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Abstract: The stream sediment (SS) records evolution information of the water system structure
and sedimentary environment in specific regions during different geological periods, which is of
great significance for studying the ancient planetary environment and the law of water system
changes. Based on the SS of different geographical environments on Earth, remote laser-induced
breakdown spectroscopy (remote-LIBS) technology combined with the multidimensional scaling-back
propagation neural network (MDS-BPNN) algorithm was used to conduct an in-depth analysis of
remote qualitative and quantitative detection of the elemental composition and content of SS. The
results show that the detection system based on remote LIBS combined with an artificial neural
network algorithm can achieve an ideal quantitative analysis of major and trace elements. The
coefficients of determination (R2) of the test set for major elements is greater than 0.9996, and the root
mean square error (RMSE) is less than 0.7325. The coefficients of determination (R2) of the test set for
trace elements is greater than 0.9837, and the root mean square error is less than 42.21. In addition,
for the application scenario of exploring extraterrestrial life, biominerals represented by stromatolite
phosphorite (SP) are easy to form sand and enter into SS under weathering. Therefore, this paper
discusses the feasibility of using remote-LIBS technology to detect and identify such minerals under
the disappearance of SPs’ macro- and micro-characteristics. From our research, we can find that
remote-LIBS technology is the preferred candidate for discovering dust-covered biominerals. In
geological environments rich in water system sedimentary rocks, such as Mars’ ancient riverbeds,
LIBS technology is crucial for deciphering the “life signals” hidden in the Martian sand.

Keywords: LIBS; stream sediment; stromatolite phosphorite; remote qualitative detection; remote
quantitative detection

1. Introduction

Stream sediment (SS) plays an essential role in exploring earth minerals. By study-
ing the distribution of elements in SSs, we can find geochemical anomalies, delineate
prospecting prospects and favorable metallogenic areas, and provide the basis for further
detailed geochemical exploration and geological survey. More importantly, quantitative
analysis of major, minor, and trace elements in SS can be used to reconstruct paleoclimate,
paleosalinity, and paleo-redox environments [1]. In addition, geochemical investigations
of major, minor, and trace elements from bedload sediments can link the fluvial with the
marine depositional system [2]. SS can also be used for potential risk assessment of the
ecological environment by measuring the potential ecological risk index of heavy metals
and analyzing the main factors that cause heterogeneity in the potential environmental
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risk index. X-ray fluorescence spectroscopy (XRF), inductively coupled plasma emission
mass spectroscopy (ICP-MS), inductively coupled plasma optical emission spectroscopy
(ICP-OES), atomic absorption spectroscopy (AA), and micro scanning X-ray diffusion
(SXRD) are still the primary technical means for analyzing river sediment at present [2–5].
However, to achieve good measurement accuracy, on-site sampling and laboratory nuanced
analysis strategies are still the main factors, which restrict the realization of large-scale,
high-efficiency, and low-cost in situ remote detection of SS. Therefore, achieving a remote,
in situ, and efficient qualitative and quantitative detection method for major, minor, and
trace elements in SS is a research hotspot, especially for applying deep space exploration.
Laser-induced breakdown spectroscopy (LIBS) is plasma emission spectroscopy formed by
a high-energy pulsed laser focusing on the surface of a sample and creating spectroscopy
composed of atoms and ions excited by electrons by ablating the material [6,7]. LIBS is an
atomic spectroscopy comprising “unique fingerprints” generated by different elements,
which can almost achieve almost all periodic table elements. The most valuable feature of
LIBS is its strong signal and high detection efficiency, which can meet the detection needs
of various functions such as remote in situ and short-range microscopy [8–11].

LIBS is a technique that can be used for stand-off analysis of soils at reduced air pres-
sures and in a simulated Martian atmosphere. This technique has been shown to be feasible
for space exploration [12–15] and geoscience [16–19]. Under specific physical and chemical
conditions, LIBS can also obtain molecular emission spectra. For the first time, researchers
conducted LIBS detection of organic compounds of interest in astrobiology in the Mars
simulated atmosphere. In addition, they studied the impact of the Mars atmosphere on the
new combination mechanism of laser-induced plasma of organic compounds of interest
in astrobiology [20]. In addition, the team also conducted research on the remote-LIBS in
situ rapid identification of stromatolite phosphorite (SP) that preserve early life on Earth,
targeting the application scenarios of extraterrestrial life detection [10]. The research of
geochemistry and astrobiology is mainly focused on detecting and identifying biological
molecules with a reference value for discovering Martian life. The study of biomarkers of
Martian-like landforms on the Earth, or “traces” left by early life on the Earth, can help
us to find life on the red planet or its “traces” [21,22]. Life’s evolution process on Earth
cannot be separated from the participation of water, so the types of planetary (such as Mars)
landforms related to water are the Important geological environment for deep space in situ
exploration [23].

