imprinted polymers (MIP) are also a sensing technology that is easily
miniaturized and portable (Figure 11b) [126]. The sensing principle is based on the immo-
bilization of α-amylase in a gold layer surface treated with a cysteamine self-assembled
monolayer and electropolymerization using a pyrrole monomer. After the α-amylase is
removed, a molecular imprint is left in the polymer. This is followed by electrical analysis
using techniques such as square wave voltammetry [127]. The advantage of this method is
that it does not require high molecular organics such as antibodies and has better stability
and lower cost.

Also, a fluorescence assay using molecular imprinting technology (MIP) was reported
by Yan et al. The accuracy and precision of measuring α-amylase activity were higher than
that of the conventional UV-visible method, demonstrating the MIP method’s potential for
measurement accuracy [128].

2.7. Summary

The sensing methods of amylase mainly include the hydrolytic substrate method,
antibody method, and molecular blotting method. The hydrolysis substrate method in-
cludes probes such as starch–iodine, TMB-H2O2, and starch–gold nanoparticles. There are
also methods for the direct reading of electromagnetism information from solutions. The
specific results are shown in Table 1. Many methods can be distinguished by the naked
eye or a cell phone camera, and some methods can be achieved by test strips or portable
sensors, all of which facilitate the timely diagnosis and long-term follow-up of pancreatitis.

Table 1. Amylase sensing technology.

Type Probes/Substrates LOD Sensing Range POCT Progress Ref.

Amylose
Sensing

Transmittance sensing of
amylose–iodine
blue compounds

\ 10–110 U/L Paper-based [65]

Chitosan-triphosphate nuclei
encapsulated with

amylose–iodine shell structure
1.25 mg/mL \ Human-eye

readable [67]

Starch-stabilized CuNPs; TMB
color development 0.04 U/mL 0.1–10 U/mL Human-eye

readable [70]

Starch-stabilized CuNPs
and AuNPs 0.006 U/mL 0.05–8 U/mL Human-eye

readable [91]

Starch fixes AuNPs and
increases resistance after

being decomposed
\ 25–100 U/L Achieved POCT

device [103]

Viscosity changes after
starch hydrolysis 0.017 U/mL 0–10 U/mL Paper-based [101]

Hydrolysis
products
Sensing

3,5-dinitrosalicylic acid sensing
reducing sugars \ 0.1–1 U/mL Handheld [72]

Reduction in a substrate by a
reducing sugar produces a

potential difference
\ 125–2000 U/mL Portable Test Strips [115]
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Table 1. Cont.

Type Probes/Substrates LOD Sensing Range POCT Progress Ref.

Dinitro salicylic acid staining
method to label maltose 3.5 ± 0.3 µmol/mL 0–70 µmol/mL Using smartphone [64,73]

Reduced phenazine
methosulfate upon glucose

oxidation by Amy-GDH
2 pM 2–150 pM Using smartphone [82]

Hydrolysis improves
electrical conductivity \ 15–110 U/L Miniature patch

electrode [102]

Reduction in trivalent iron ions
by reducing sugar 1.1 U/mL 1.1–10.7 U/mL Miniaturized

equipment [113]

Reduction in trivalent iron ions
by reducing sugar 0.12 U/mL 30 U–1 kU/mL Using smartphone [116]

Blood glucose meter 20 U/L \ Blood glucose
meter [117]

Antigen-
Antibodies

Fiber optic SPR 0.5 U/L 0.8–25.8 U/L
Cheap and small

fiber optic
structure

[88]

Test strips 50 ng/mL \ Easy-to-use,
portable [118]

3. Detection of Protease

Protein is an important and diverse nutrient. In contrast to starch, which is made
from the polymerization of glucose, which is a monomer, proteins are made from the
polymerization of 20 different amino acids. This means that protein molecules can have a
much higher degree of complexity. Proteases are produced in the body by more than just
the pancreas. Cells, especially lysosomes, contain tissue proteases, the detection of which
has been reported to reflect viral infections [129]. This article focuses on the proteases
secreted by the pancreas for the digestion of food. Depending on the chemical bonds that
are hydrolyzed, different types of proteases digest proteins in the body. The most abundant
of these is trypsin, followed by chymotrypsin and elastase.

Protease sensing has a high degree of similarity to amylase, and there are three main
types of specific recognition: antigen–antibody binding, substrate hydrolysis, and special
methods. The methods of acquiring signals can also be categorized as optical, mechanical,
and electrical. Sensing principles similar to those of amylase will not be repeated in this
section. However, special chemical mechanisms designed for proteases will be shown.

3.1. Trypsin

Trypsin is a type of protease. It is a serine protein hydrolase secreted by the pancreas
and has a selective hydrolytic effect on arginine and lysine peptide chains. It is the most
specific protease. Peptides containing trypsin recognition sites can be used as reaction
substrates. Alternatively, anti-trypsin antibodies can also have good specific recognition
of trypsin. By displacing different substrates, many techniques used for sensing amylase
can be used for trypsin sensing. However, due to the different chemical properties of
substrates, trypsin, and hydrolysis products, the design of probes and signal amplification
methods differ.

Among the sensing studies of various types of digestive enzymes, trypsin is one of the
most abundant. The spectroscopic method consists of high versatility and can be used to
detect proteases such as amylase. Kuar et al. designed a substrate consisting of a negatively
charged tetraphenyl sulfonyl derivative (Su-TPE) and a positively charged polyelectrolyte
fish sperm protein (PrS), which was detected using different spectroscopic techniques
employing ground-state absorption spectroscopy, steady-state emission spectroscopy, and
time-resolved emission spectroscopy after the hydrolysis of PrS by trypsin. The LOD
was 0.22 nM [130].
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Trypsin accounts for approximately 19% of the total protein in pancreatic juice and
is the most abundant of all pancreatic digestive enzymes [1]. Trypsinogen is the most
important of all digestive enzymes because it regulates the rest of the digestive enzymes. Its
detection is important for the diagnosis of pancreatitis. The next few subsections summarize
the research on trypsin sensing.

3.2. Optical Methods
3.2.1. Colorimetry

Proteins have no common and stable-colored compounds similar to starch. A common
idea for detecting proteases using colorimetric methods is to use the hydrolysis of proteins
by proteases to affect the oxidizability of oxides in solution. The increased oxidizability
will result in the oxidation of TMB to blue ox-TMB, enabling sensing. The specific sub-
strates, methods to achieve oxidizability, and techniques to further amplify the signal are
abundantly reported.