The main types of water-related landforms are ancient lakes, rivers, and deltas, and
these unique landforms have a high spatial correlation with the distribution of water-
bearing minerals. Primitive life is highly likely to occur in such areas, and its “traces” of
life can be preserved in some way [24]. Therefore, remote in situ detection of major and
trace elements in SSs in sedimentary environments such as lakes, rivers, or deltas is of great
reference value for searching for extraterrestrial life. At variance with most scenario’s on
Earth SS on Mars are expected to be dried for sure. Stromatolites are layered biochemical
accretion structures formed by early life on Earth and are the sedimentary structures that
preserve the oldest life on Earth. The growth environment of stromatolites is closely related
to water-related geomorphic types, and stromatolites have also become indicative minerals
for searching for extraterrestrial life [24,25].

Referring to the planetary scale stromatolite sedimentary structure formed by the
large-scale accumulation of Precambrian microorganisms on the Earth, during a long
period of warm and humid climate, Mars may also have a biological sedimentary structure
similar to that created by the direct or indirect influence of organisms on the Earth. Even
if this biological sedimentary structure does not reach the planetary scale, it appears in
the form of small-scale and scattered distribution. But this assumption is also sufficient
to drive human research on identifying and detecting stromatolites in different geological
backgrounds. In an extreme space environment, weathering will drive the dusting of this
kind of biominerals. Finding and quantifying this kind of biominerals is a vital work to
look for the “relics” of Martian life in the future.
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In this study, for the first time, a laboratory simulation analysis study was conducted
to identify and quantify the SPs powder in SS. SPs powder no longer possesses macro-
scopic and microscopic morphological characteristics, making it difficult to evaluate them
effectively through microscopic images or Raman mapping. This study first identifies and
quantifies the main and trace elements in SS to verify the potential application of remote-
LIBS in quantifying the elemental content of SS. Second, machine learning algorithms are
used to achieve dimensionality reduction clustering of high-dimensional data, analyze the
recognition problem of SPs, and evaluate their detection limits in SSs. Finally, the concentra-
tion of SPs was quantified using neural network algorithms. By introducing the molecular
emission spectrum (molecular laser-induced fluorescence, MLIF), the feasibility of using
LIBS to discover biominerals powder in SS has been confirmed. The remote application
proposed is from the Mars Rover arm, already designed and realized with a LIBS probe
operating at 7 m distance. Therefore, this study is a fundamental study aimed at further
analyzing the measured LIBS data on Mars.

2. Materials and Methods
2.1. Sample Description and Preparation

The article used 28 certified reference materials (CRMs) and 1 typical stromatolite
phosphate rock (SP). The content of CRMs is shown in Table 1, including 16 chemical com-
positions of stream sediments (CCSSs), 4 chemical compositions of floodplain sediments
(CCFSs), and 8 chemical compositions of soils (CCSs). The preparation process for the
collected CCSSs, CCFSs, and CCSs samples is as follows: after drying, impurity removal,
coarse crushing, passing through a 1 mm sieve, and drying at a temperature above 100 ◦C
for 24 h, removing water, inactivating, and grinding with a high alumina ceramic ball mill
until the particle size is less than 80 µm (accounting for more than 99%). The geographi-
cal and climatic characteristics of the sampling area are diverse, with temperature zones
covering the temperate, warm temperate, subtropical, tropical, and Qinghai Tibet Plateau
regions. The climatic characteristics of the sampling area include temperate monsoon
climate, temperate continental climate, subtropical monsoon climate, tropical monsoon
climate, and plateau mountain climate. The dry and wet characteristics of the sampling
area include humid, semi-humid, arid, and semi-arid regions, as shown in Figure 1a. Using
the SS of the Yangtze River in Wuhan as the geological background, 21 types of mineral
mixed powders (MMPs) were prepared by mixing SP powder with CRM (GBW07309)
in the proportion shown in Table 2. The research team purchased all CRMs mentioned
in the paper from Weiye Metrology and Technology Research Group Co., Ltd., Beijing,
China (http://www.bzwz.com) (accessed on 23 May 2023). Readers can obtain all detailed
information of CRMs by searching for the reference IDs.
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Table 1. The abundance of the major, minor, and trace elements (wt.%) and its geographical location of the 28 CRMs.

Sample
Name Geographic Location Reference

ID SiO2 * Al2O3 * TFe2O3 * TiO2 * CaO * MgO * K2O * Na2O * Li ** Be ** Sr ** Ba ** Rb **

CCSS1 the Yangtze River in Wuhan GBW07309 64.89 10.58 4.86 0.92 5.35 2.39 1.99 1.44 430 1.8 30 80 166
CCSS2 Namco, Tibet GBW07377 63.48 14.10 5.16 0.61 0.83 3.78 2.35 3.04 460 2.6 38 154 78

CCSS3 Skarn type copper deposit area in Tongling City,
Anhui Province GBW07305a 69.33 13.40 5.27 0.77 0.77 1.29 2.59 0.64 681 2.5 42 129 78

CCSS4 Lead-zinc mining area in Kaiyuan City, Liaoning
Province GBW07307a 68.3 11.02 4.18 0.68 2.96 2.50 1.83 2.27 437 1.6 37 63 236

CCSS5 Acidic volcanic rock area in Fengshun County,
Guangdong Province GBW07308a 73.58 13.25 3.70 0.48 0.17 0.47 4.31 0.38 620 3.5 22 232 52

CCSS6 Carbonate Region of Yishan County, Guangxi
Province GBW07310 88.89 2.84 3.86 0.21 0.7 0.12 0.13 0.04 42 0.9 13 9.2 25

CCSS7 Shizhuyuan Polymetallic Mining Area in Chenxian
County, Hunan Province GBW07311 76.25 10.37 4.39 0.35 0.47 0.62 3.28 0.46 260 26 71 408 29

CCSS8 Polymetallic mining area in Yangchun City,
Guangdong Province GBW07312 77.29 9.30 4.88 0.25 1.16 0.47 2.91 0.44 206 8.2 39 270 24

CCSS9 Huokeqi Polymetallic Mining Area, Inner
Mongolia GBW07358 69.4 11.06 7.00 0.53 2.96 1.70 2.35 1.40 455 2.2 20.7 96 171

CCSS10 Langshan Old Metamorphic Rock Region, Inner
Mongolia GBW07359 74.33 11.65 1.79 0.24 2.85 0.71 2.96 2.85 600 3.6 40 118 253

CCSS11 Xiaoxilin Lead Zinc Mining Area in Yichun City,
Heilongjiang Province GBW07360 61.96 12.94 3.80 0.49 2.08 1.29 3.17 2.09 623 2.9 23.6 139 156

CCSS12 Granite District in Mudanjiang City, Heilongjiang
Province GBW07361 77.42 11.44 1.86 0.25 0.85 0.18 3.89 2.53 1054 1.6 8.1 81 167

CCSS13 Ping’an County, Qinghai Province GBW07363 54.17 13.94 7.84 0.89 4.66 5.36 2.35 1.33 360 1.3 19.4 39 251

CCSS14 Xiaorequanzi Copper Mine Area in Turpan City,
Xinjiang GBW07364 63.12 13.08 4.80 0.55 2.01 4.09 3.15 2.44 727 1.5 16.2 53 355

CCSS15 Yinshan Polymetallic Mining Area in Dexing
County, Jiangxi Province GBW07366 64.35 13.61 7.05 0.75 1.25 1.64 0.41 2.76 590 2.4 38 130 13

CCSS16 Yuzhuangzi Village, Tanggu District, Tianjin
City—Haihe River Basin GBW07390 56.47 14.45 5.76 0.66 5.65 2.66 2.68 1.55 558 2.4 45 111 202

CCFS1 Xinhe Town, Hanchuan City, Hubei
Province—Hanshui River Basin GBW07387 62.79 14.85 5.92 0.82 2.10 2.16 2.65 1.44 800 2.5 44 114 136