Cai et al. designed a colorimetric method based on CuNPs for protease detection.
The colorimetric principle is the oxidation of TMB to ox-TMB, which in turn appears blue.
The oxidation of TMB relies on the peroxidase (POD) property of CuNPs, which catalyzes
the production of reactive oxygen species from H2O2. By means of two cysteine peptide
templates, the CuNPs were aggregated to form a shuttle-like structure, which inhibited
their POD activity. In the presence of trypsin, the peptide chains were hydrolyzed, and the
CuNPs were dispersed into the solution, exhibiting strong POD activity and thus sensing.
This is somewhat similar to the previous study that used starch to polymerize nanoparticles
and thus inhibit the catalytic activity of the nanoparticle structure. An LOD of 0.82 nM
and a linear detection range of 3–1000 nM was eventually achieved [131]. Zhang et al. in
2015 found that Cyt c barely catalyzed this process, but trypsin-hydrolyzed Cyt c exhibited
POD-ness. [132]. Wu et al. immobilized an Fe-NC single-atom catalyst (SAC) in a gelatin
hydrogel. Trypsin hydrolyzed the gelatin and released the Fe-NC SAC, which catalyzed
H2O2 to generate reactive oxygen species, which in turn oxidized TMB [133]. Wang et al.
utilized the simulated peroxidase properties of AuNCs and stabilized them with bovine
albumin (BSA). The trypsin decomposition of BSA affected the peroxidase action, inhibited
the oxidation of TMB, and was detected by a colorimetric assay [134]. Luo et al. used the
oxidative nature of ox-TMB to etch gold nanopyramids (AuNBPs), affecting their aspect
ratios and thus achieving color changes. AuNPs were encapsulated using BSA, which has
POD properties. Trypsin hydrolyzed BSA, exposing more catalytically active sites, which
in turn led to a change in the color of the solution [135].

Lin’s study used Pro-stabilized platinum nanoparticles (PtNPs), a unitary structure
with oxidase-like activity [136]. Contrary to the study by Cai et al. [131], the peptide chain
here served to avoid PtNP aggregation. After the breakdown of Pro by trypsin, the PtNPs
become less active because of aggregation, and the color of the solution changes as a result.
In another study reported later, Lin et al. designed structures with the more oxidase-like
activity of PtNPs and used substrates with more pronounced color change, which lowered
the LOD to 0.6 ng/mL with a linear range of 1–70 ng/mL. Citrate-capped terminated
platinum nanoparticles (Cit-PtNPs) had stronger oxidase-like activity, using 3-methyl-2-
benzothiazolinone hydrazone hydrochloride (MBTH) as a substrate to generate MBTH
(-NH-) radicals. Also, in the substrate n-ethyl-n-(2-hydroxy-3-sulfopropyl)-m-toluidine
sodium salt (TOOS), amateur Cit-PtNPs reacted. The catalytic mechanism of Cit-PtNP-
like oxidase activity is a simultaneous two-electron reduction process and a four-electron
reduction process during catalysis. The colorless compounds form blue-violet quinoid dye
by disproportionation reactions [137].

Alternatively, nonspecific single-stranded DNA (ssDNA) can also interact with pro-
teases, and its different interactions with different proteins can enable specific sensing.
Chen et al. reported studies in which gold nanoparticles immobilized on the surface of
ssDNA were desorbed when trypsin interacted with ssDNA and aggregated in a salt envi-
ronment, producing colorimetric signal changes. Combining three different ssDNAs could
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achieve the effective differentiated detection of nine different proteins [138]. Liu et al. used
a similar principle by replacing AuNPs with silver nanoparticles (AgNPs), which were
released from the ssDNA surface in the presence of trypsin. Adding TMB and H2O2 to
the substrate, the AgNPs catalyze their reaction, changing the color and absorbance of the
TMB solution [139].

3.2.2. Fluorescence Methods

As introduced in Section 2.3, fluorimetry is a common method of sensing digestive
enzymes. The common idea is that the fluorescence is in a quenched state in the presence
of protein and peptide substrates (Figure 12). When trypsin is introduced, the fluorescence
is activated and thus sensed. It has been demonstrated that fluorescence quenching can
be achieved by the electrostatic adsorption of trypsin with a fluorescent substance such as
MoSe2. Arora et al. revealed the mechanism of fluorescence inhibition by trypsin through
the formation of complexes using Vant Hoff plots, fluorescence spectroscopy, and testing at
different pH values. However, since the trypsin concentration in body fluid samples tends
to be low, most studies still use specially designed substrates that can be hydrolyzed by
trypsin for fluorescence sensing [140]. Specific ideas include the use of protein adsorption
to directly affect fluorescence [141] or peptide chain linkage to quench the fluorescence of
the substance [142] (Figure 12).
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the Royal Society of Chemistry. (b) Release of AgNCs from graphene oxide. Reproduced from [142]
under the terms of the CC-BY Creative Commons Attribution License, copyright 2016 MDPI.

First, the aggregation and release of metal nanostructures is the approach used in a
large number of reports. The direct quenching of the fluorescence of AgInS quantum dots
(AIS QDs) by trypsin was reported by Wang et al. The presumed reason was that when AIS
QDs were irradiated, the photogenerated electrons were trapped by the positively charged
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trypsin, resulting in the failure of the complexation of the photogenerated electron–hole
pairs [143]. Milicevic et al. configured four fluorophores and three cleavage sites on the
peptide chain to achieve a 0.5 ng/mL LOD for trypsin [144]. In 2011, using fluorescent
metal nanoclusters, trypsin detection was performed by Hu et al. Gold nanoparticle clusters
were prepared using BSA as a stabilizer and reducing agent. Trypsin decomposed the
BSA, which destroyed the cluster structure and led to a decrease in fluorescence inten-
sity [145]. Qu et al. used new fluorescent particles and peptide chains for polymerization by
glutathione-capped gold nanoclusters (GSH-AuNCs) bound to positively charged arginine-
rich peptides (Arg9). The aggregation-induced emission enhancement (AEE) of positively
charged Arg9-GSH-AuNCs was induced by electrostatic attraction using polyuridylic acid
(polyU) as a polyanion [146]. Xue et al. then used cationic fish sperm proteins adsorbed
onto the surface of GSH-AuNCs to inhibit the self-assembly of the apparatus. The intro-
duction of trypsin enhances fluorescence [147]. Zhao et al. also achieved trypsin detection
using AuNCs. They used 11-mercaptotetradecanoic acid-covered AuNCs with carboxyl
groups bound to Cu2+, and the fluorescence was quenched. Trypsin catalyzed the BSA
cleavage of amino acid/peptide fragments with stronger binding to Cu2+, thus releasing
the AuNCs to restore fluorescence [148]. Zheng et al. introduced 3-mercaptopropionic acid
stabilized CdTe quantum dots (CdTe QD), whose electron attraction for trypsin promoted
the breakdown of BSA covered on AuNCs [149]. Zhou et al. reported the work of quench-
ing the fluorescence of silicon quantum dots (SiQDs) using triangular silver nanoprisms
(TSNPRs) due to the internal filtering effect (IFE). Pro can strongly adsorb TSNPRs and
release them from SiQDs. And the presence of trypsin breaks down Pro, leading to the
quenching of fluorescence [150].

Secondly, carbon is also often used to make conductor materials that modulate the
fluorescence effect. The detection of trypsin was also achieved by Hou et al. using carbon
nanoparticles (CNPs) as a fluorescence quencher. The peptide chains were labeled using
5-carboxyfluorescein (FAM) containing Arg6 as a fluorescent substance. CNPs were oxi-
dized by nitric acid with negatively charged functional groups and quenched fluorescence
by an electrostatic interaction with the peptide chains via mutual adsorption. The protease
decomposition of peptide chains releases FAM from CNPs and activates the fluorescence
effect (Figure 13a) [151]. Using the coumarin derivative, Poon et al. quenched the fluores-
cence effect of graphene quantum dots using fluorescence resonance energy transfer (FRET).
BSA linked the two and released the graphene quantum dots after trypsin hydrolyzed
them, reactivating the fluorescence [152]. Wu et al. applied this method to the FRET effect
between upconversion nanoparticles (UCNP) and AuNPs [153]. Xu et al. reported that
the trypsin hydrolysis of a specially designed negatively charged peptide chain released a
positively charged short peptide chain that induced the aggregation of AuNPs and that
using FRET quenched the fluorescence of amino-functionalized carbon dots (CDs) [154]. A
fluorometric-based protease detection technique using carbon quantum dots (CQDs) as
a fluorescent material was also developed by Chen et al. Negatively charged CQDs are
induced to aggregate by fisetin (Pro). Carbon quantum dots are well suited to the construc-
tion of biosensors because they can be easily modified and do not require complex surface
functionalization to achieve the CQD/Pro aggregation caused by electrostatic interactions.
The aggregation system causes fluorescence quenching, and the entry of Try hydrolyzes Pro
and disperses CQDs, which in turn activates the fluorescence production (Figure 13b) [155].
A fluorescent probe involving tetraphenyl porphyrin tetrasulfonic acid (TPPS) with BSA as
the substrate achieved an ultra-low-detection limit of 0.013 ng/mL for trypsin [156].

Chen et al. achieved a minimum LOD of 8.8 pg/L using molecularly imprinted
fluorescence. Near-infrared carbon dots (NIR CDs) were used and combined with molecular
blotting for the first time to measure trace amounts of trypsin. Trypsin was assembled onto
the CDs@ZIF-8 surface via in silico interactions between APTES and TEOS and formed a
molecular blot upon removal. The template proteins quench fluorescence upon rebound
into the blotting cavity [157].
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Subsequently, the design of peptide chains for the specific recognition of hydrolysis by
proteases is also an important area of improvement for tryptic sensing. Giel et al. designed
tryptic sensing that does not require special materials such as nanoparticles but instead
relies on fluorescent polymer probes [158]. The β-aryl sulfonyl-containing probe was bound
to BSA by forming covalent bonds with nucleophilic amino acids to form a fluorescent
sensing system. When the probe is hydrolyzed by trypsin, it does not fluoresce in an
aqueous solution. The complex and multifaceted structure of proteins brings convenience
to the design of probes. Sun et al. quenched the anionic fluorochrome Eosin Y using fish
sperm protein, achieving a trypsin LOD of 0.21 ng/mL and a linear detection range of
0.4–56 ng/mL [159]. The detection of trypsin in unpretreated urine samples was also
achieved by Park et al. by utilizing fisetin [160]. They also analyzed the enhancement of
exciton migration induced by fisetin as the reason why fluorescence was quenched with
high sensitivity. Li et al. quenched poly(dopamine) nanoparticles (PDNs) with Pro binding.
In dopamine nanoparticle (PDNP) fluorescence, the binding was also achieved by the nega-
tive electrical properties of PDNPs. By the same mechanism, the recovery of fluorescence
was used to detect trypsin [161]. Gu et al. used thiosemicarbazone T as a fluorescent probe.
This was performed by selecting DNA with a strong binder for cytochrome c (Cyt c) and
also containing a g-quadruplex fraction with a high affinity for thiosulfin T, combined
with the Cyt c hydrolysis of the Cyt c protein by trypsin, which exposes the g-quadruplex
portion of the DNA, allowing thioredoxin T binding and enhanced fluorescence inten-
sity [162]. Duan et al. used the peroxidase activity of the product after the hydrolysis of
Cyt c by protease to form hydroxyl radicals, which in turn oxidizes o-phenylenediamine
to 2,3-diaminophenothiazine. The latter quenched the fluorescence of tungsten disulfide
quantum dots (WS2 QDs) by fluorescence resonance transfer (FRET) [163]. Ou et al., on the
other hand, quenched the fluorescence response of copper nanoparticles (CuNPs) directly
using Cyt c hydrolysis products. The free cysteine residues released from the hydrolysis
of Cyt c by trypsin form metal–ligand bonds with copper atoms through sulfur atoms to
form complexes that quench the fluorescence [164]. Yin et al. used the positive charge of
Cyt c to sense the aggregation of negatively charged nitrogen-doped carbon quantum dots
(N-CQDs) and quenched the fluorescence of the latter [165].

Finally, this paper still summarizes the portable technology for tryptic colorimetric
sensing. Hu et al. made this technique portable by 3D printing, which can be used based on
a smartphone for POCT. An MIL-101 carrier was used to increase the number of imprinted
sites using its porosity. Two types of CdTe, green and red, were introduced into the imprint
to achieve fluorescence sensing. Cell phone cameras were used for measurements [166]
(Figure 13d,e). Manmana et al. prepared hydrogels using polyethylene glycol diacrylate
and fluorescein derivatives as the fluorescent detection probes. After hydrolysis of the
gel by trypsin, certain areas of fluorescence fading can be seen, which can be observed
by the naked eye. And the length of the faded region can be used to sense the trypsin
concentration [167]. Zhao et al. combined two different fluorescent substances and achieved
significant color changes by ratio modulation. The fluorescence of catechol B at 574 nm
was inhibited using a fish sperm protein as a substrate. TPE was also immobilized to
emit fluorescence at 472 nm. The ratio of the two fluorescences changed after trypsin
decomposed the fish sperm protein, producing a color change visible to the naked eye [168].