CCFS2 Wuyao Village, Chuzhou City, Anhui
Province—Huaihe River Basin GBW07388 67.33 14.49 5.52 0.77 1.09 1.34 2.07 1.26 574 2.4 40 108 115

CCFS3 Songhuang Village, Binzhou City, Shandong
Province—Yellow River Basin GBW07389 59.68 12.62 4.73 0.62 6.91 2.24 2.40 1.62 511 2.1 39 100 201

CCFS4 Loess in Luochuan County, Shaanxi Province GBW07408 58.61 11.92 4.48 0.63 8.27 2.38 2.42 1.72 480 1.9 35 96 236
CCS1 the Yellow River in Rizhao City GBW07451 68.23 13.89 4.06 0.63 1.09 1.47 2.97 2.84 749 2.1 36 108 202
CCS2 Mudflat of in the East China Sea, Xiangshan GBW07452 59.8 13.92 5.54 0.83 4.21 2.61 2.64 1.91 441 2.3 50 123 154

CCS3 Saline-alkali soil in Hangjinhou Banner, Inner
Mongolia GBW07447 60.4 10.56 3.63 0.53 6.8 2.58 2.11 3.05 459 1.7 32 86 242

CCS4 Saline-alkali soil in Shanshan County, Xinjiang GBW07449 47.28 10.39 4.12 0.55 6.48 2.98 1.99 8.99 356 1.3 27 63 435
CCS5 Calcareous soil in Shihezi City, Xinjiang GBW07450 60.3 11.96 4.07 0.62 7.4 2.04 2.43 2.02 510 1.6 28 85 205
CCS6 Mudflat in the South China Sea, Yangjiang City GBW07453 69.11 13.58 4.97 0.75 0.34 1.16 2.48 0.83 340 2.7 55 139 55

CCS7 Qibaoshan skarn copper polymetallic mining area,
Hunan Province GBW07405 52.57 21.58 12.62 1.05 0.10 0.61 1.50 0.12 296 2 56 117 42

CCS8 Basalt laterite in Xuwen County, Guangdong
Province GBW07407 32.69 29.26 18.76 3.37 0.16 0.26 0.20 0.08 180 2.8 19.5 16 26

*: The representative quality score is ×10−2. **: The representative quality score is ×10−6.
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Table 2. The abundance of the major and trace elements (wt.%) of the 21 MMPs.

Sample
Name CCSS1 (%) SP (%) SiO2 * Al2O3 * TFe2O3 * TiO2 * CaO * MgO * K2O * Na2O * F ** P **

SPCCSS1 100 0 64.89 10.58 4.86 0.92 5.35 2.39 1.99 1.44 494 670
SPCCSS2 95 5 61.88 10.08 4.66 0.88 7.29 2.64 1.90 1.37 558 1299
SPCCSS3 90 10 58.87 9.59 4.47 0.83 9.22 2.88 1.81 1.31 621 1929
SPCCSS4 85 15 55.86 9.09 4.27 0.79 11.16 3.13 1.71 1.24 685 2558
SPCCSS5 80 20 52.86 8.59 4.08 0.74 13.09 3.38 1.62 1.17 748 3188
SPCCSS6 75 25 49.85 8.10 3.88 0.70 15.03 3.63 1.53 1.11 812 3817
SPCCSS7 70 30 46.84 7.60 3.68 0.65 16.96 3.87 1.44 1.04 875 4447
SPCCSS8 65 35 43.83 7.10 3.49 0.61 18.90 4.12 1.35 0.97 939 5076
SPCCSS9 60 40 40.82 6.60 3.29 0.56 20.83 4.37 1.25 0.91 1002 5706