3.2.3. Liquid Crystal Phase Transition Methods

Studies using LCs for trypsin detection have also been reported (Figure 14). A
self-assembled monolayer of phosphatidioleoyl-sn-glycero-3-phosphate-rac-(1-glycerol)
sodium salt (DOPG) was prepared at the water/LC interface by Hu et al. The transfer
of positively charged poly-L-lysine (PLL) here leads to an interaction with the negatively
charged DOPG, resulting in the disorganization of the DOPG molecules, which in turn
leads to the change in liquid crystal arrangement and the conversion of LCs from dark to
bright. After the trypsin breaks down the PLL molecules, the DOPG and LCs resume their
regular arrangement and turn dark [169]. Cetyltrimethylammonium bromide (CTAB) was
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incorporated into the gelatin hydrogel by Ping et al. and released during the hydrolysis of
gelatin by trypsin. Cetyltrimethylammonium bromide formed a monolayer molecular film
on the surface of LCs, which in turn achieved the orderly arrangement of LCs and turned
from good to dark under crossed polarizers. The LOD was 34 ng/mL [170].
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Figure 13. Schematic diagram of fluorometric sensing of trypsin. (a) The addition of trypsin causes
an increase in fluorescence intensity. Reproduced from [151] under the terms of the CC-BY Creative
Commons Attribution License, copyright 2020 by Elsevier B.V. (b) Change in fluorescence frequency.
Reproduced from [155] under the terms of the CC-BY Creative Commons Attribution License,
copyright 2020 by the Royal Society of Chemistry. (c) Fluorescence color change. Reproduced with
permission from [168], copyright 2017 by American Chemical Society. (d) Fluorescence colors of
different concentrations of substrates were captured by cell phone. (e) Effect of the introduction of
trypsin on the two fluorescence colors. Reproduced with permission from [166], copyright 2023 by
Elsevier B.V.

3.2.4. Localized Surface Plasmon Resonance

Localized surface plasmon resonance (LSPR) is an SPR-like plasma resonance phe-
nomenon that occurs on conductor particles whose sizes are smaller than the wavelength
of incident light [171,172]. Since the nanoparticle size is smaller than the wavelength of the
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incident light, the carrier may undergo overall oscillation under the electric field during
the period. Similar to the SPR effect on nanometallic layers, the change in the surrounding
refractive index after the occurrence of a chemical reaction can be detected, and thus sensing
can be achieved. LSPR can also be used for Trypsin detection (Figure 15).
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Figure 14. The hydrolysis of the substrate by trypsin affects the arrangement of the liquid crystal
molecules, showing different patterns. (a.a) Illustration of the gelatin hydrogel decomposition and
surfactant release induced by trypsin. (a.b) The whole and (a.c) cross-sectional view of the LC sensing
device. The groove-1 is filled with the mixture of the gelatin hydrogel and CTAB. The groove-2 is
coated with an additional thin layer of the gelatin hydrogel. In the absence of trypsin, the orientation
of LC molecules is in a (a.d) planar state at the aqueous/LC interface, resulting in a (a.e) bright optical
image; In the presence of trypsin, the orientation of LC molecules is in a (a.f) homeotropic state at
the aqueous/LC interface, resulting in a (a.g) dark optical image. (a) Reproduced with permission
from [170], copyright 2021 by Elsevier B.V. (b) Reproduced with permission from [169], copyright
2012 by American Chemical Society.
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Figure 15. (a) Principle of trypsin assay using LSPR. Hydrolysis of the substrate alters the aggregation
of the nanoparticles and affects the occurrence of their LSPR effect. Reproduced with permission
from [173], copyright 2013 by Elsevier B.V. (b) Color sensing of changes in the LSPR effect of nanopar-
ticles using a cell phone. Reproduced with permission from [174], copyright 2022 by Elsevier B.V.

The implementation of LSPR sensors using a smartphone camera was reported by
Dutta et al. They prepared gold nanoparticles (AuNPs) as conductors for the occurrence of
the LSPR effect. The cysteine residues on the surface of trypsin will form covalent bonds
with the gold surface and achieve coupling between trypsin and gold nanoparticles. This
will change the LSPR effect spectrum of the gold nanoparticles. The light is emitted by a
light source in a specially designed optical accessory, passed through a solution, and then
passed through a columnar lens to achieve spectroscopy, and the results are collected with
a cell phone camera [175]. This handheld sensing can be applied to field applications in
different scenarios.

Miao et al. stabilized AgNPs with short peptides, which undergo clustering after the
short peptides are broken down by trypsin. Changes in the LSPR effect cause a change in
their color, achieving an LOD of 2 ng/mL and a linear detection range of 2.5–200 ng/mL
(Figure 15a) [173]. Guo et al. also designed a trypsin assay based on the LSPR effect
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of AuNPs. BSA inhibited the clustering of AuNPs. After the entry of trypsin, which
hydrolyzed BSA, AuNPs aggregated due to electrostatic effects, and their absorption
spectra of the LSPR effect changed from red to blue RGB values. This method does
not require the use of a specially designed optical device but can be achieved directly
by a smartphone to distinguish colors and can achieve dual-mode sensing through the
simultaneous photothermal effect (Figure 15b) [174]. It is favorable for POCT.

3.2.5. Electrochemiluminescence Method

Liu et al. investigated the application of the electrochemiluminescence (ECL) phe-
nomenon of the luminol-H2O2 system in trypsin detection. Luminol was excited and its
ECL effect was quenched by black phosphorus nanosheets (BPNs) via resonance energy
transfer (ECL-RET). After Pro was bound to the BPNs via electrostatic interactions, blocking
the ECL-RET, the luminescence was restored. A decrease in luminescence intensity was
observed after the hydrolysis of Pro by trypsin, which was linear with trypsin concentration.
The LOD was 63.3 ng/mL. Detection can be achieved in the range of 100 ng–5 µg/mL [176].

3.3. Mechanical Methods

Dong et al. reported a study on the detection of trypsin using a peptide-functionalized
quartz crystal microbalance (QCM) gold electrode. The gold nanoparticles with a certain
length of peptide chain sequestered on them caused a change in resonance intensity, i.e., the
QCM measured their mass. When trypsin is present, it hydrolyzes the peptide chain, and
the QCM can measure the decrease in the mass of the peptide chain, which in turn enables
the detection of trypsin [177]. Dizon et al. also used the QCM method and achieved an LOD
of 0.2 nM for trypsin in milk [178]. Piovarci et al. used acoustic wave-based biosensors
operated in the thickness-shear mode (TSM) to measure the hydrolysis of β-casein by
trypsin (Figure 16). β-Casein was bound to a piezoelectric quartz crystal sensor, and its
hydrolysis reduced the overall mass and increased the resonance frequency [179].
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Figure 16. Schematic diagram of the principle of the shear method for sensing trypsin. After trypsin
hydrolyzes the substrate, the change in mass and viscosity leads to a change in mechanical resonance
frequency. Reproduced from [179] under the terms of the CC-BY Creative Commons Attribution
License, copyright 2021 MDPI.
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Lee et al. implemented the detection of trypsin using a grating resonance absorber
(RA). Polymethacrylic acid (PMAA) was fabricated as a brush-like plasma grating. Its tail
was fixed with gelatin, which changes the resonance absorption peak of the grating upon
decomposition by trypsin. The detection of trypsin was achieved by measuring the shift of
the absorption peak of RA [180].

3.4. Electrical Methods
3.4.1. Circuit Parameter Testing

A capacitive trypsin sensor with a minimum LOD of 0.3 pM was prepared by Erturk
et al. The electrode surface of the capacitor was treated with 3-aminopropyl-triethoxysilane
(APTES) ethanol to introduce amino groups. The trypsin was immobilized under the
modification of glutaraldehyde. The MIP was formed by polymerizing tyramine using
cyclic voltammetry [181].

Palomar et al. prepared silicon nanopores on which casein was immobilized after
the preparation of functionalized gold on the surface. The hydrolysis of casein by trypsin
enlarged the nanopore size and amplified the ionic current through the pore. The minimum
LOD was 0.005 ng/mL [182].

Zaccheo et al. designed sensors with trypsin to etch the protein layer, which in turn
enabled circuit conduction. An aluminum protein protective layer was prepared above
the photodiode, blocking the light incidence. By adding NaOH to the sample to be tested,
the NaOH can react with the aluminum layer only if the trypsin destroys the protein layer,
causing light to shine on the photodiode and lighting up the LED in the circuit [183].

Zhou et al. designed a biological α-hemolysin protein nanopore. Only peptide
substrates, which are broken down by trypsin, can pass through the pore. Neither the
trypsin itself nor the lysine-containing peptides in the substrate can pass through. The
concentration of trypsin, therefore, affects the magnitude of the current passing through
the pore under an external electric field. The LOD of trypsin is 1.4 ng/mL [184].

3.4.2. Electrochemical Method

The antigen–antibody binding for electrochemical sensing is also used in trypsin
sensing (Figure 17b). Yi et al. used multi-walled carbon nanotube (MWCNT)-modified
electrodes to measure serum trypsin concentration using differential pulse voltammetry
and achieved an ultra-low LOD of 0.002 ng/mL. Multi-walled carbon nanotubes with
gold nanoparticles, which have a high specific surface area and strong conductivity, can
immobilize a large amount of substrate. Using an anti-trypsin antibody as a substrate,
the electrochemical signal is detected when trypsin binds to it. There was good linearity
in the range of 0.1–100 ng/mL [185]. Rahmati et al. used amorphous Ni(OH)2 nano cas-
settes, multidimensional hollow structures providing a large surface area, using covalently
immobilized NH2-functionalized aptamers. A 0.3 fg/mL LOD and a log-linear range of
1 fg–500 ng/mL were achieved [186]. Hu et al. achieved a label-free assay by detecting the
binding of trypsin to specific antibodies using an electrochemical method. A 0.58 ng/mL
LOD and a linear range of 1–200 ng/mL were achieved. Signal generation is based on a
polysulfhydrylsulfanine–nanogold nanocomposite (PTh-NG) structure. Differential pulse
voltammetry allows the accurate determination of trypsin binding to antibodies. The good
electrical conductivity of gold nanoparticles facilitates electron transfer and increases the
amount of the immobilized substrate through their large specific surface area [187].
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Figure 17. Principles of electrochemical methods for the detection of trypsin. (a) Hydrolysis of the
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Commons Attribution License, copyright 2022 by the Royal Society of Chemistry. (b) Anti-trypsin
antibody specifically binds to trypsin. The black curve in the graph shows the results in the absence
of trypsin. With the addition of trypsin, the signal is shown as a red curve. Reproduced from [185]
under the terms of the CC-BY Creative Commons Attribution License, copyright 2014 MDPI.

In 2010, Adjemian et al. performed electrochemical measurements using cyclic voltam-
metry. The electrodes used a gold disc working electrode, a counter electrode made of
platinum, and an additional KCL-saturated glycerol electrode as a reference electrode. On
the surface of the gold electrode, peptide chains of 4–7 amino acids in length were immobi-
lized, and the ends were chosen to be labeled with low-potential alkyl ferrocene (Fc), which
is insensitive to the surrounding medium, making the peptide chains more susceptible
to cleavage by proteases. When the peptide chain is cleaved by a protease, Fc is released,
and there will no longer be a current signal conducted to the electrode via its oxidation
in cyclic voltammetry. By measuring the current at the electrode, it is possible to quantify
the number of peptide chains that still have Fc labeled and thus detect proteases. A fast
response can be achieved for proteases in the range of 1–1000 nM [189]. A similar method
was used by Barsan et al., but the labeling of the top of the peptide chain was changed
to the organic ABZ, and the electroactivity of ABZ was utilized. The peptide chain was
immobilized using a self-assembled para-aminothiophenol (PATP) monolayer on a gold
electrode [190]. Hu et al. also used Fc labeling, but in contrast to Adjemian’s method, they
aggregated the Fc label to the electrode surface in the presence of trypsin. The minimum
LOD was 0.064 ng/mL. They immobilized the no-jam peptide to the electrode surface by
immobilizing the n-terminus to the electrode surface and hydrolyzed it by trypsin to form
a free carboxyl group at the c-terminus. The carboxyl–carboxyl bond will bind the atom
transfer radical polymerization (ATRP). Under electrochemical control, the ATRP surface
will trigger graft polymerization (SI-GOP) with ferrocenyl methyl methacrylate (FcMMA)
in the substrate as a monomer and be detected by the electrode [191].
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Ucar et al. used miniaturized Pt electrodes that have the potential to be used in
implantable sensing (Figure 17a) [188].

Poma et al. immobilized gelatin on an electrode with the electrochemical redox me-
diator (4-((4-aminophenyl)imino)-2,6-dimethoxycyclohexa-2,5-dien-1-one) embedded in
it. The redox mediator was released into the solution after the trypsin decomposition of
gelatin and was measured by AC voltammetry [192]. Shin et al. used trypsin to cleave the
peptide bond of a p-aminophenol (AP)-coupled oligopeptide, releasing the electrochemi-
cally active AP. Cyt c acted as an oxidoreductase and, together with H2O2 and AP, formed
an electrochemical-enzyme redox cycle. An LOD of 50 ng/mL was achieved [193].

Choi et al. combined the MIP technique with electrochemical measurements. They
used an o-phenylenediamine monomer and a trypsin protein for polymerization on a
gold-covered quartz crystal electrode to form a 3D-MIP membrane with better detection
performance than a 2D-MIP membrane [194]. Zhao et al. used the amphiphilic electro-
polymerizable macromonomer poly(AM-co-HEA-co-NVc) (PAHN), and a self-assembled
3D-MIP was implemented [195].

3.5. Chymotrypsin and Elastase

In addition to trypsin, the pancreas secretes chymotrypsin and elastase. Similar to
pancreatic protease, they both break down peptides. Chymotrypsin accounts for about 9%
of the total pancreatic fluid protein and is the second most abundant serine protease [196].
Trypsin, chymotrypsin, and elastase are endopeptidases of the serine protease family,
which are highly homologous in their X-ray crystal structures. The difference is that
they have different specificity pockets that allow only specific peptide bonds to be hy-
drolyzed [1]. Elastase cleaves the carboxyl terminus of glycine and alanine, while chy-
motrypsin cleaves the carboxyl terminus of aromatic amino acids such as tryptophan,
phenylalanine, and tyrosine [1].