SPCCSS10 55 45 37.81 6.11 3.10 0.52 22.77 4.61 1.16 0.84 1066 6335
SPCCSS11 50 50 34.81 5.61 2.90 0.48 24.71 4.86 1.07 0.78 1130 6965
SPCCSS12 45 55 31.80 5.11 2.70 0.43 26.64 5.11 0.98 0.71 1193 7594
SPCCSS13 40 60 28.79 4.62 2.51 0.39 28.58 5.35 0.89 0.64 1257 8223
SPCCSS14 35 65 25.78 4.12 2.31 0.34 30.51 5.60 0.79 0.58 1320 8853
SPCCSS15 30 70 22.77 3.62 2.12 0.30 32.45 5.85 0.70 0.51 1384 9482
SPCCSS16 25 75 19.76 3.13 1.92 0.25 34.38 6.10 0.61 0.44 1447 10,112
SPCCSS17 20 80 16.75 2.63 1.72 0.21 36.32 6.34 0.52 0.38 1511 10,741
SPCCSS18 15 85 13.75 2.13 1.53 0.16 38.25 6.59 0.43 0.31 1574 11,371
SPCCSS19 10 90 10.74 1.63 1.33 0.12 40.19 6.84 0.33 0.24 1638 12,000
SPCCSS20 5 95 7.73 1.14 1.14 0.07 42.12 7.08 0.24 0.18 1701 12,630
SPCCSS21 0 100 4.72 0.64 0.94 0.03 44.06 7.33 0.15 0.11 1765 13,259

*: The representative quality score is ×10−2. **: The representative quality score is ×10−6.

The preparation of experimental targets mainly includes the sample preparation and
demolding processes; the detailed process is shown in Figure 1b. It should be emphasized
that the sample preparation process involves laying a layer of boric acid powder first,
followed by a layer of CRM powder. Boric acid is prone to molding under strong pressure,
so in this study, boric acid was selected as the substrate for CRM. The pressure exerted by
the tablet press on the sample is 250 MPa (lasting 5 min).

2.2. Experimental Device

The experimental setup built by the team is shown in Figure 2. The system can be
divided into four parts: signal excitation (collection) system, signal acquisition system,
digital delay control system, and sample movement platform. The signal excitation (col-
lection) system mainly comprises the pulse laser, the improved Cassegrain optical system,
the smit mirror, and other main components. The system is primarily responsible for
using the pulse laser to generate plasma emission and collecting the generated LIBS signal;
The signal acquisition system is mainly composed of Avantes multi-channel spectrometer,
which is primarily responsible for collecting spectral signals covering deep ultraviolet to
near-infrared using multiple portable spectrometers. The digital delay control system is
composed mainly of a pulse delay generator DG645, which is primarily responsible for
using the synchronous delay to control the signal acquisition time sequence of the laser
and spectrometer, and achieve accurate pickup of single pulse signals. The sample moving
platform is mainly composed of a rotating platform and a vacuum chamber, primarily
responsible for using the rotating platform to replace experimental targets automatically.
In addition, the vacuum chamber can simulate simulated environmental experiments with
different atmospheres and pressures. It should be noted that this study only simulated the
atmospheric pressure of Mars in the vacuum chamber and did not fill it with the simulated
Martian atmosphere. The pulsed laser is an Nd: YAG Q-switched laser (Lapa-80, Beamtech
Optronics Co., Ltd., Beijing, China), with a laser wavelength of 1064 nm, a pulse width of
8 ns, a maximum pulse energy of 80 mJ, and a maximum repetition frequency of 20 Hz.
8-channel spectrometer (AVS-RACKMOUNT-USB2, AvaSpec Multi-Channel Spectrometer,
Avantes Co., Ltd., Apeldoorn, The Netherlands) with a slit of 10 µm for each channel. The
spectral acquisition ranges of the eight channels are 200~320, 318~420, 417~505, 500~565,
565~670, 668~750, 745~930, and 920~1070 nm. The spectral resolution of the first channel to
the fourth channel is 0.09 to 0.13 nm, the spectral resolution of the fifth and sixth channels
is 0.1 to 0.18 nm, and the spectral resolution of the seventh and eighth channels is 0.2 to
0.28 nm. The exposure time of a single LIBS is 1 ms, and a single LIBS corresponds to a
signal generated by one laser pulse. The distance between the experimental target and
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the device is 7 m, and the time collected by the spectrometer is 159 microseconds and
898 nanoseconds later than the laser trigger time. At a working distance of 7 m, the focal
spot diameter of the pulsed laser on the sample surface is less than 200 µm.
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Figure 2. Structural diagram of sample and experimental system.

As shown in Figure 2, the process of plasma emission generated by the contact between
a pulse laser and the sample target material includes a pulse laser focusing on the target,
small plasma, and insertion dots, forming plasma, emission of continuous light, and
emission of discrete atomic lines. Therefore, the digital delay control system selects the
period of emission of atomic and molecule lines by adjusting the time sequence of the laser
and spectrometer.