Keim et al. counted the correlation between elastase and rennet in human fecal samples
and CP. An enzyme-linked immunosorbent assay (ELISA) was used. The sensitivities of
elastase and chymotrypsin were 77.8% and 57.8%, respectively, and the specificities were
76.0% and 52.7%. Although better than previous elastase assays, this result is not sufficient
as a standard for clinical testing [197]. However, due to their similarity to trypsin, the
sensing methods are also highly versatile. This section can also be seen as a complement to
the previous part.

3.6. Detection of Chymotrypsin

Liu et al. exploited the optical quenching of fluorescence by graphene oxide (GO)
and AuNPs to achieve the monitoring of chymotrypsin. They immobilized the functional
peptide (EKEPPPPC) by Au-S bonding. GO was modified with sulfhydryl groups to obtain
GO-SH, which formed covalent bonds with AuNPs and better immobilized the particles.
After peptide breakdown by chymotrypsin, AuNPs were more tightly bound to GO, and
absorbance was improved. This method achieved a low LOD of 0.25 pg/mL [198].

Gao et al. devised an assay for the detection of chymotrypsin using a GO-AuNP system
to quench fluorescence. They took advantage of the abundant surface functional groups of
GO, the large specific surface area of AuNPs, and good electrical conductivity to immobilize
peptides as substrates. The AuNPs were treated with NaBr to ensure that the peptide chains
could be stably attached to the surface by sulfhydryl groups. Pyrene, which has a large
extinction coefficient, long lifetime, good stability in an aqueous solution, and easy chemical
modification, was used as a fluorescent dye to label the peptides. The fluorescence of pyrene
is quenched in the vicinity of AuNPs and GO. After chymotrypsin cleavage of the peptide
chain, pyrene fluoresces away from AuNPs and GO [199]. Fluorescence quenching by this
system was further investigated by Liu et al. They used CuNCs, added EDC and NHS
to provide carboxyl groups, and bound the peptide chains with covalent bonds, and the
other end was immobilized to the GO-AuNP system (Figure 18). It was found that adding
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PCN to the GO-AuNP system for linking AuNPs could further improve the sensitivity. The
lowest LOD of 3.91 pg/mL was finally achieved [200].

In addition, chymotrypsin probes with bioaffinity were developed. The detection
can be realized in living cells. And thanks to the use of red [201] or near-infrared [202]
light, it can penetrate the tissue to be measured. These studies make it possible to monitor
pancreatic chymotrypsin in real time.
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Figure 18. (a) Chymotrypsin sensing using QCM. Reproduced from [203] under the terms of the
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Reproduced from [200] under the terms of the CC-BY Creative Commons Attribution License,
copyright 2023 MDPI.

The QCM method for pancreatic chymotrypsin detection was implemented by Piovarci
et al. The sensor with β-casein immobilized on the surface of a quartz crystal was made
(Figure 18a). The differentiation of different enzymes can be achieved by multi-harmonic
QCM intramural supply analysis and machine learning [203].

Viscometry was used for the detection of chymotrypsin by Ping et al. A gelatin
hydrogel was fixed on the pH test paper, which immobilized the water molecules from
flowing. The protease hydrolyzed the gelatin and released the water molecules, which in
turn flowed on the pH test paper [204].

3.7. Detection of Elastase

Kakizaki et al. developed a method to determine pancreatic injury using a pancreatic-
specific antigen as a marker. A sensitive sandwich enzyme immunoassay for human
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elastase III fluorometric determination was developed using a rabbit anti-human elastase
III antibody. The LOD was 0.3 pg per tube [205]. The significance of elastase in the detection
of pancreatitis is also reflected by the increase in serum pancreatic elastase 1 in AP and
chronic recurrent pancreatitis [206]. The fecal pancreatic elastase 1 (FPE1) assay can also
be used to monitor the exocrine function of the pancreas [207–209]. Huta et al. measured
the elastin content in stool using a kit with ELISA for the analysis of its use in pancreatic
exocrine insufficiency (PEI) [207].

Another common elastase in the human body is human neutrophil elastase (HNE). A
number of studies have reported on its detection techniques and association with physio-
logical phenomena such as inflammation [210–216]. Yang et al. implemented paper-based
elastase sensing suitable for POST. The distribution of the substrate and elastase was guided
by creating hydrophobic and hydrophilic zones [217]. Huang et al. [218] and Li et al. [219]
designed fluorescent probes with bioaffinity, respectively, which are expected to enable
real-time elastase sensing in vivo. Assays based in part on the common characteristics of
elastase may have the potential for pancreatic elastase sensing. More pancreatic elastase
sensing techniques are yet to be investigated.

3.8. Summary

In contrast to trypsin, the substrate targeted by protease needs to be specially de-
signed, especially for short peptide chains, to ensure the availability of a working site
for protease. But the diversity of proteins has likewise facilitated the design of chemical
probes or techniques to amplify the signal, and more diverse sensing techniques have been
reported. Many methods that allow for convenient self-testing have also been reported
(Figure 19) [220]. Although the target is not pancreatic-secreted trypsin, there is a common-
ality due to the use of its property of hydrolyzing peptide bonds.
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Chymotrypsin and elastase have a limited role in the detection of pancreatitis. How-
ever, they are still summarized due to their share in the digestive enzymes secreted by the
pancreas and their disease association. Protease sensing alone is inaccurate as a diagnostic
criterion for pancreatitis, but it is important in other physiological activities, so its detection
techniques are abundant. In addition, related sensing studies can stimulate the idea of
protease sensing.

Among the various types of sensing techniques studied for pancreatic enzymes, the
sensing of proteases, especially trypsin, is a very rich category. Some of the techniques that
enable POCT sensing, including those that can be measured directly by portable devices,
cell phones, or the human eye, are summarized in Table 2.
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Table 2. Trypsin and chymotrypsin sensing technology.

Type Probes/Substrates LOD Sensing Range POCT Progress Ref.

TMB

Peptide-stabilized CuNPs 0.82 nM 3–1000 nM Human-eye
readable [131]

POD properties of
trypsin-hydrolyzed Cyt c 4.5 ng/mL 5–20 ng/mL Human-eye

readable [132]

Immobilization of SAC in
gel hydrogels 1 ng/mL 1–100 ng/mL Human-eye

readable [133]

Peptide-stabilized PtNPs 0.03 µg/mL 0.06–0.6 µg/mL Human-eye
readable [133]

Hydrolysis
(except TMB

method)

CdTe 0.014 µM 0.15–4 µM Using cell phone [166]

Fisetin, catechol B-TPE ratio change \ \ Human-eye
readable [168]

BSA inhibits the aggregation
of AuNPs 1.2 µg/mL 0.3–4 µg/mL Using cell phone [174]

Protein and enzyme conjugation
with AuNPs 1.1 µM \ Using cell phone [175]

Gel-protein-layer-
covered electrodes 0.5 µg/mL \ Portable device [184]

Changes in light transmission after
alignment of LC molecules 34 ng/mL 1–1000 µg/mL Portable device [170]

Release of redox fragments and
reduction in electrochemical signals \ \ Implantable

potential [188]

Viscosity change after
gelatin hydrolysis 1 ng/mL \ Paper based [204]

Fluorescent-containing gel fades
after hydrolysis \ 0.5–5 mM Human-eye

readable [167]

4. Detection of Lipase
4.1. Lipase

Lipids are one of the most important nutrients needed by the body, supplying energy
and essential fatty acids required by the organism. Fats, multivitamins, and phospholipids,
which form the structure of cell membranes, are all lipids [1]. Correspondingly, the pancreas
secretes a variety of lipases. Among them, triglyceride lipase (PTL) is the most widely
studied one [221]. The activity of PLT is not controlled by trypsin.

An essential feature of a lipase is that it acts catalytically at the lipid–water in-
terface, which may be related to the closure of the cap on its active site in an aque-
ous environment [222]. Catalysis at the lipid–water interface is an important feature
of lipolytic enzymes [223,224].

There are fewer reports on lipase sensing than on trypsin and pancreatic amylase.
This section divides the relevant studies into two main categories: optical and electrical
methods. The portable methods are typical in the remaining digestive enzyme sensing and
are summarized separately.

4.2. Optical Methods

Guo et al. investigated the measurement of optically silent fatty acids by a colorimetric
method. The indicator (CHI) is a hydrophobic chromophore carrier that changes color from
red to blue upon protonation. The triglycerides in the substrate are hydrolyzed by lipase to
release the fatty acids and enter the small nanospheres to protonate the CHI. This process
is also reversible, i.e., CHI can be deprotonated again to appear red, and the detection can
be captured by the naked eye or a camera [225]. Wang et al. used Tween 20 as a stabilizer
to avoid the clustering of AuNPs. Lipase hydrolyzed the ester bond of Tween 20, causing
the clustering of AuNPs, and was measured colorimetrically. An LOD of 0.0528 U/mL and
a detection range of 0.33–56.8 U/mL with an R2 of 0.999 were achieved [226].
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To achieve tryptic lipase detection in a similar way to amylase and protease, substrates
that can be effectively broken down by them are required. Not all carboxyl ester compounds
can be decomposed by lipase. Guan et al. conducted a study to find substrates that
can react effectively with pancreatic lipase and release yellow fluorescence using AIE
and ESIPT mechanisms [227]. In addition, the probe needs to be specially designed in
order to fit the characteristics of lipases that undergo catalysis at the lipid–water interface.
Shi et al. introduced hydrophilic amino and carboxyl groups based on functionalized
tetraphenylethylene (TPE) as a fluorescent probe so that the probe can effectively contact
the lipase at the lipid–water interface (Figure 20) [228]
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of Chemistry. (d) Schematic illustration of the mechanism of sensing the activity of lipase based on
fluorescence. Reproduced from [229] under the terms of the CC-BY Creative Commons Attribution
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The sensor designed by Zhang et al. was also based on the AIE + ESIPT mechanism.
2-(2-hydroxyphenyl)benzothiazole (HBT) is a Schiff base fluorescent moiety based on ESIPT,
and a long dodecyl chain (LDC) was used as a fluorescence quencher to achieve the specific
detection of lipase. The formation of hydrogen bonds in the HBT-LDC probe is responsible
for the fluorescence change [230]. La Rocca et al. also investigated fluorescent labels
that could be used for pancreatic lipase detection. They studied phenoxy-1,2-dioxetane
luminophores carrying octane chains as lipase signature substrates. The luminescence
reaction produces the chemiluminescence of the luminescent moiety [231]. Luo et al. then
directly formed ester bonds between the energy donor group and the energy acceptor
group that can be cleaved by lipase. Based on the FRET process, the rhodamine derivative
(RA) quenches the fluorescence of the coumarin derivative (CA) and is reactivated by
lipase catalysis [232].

Du et al. achieved a fluorescence detection of lipase. The fluorescence of CdS QDs was
quenched by MT-AuNPs using the IFE effect. The surface of AuNPs was immobilized with
methyl thioglycolate (MT), allowing its uniform diffusion in solution (Figure 20d). The
lipase catalyzes the hydrolysis of carboxylate bonds, exposing partially protonated acid
groups in a weakly acidic environment. In these bonds, there are sulfhydryl groups on the
surface of AuNPs via hydrogen clusters. Clusters of AuNPs can be detected colorimetrically.
Their clustering allows some of the CdS QDs to move away, activating fluorescence [229].
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Tang et al. implemented the LC detection of lipase on the surface of an optical fiber.
The D-shaped cross-sectional fiber was designed to provide a plane on which the sensing
structure could be integrated, the LC layer was covered with a phospholipid as a substrate,
and the LC molecules were rearranged after the phospholipid was broken down by amylase.
This leads to a change in the refractive index, which in turn changes the transmitted optical
power of the fiber. It is also possible to observe the transmitted light directly on the side of
the fiber, which has the potential of a POC sensor [233].

4.3. Electrical Methods

Paper-based sensing using reduced graphene oxide (RGO) for electronic detection was
reported by Middya et al. Olive oil was used as the substrate. The lipase hydrolyzes the
substrate to release fatty acids, and the H+ ions produced decrease the overall resistance.
The LOD and limit of quantification (LOQ) were calculated to be 6.087 and 18.261 U/L, re-
spectively [234]. Capacitive coupling can achieve a non-contact conductivity measurement
in capillary electrophoresis. The breakdown of lipids by lipase produces small organic
molecules, and the conductivity of the solution increases and can be detected by an external
circuit capacitively coupled to the liquid in the capillary [234]. This method was also used
by Banni et al. to detect lipase activity [235]. Lipase was measured using the impedance
method by Zlatev et al. The specific detection of lipase was achieved by depositing a
composite layer generated by mixing olive oil with SiO2 particles on the electrode. The
decomposition of the olive oil by lipase allowed the exposure and conduction of the elec-
trode underneath, and the composite material could be redeposited for reuse after use. The
relative error was 3.75% to 1.24% [236]. After that, they designed the capacitive sensor. The
composites of olive oil mixed with BaTiO3 nanoparticles have good insulating properties
with high dielectric constants. The composite layer was used as an electrolyte layer between
the electrode and the solution to form a capacitive structure. The decomposition effect of
lipase on it led to the variation in thickness and changed the magnitude of capacitance [237].