2.3. Spectral Data Preprocessing

The preprocessing of spectral data mainly includes baseline correction, noise reduction,
redundant data deletion, mean normalization, multi-channel stitching, and other steps.
Baseline correction is essential in removing the influence of the instrument’s dark current,
background noise interference, and continuous light. Through baseline correction, more
pure LIBS signals can be extracted. Noise reduction is the process of reducing noise in
spectral signals, further highlighting the inherent characteristics of LIBS signals. Redundant
data deletion refers to the removal of spectral segments without signal response, achieving
the effect of reducing data dimensionality by deleting useless data. Normalization is an
essential means to reduce the impact of factors such as laser energy jitter, defocusing, and
different detection distances on LIBS data. Multi-channel stitching is the best scheme
to realize LIBS spectral coverage from deep ultraviolet to near-infrared high spectral
resolution detection. Figure 3 shows some core processes of spectral data preprocessing
implemented, including baseline correction, noise removal, redundant data deletion, and
mean normalization. It is worth emphasizing that the data processing of each channel above
is conducted separately and without interference with each other. This article uses baseline
estimation and denoising using sparsity (BEADS) algorithm in the baseline correction
and noise reduction process. Some parameters of the BEADS algorithm require human
intervention to achieve the optimal processing effect through regulation [26,27]. The three
essential core parameters are distinguished as off frequency (fc), filter order parameter (d),
and geometry parameter (r), where fc is 0.01, d is 1.0, and r is 6.
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2.4. Building Quantitative Analysis Models

In terms of data processing, Matlab R2020a (Massachusetts Institute of Technology,
Natick, MA, USA) is used for data analysis and scientific drawing, respectively. This
study detected 28 types of CRMs targets, each of which collected 30 LIBS spectra, forming
840 spectral datasets. The training set, validation set, and test set were randomly generated
in a ratio of 14:3:3. Construct a quantitative analysis model for major, minor, and trace
elements based on the dataset, where major element oxides include SiO2, Al2O3, TFe2O3,
TiO2, CaO, MgO, K2O, and Na2O, and other elements include Ba, Be, Li, Rb, and Sr.

The original high-dimensional data contains a large amount of redundant information,
which can introduce errors in practical applications and affect the results of qualitative and
quantitative analysis. By reducing the dimensionality of the data and extracting feature
values, useful information can be picked up, and useless information can be eliminated,
making it easier to calculate and visualize. The two commonly used dimensionality reduc-
tion methods are principal component analysis (PCA) [28] and multidimensional scaling
(MDS) [29]. The most significant difference between MDS and PCA is that MDS focuses
on the internal features of high-dimensional data rather than preserving the maximum
separability of the data. As a result, MDS can maintain the relative relationship of high-
dimensional data in the original space without requiring prior knowledge and simple
calculation, resulting in better visualization results. The back propagation neural network
(BPNN) is a classic neural network structure composed of three layers: the input layer,
the hidden layer, and the output layer. The hidden layer transmits essential information
between the input and output layers. When faced with complex problems, BPNN can be
composed of multiple hidden layers to form a deep learning network, which can realize the
fitting of multi-input and multi-output arbitrary nonlinear functions through the nesting
of multiple functions [30–32]. Figure 4a,b show single-neuron mathematical models and
BPNN neural network structures.

Figure 4c shows the LIBS spectra of 28 CRMs. The major elements contribute most
of the characteristic information of the target LIBS spectrum. Therefore, for the quantita-
tive analysis of the major elements, the MDS dimensionality reduction method of the full
spectrum is adopted, that is, while removing the redundant information, extracting the
characteristic values, and retaining the relative relationship of the high latitude data. Then,
BPNN quantitative analysis model is constructed. The spectral lines of minor and trace ele-
ments such as Ba, Be, Li, Rb, and Sr are relatively simple and account for a small proportion
of the spectrum of the whole spectrum. Therefore, first, the characteristic spectral peaks
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of these elements are selected by human intervention (Figure 4d), and all spectral peaks
are spliced for MDS dimensionality reduction processing. Then, the BPNN quantitative
analysis model is constructed by the low latitude data after dimensionality reduction.
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3. Results
3.1. LIBS Spectra of CRMs and Its MDS Dimensionality Reduction Visualization