Rogala et al. measured lipase activity electrochemically using a carbon paste elec-
trode (CPE) containing MWCNTs. The CPE was prepared by mixing graphite powder
with MWCNTs and further modified with cobalt(II)phthalocyanine (Co(II)PC), and both
additions improved the charge transfer resistivity. The substrate was glycerol linoleate,
and the enzymatic reaction of lipase formed linoleic acid (LA). The reductive LA is oxi-
dized on the electrode surface, which in turn can be detected by cyclic voltammetry [238].
Sample preparation, the flow system, and electrochemical conditions were optimized by
Sarakhman et al. [239].

Using an ion-sensitive field effect transistor (ISFET), Valek et al. measured the activity
of lipase. Tween 20 was used as a substrate, which was hydrolyzed by lipase to form
fatty acids, causing a decrease in solution pH. The pH measurement was achieved using
the potentiometric method [240]. Wang et al. designed a photoelectrochemical sensor
(PEC), which also enabled lipase detection by detecting the hydrolysis products. A three-
dimensional graphene oxide (3DGO), poly(Nile blue) (PNb), and glycerol dehydrogenase
(GDH) composite sensing structure was prepared on an indium tin oxide (ITO) electrode.
The 3DGO provided many active sites and specific surface areas and the PNb was photoac-
tive, and its high molecular weight could improve the stability of the 3DGO (Figure 21).
The rice bran oil in the substrate was hydrolyzed by lipase to produce glycerol, which was
further reacted by GDH on the electrode surface [241].
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Elsevier Ltd.

4.4. Other Methods

The previous sections introduced the implementation of portable sensors, such as
paper-based sensing, a blood glucose meter, and a cell phone camera. Related techniques
were also implemented in lipase sensing.

Xia et al. investigated the application of a pH-test-paper-based viscosity assay for
lipase measurement. The addition of lipase causes phase separation of the substrate, which
in turn flows over different lengths of the pH test paper due to viscosity changes. It
catalyzes the formation of oleic acid and glycerol from the trioleic acid in the substrate. The
oleic acid will form calcium oleate particles with Ca2+ ions, while the unreacted Ca2+ will
form a hydrogel with alginate [242].

Zhang et al. implemented a lipase assay using a blood glucose meter (Figure 22).
Lipase catalyzes the hydrolysis of 4-acetaminophen acetate to produce acetaminophen
and triggers the reduction of K3[Fe(CN)6] to K4[Fe(CN)6] in glucose test strips. Since
it is compatible with existing glucose test strips and blood glucose meters, it allows for
convenient at-home self-testing [243].
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4.5. Summary

Because of its good specificity, lipase is an important basis for digestive enzyme
sensing as a diagnosis of AP. Its combination with amylase is often used as a formal diag-
nostic criterion. Unlike several previous enzymes, lipids are not polymerized from a few
monomers, and lipases need to be catalyzed at the lipid–water interface. Therefore, the
sensing technique for lipases differs somewhat from previous studies regarding the chemi-
cal approach, especially in the design of probes and substrates. Some of the technologies
that enable POCT sensing are summarized in Table 3.

Table 3. Lipase sensing technology.

Type Probes/Substrates LOD Sensing Range POCT Progress Ref.

Hydrolysis

Fatty acids as ion exchangers 1.8 µg/mL \ Human-eye
readable [225]

Altered LC molecular arrangement
of lipid molecules 1 nM 2–10 nM Small fiber

optic sensors [233]

Hydrolysis of polymer changes the
conductive area of electrodes 8 mU/mL 0.0099–1.68 U/mL Miniaturized

equipment [236]

Hydrolysis of polymer changes the
thickness of capacitors \ 0.0073–3.9 U/mL Miniaturized

equipment [237]

Viscosity change 0.052 U/mL 0.052–30 U/mL Paper based [242]
Hydrolysis of
4-acetaminophen acetate \ \ Blood glucose

meter [243]

Hydrolysis releases H+ ions to
improve electrical conductivity 6.087 U/L \ Paper based [244]

5. Conclusions and Outlook

This paper systematically introduces the sensing methods for common digestive
enzymes. Based on colorimetric, fluorescent, SPR, electrochemical, and liquid crystal
methods, specific detection is achieved by the design of chemical structures such as special
probes. Some methods have been studied extensively, such as the TMB-based fluorescence
method. However, many methods have been studied less frequently.

The LOD of many studies has been far below the concentration of digestive en-
zymes in human body fluids. For example, blood trypsin concentrations range from about
40–180 U/L. The lowest limit of detection, however, can be as low as 0.5 U/L [184]. The
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upper limit of the detection range in some studies is still below the diagnostic criterion
of three times the standard value. New technologies such as MIP and ITC have excellent
measurement performance, but overly specialized equipment limits their use. Therefore,
more convenient detection is an important direction of development. Although there is
a high diversity of enzymes, many sensing methods using their nature of hydrolyzing
specific macromolecules have a high degree of commonality.

According to the authors, the way forward is to simultaneously measure multiple
tryptases with a single, simple device based on the same principles and different substrates
and probes. First, the paper-based approach, or technology that can be measured by the
naked eye, a cell phone camera, or a home blood glucose meter, has a wide range of
applications. This would allow people to self-measure and seek medical attention at the
first sign of discomfort, avoiding delays in treatment. For the same level of detection, the
ability to utilize non-invasive samples or as few body fluid samples as possible to achieve a
warning of pancreatitis could be a future direction for research. However, such methods’
linear range and accuracy are often small, and even quantitative measurements are not
possible. In addition to this, it is also helpful to utilize miniaturized, low-cost devices to
achieve sensing with relatively good performance. This could enable small hospitals in
areas with fewer medical resources to diagnose and classify pancreatitis at a lower cost.
Patients in larger hospitals can monitor their marker levels more frequently and receive
personalized treatment promptly. The accurate diagnosis of pancreatitis and timely and
personalized treatment are beneficial in any healthcare scenario.

It should also be noted when following research in this area that substances such as
proteases and amylases are not only found in pancreatic fluid. The diversity of marker
sources in samples such as saliva should be considered. And for sensing enzymes of
non-pancreatic origin, slurries can likewise migrate more directly for pancreatic enzyme
sensing if their hydrolyzed macromolecular nature is exploited.

The high mortality rate of pancreatitis should be of concern to the healthcare system
and society as a whole. The ability to diagnose pancreatitis quickly, easily, and accurately
can effectively reduce the rate of severe illness and mortality and reduce the cost of patient
care. For patients recovering from AP, a quick diagnosis can provide more timely and
accurate information about recovery and monitor the development of recurrence or chronic
disease. The detection of pancreatic enzymes, especially convenient and rapid screening
techniques, is an important direction. In addition, synergies with new imaging and artificial
intelligence technologies should also be considered to comprehensively advance diagnostic
and therapeutic techniques for pancreatitis.
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