Each CRM has 30 spectra, so we can obtain 840 preprocessed spectral data and char-
acteristic peak splicing curves for the quantitative analysis of major and other elements,
respectively. We will perform MDS dimensionality reduction on these data and select
the first three dimensions of data to present the clustering features of the dimensionality
reduction data, as shown in Figure 5. Figure 5a–c show the MDS dimensionality reduced
3D visualization of LIBS spectral data for 28 CRMs from different angles. Figure 5d–f show
the MDS dimensionality reduced 3D visualization of LIBS peak splicing curves for minor
and trace elements of 28 CRMs from different angles. The experimental results in Figure 5
indicate that regardless of the full LIBS spectrum and feature peak splicing curve dataset,
the dimensionality reduction data of each type of CRMs has good clustering performance,
and there are significant differences among different CRMs. This clustering effect benefits
from MDS projecting high-dimensional data into a low-dimensional space, making similar
objects in the high-dimensional space closer together in the low-dimensional space. The
dimensionality reduction data provides a basis for qualitative analysis of mineral categories
and quantitative analysis of major and other elements in minerals.

3.2. Quantitative Analysis of Major Element Oxides

The structure of the quantitative analysis model of the BPNN consists of four hidden
layers, and the number of neurons in each layer is 35, 15, 12, 10. The activation function uses
the sigmoid function, with a learning rate of 0.01, a maximum training number of 100, and
a minimum error of 0.05. We divide the training set, validation set, and test set into a ratio
of 14:3:3 and construct a BPNN quantitative analysis model. In the training process of the
BPNN quantitative analysis model, dimensionality reduction data of the entire spectrum
is used as the model input, and the content of eight major element oxides is used as the
model output. The overall prediction performance of the eight main element quantitative
analysis models is shown in Figure 6. Figure 6a shows the quantitative analysis effect of
the major element oxides in the LIBS spectral training sets of CRMs, Figure 6b shows the
quantitative analysis effect of the major element oxides in the LIBS spectral validation sets
of CRMs, and Figure 6c shows the quantitative analysis effect of the major element oxides
in the LIBS spectral testing sets of CRMs.
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To further compare the predictive effects of BPNN quantitative analysis on eight major
element oxides, the prediction results of the test set were analyzed separately by different
element, as shown in Figures 7 and 8. The results showed that except for TiO2 and K2O.
The coefficients of determination (R2) of the quantitative analysis results for the other six
major element oxides were all greater than 0.9671, and the root mean square error (RMSE)
was less than 0.75. The quantitative analysis results of TiO2 and K2O have R2 values of
0.755 and 0.895, respectively, and RMSE values of 0.20 and 0.31, respectively. The content of
TiO2 and K2O in 28 types of CRMs is relatively low, resulting in insignificant characteristics
in LIBS spectra. In high-dimensional data compression, the extracted features of these two
elements are not apparent, so the predictive effect of BPNN quantitative analysis on these
two elements is average.
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MgO; (g) quantification effect of K2O; (h) quantification effect of Na2O.
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Figure 8. Residual and uncertainty of eight major element oxides in the test set based on MDS-BPNN
model: (a) residual and uncertainty of SiO2; (b) residual and uncertainty of Al2O3; (c) residual and
uncertainty of TFe2O3; (d) residual and uncertainty of TiO2; (e) residual and uncertainty of CaO;
(f) residual and uncertainty of MgO; (g) residual and uncertainty of K2O; (h) residual and uncertainty
of Na2O.

Table 3 shows the analysis methods for the reference values of CRMs. Through this
series of detection methods, the determination accuracy of the reference values of CRMs
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can be maximized. However, each detection technology has certain errors, so the reference
values of major and other elements determined by them have certain uncertainties. Figure 8
is a comparison diagram of residual error and reference value uncertainty predicted by
quantitative analysis of BPNN of major element oxides. The results show that the residual
error indicated by the BPNN quantitative analysis model and the uncertainty of its reference
value is almost in the same order of magnitude, which shows that the quantitative accuracy
of the model is relatively reliable.

Table 3. Quantitative analysis methods for major, minor, and trace elements of the 28 CRMs.

Element Analysis Method

SiO2 GR XRF VOL
Al2O3 VOL ICPES XRF ICPMS

TFe2O3 ICPES COL XRF VOL INAA
Ti XRF ICPES COL ICPMS

CaO ICPES XRF VOL AAS
MgO ICPES VOL XRF AAS ICPMS
K2O ICPES AAS XRF INAA

Na2O ICPES AAS XRF INAA
F ISE
P XRF ICPES COL ICPMS

Ba ICPMS XRF INAA
Be ICPES ICPMS
Li ICPES ICPMS AAS
Rb XRF ICPMS ICPES AAS INAA
Sr XRF ICPMS ICPES

GR: Gravimetry; XRF: X-ray Fluorescence Spectrometer; VOL: Volumetry; ICPES: Inductively Coupled Plasma
Spectrometry; ICPMS: Inductively Coupled Plasma-Mass Spectrometry; COL: Colorimetry; INAA: Instrumental
Neutron Activation Analysis; AAS: Atomic Absorption Spectrometry.

3.3. Quantitative Analysis of Minor and Trace Elements

The structure of the minor and trace elements BPNN quantitative analysis model
is the same as that of the major element oxides BPNN quantitative analysis model. The
difference lies in human intervention, selection of characteristic spectral peaks of elements
such as Ba, Be, Li, Rb, and Sr, and spliced of all spectral peaks for MDS dimensionality
reduction. Then, the dimensionality reduced low latitude data is used to construct the
BPNN quantitative analysis model. The overall prediction effect of the five minor and
trace elements quantitative analysis models is shown in Figure 9. Figure 9a shows the
quantitative analysis effect of the minor and trace elements in the LIBS peaks spliced curves
training sets of CRMs, Figure 9b shows the quantitative analysis effect of the minor and
trace elements in the LIBS peaks spliced curves validation sets of CRMs, and Figure 9c
shows the quantitative analysis effect of the minor and trace elements in the LIBS peaks
spliced curves testing sets of CRMs.

To further compare the predictive effects of BPNN quantitative analysis on five minor
and trace elements, the predicted results of the test set were statistically analyzed separately
by element category, as shown in Figure 10. The results showed that except for Be and Sr,
the R2 of the quantitative analysis results for the other three elements were all better than
0.8, and the RMSE was better than 50. The R2 of the quantitative analysis results for Be and
Sr were 0.425 and 0.514, respectively, and the RMSE were 3.936 and 9.88, respectively. The
content of Be and Sr in 28 types of CRMs is relatively low, resulting in insignificant charac-
teristics in LIBS spectra. In high-dimensional data (spliced curves), the extracted features of
these two elements are not apparent, so the predictive effect of BPNN quantitative analysis
on these two elements is average. Figure 10f–j were comparison diagrams of residual error
and reference value uncertainty predicted by quantitative analysis of BPNN of minor and
trace elements.
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of Sr; (d) quantification effect of Ba; (e) quantification effect of Rb; (f) residual and uncertainty of Li;
(g) residual and uncertainty of Be; (h) residual and uncertainty of Sr; (i) residual and uncertainty of
Ba; (j) residual and uncertainty of Rb.

3.4. Identification and Quantitative Analysis of Fluoroapatite in SS

Each type of MMP randomly detected five points, and each point obtained 30 spectra,
meaning that each type of MMP collected 150 spectra. Figure 11a shows the average spec-
trum of 150 spectra for each of the 24 MMPs, Figure 11b shows the intensity of atomic peaks
of phosphorus with concentration, and Figure 11c shows the intensity of CaF molecular
emission spectrum with F concentration. The key to finding fluorapatite (Ca5F(PO4)3) in
SSs is the quantification of calcium, phosphorus and fluorine. The abundance of Ca can be
predicted by the quantitative model of major element oxides of MDS-BPNN, and the results
are shown in Figure 12a. The quantification of phosphorus and fluorine elements can refer
to the process of establishing trace element quantification, which involves constructing a
quantitative prediction model for phosphorus and fluorine element abundance through
splicing characteristic spectral peaks. The results are shown in Figure 12b–f.
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Figure 12. Quantitative prediction of CaO, F and P elements based on MDS-BPNN model: (a) Quan-
titative prediction of CaO in MMPs based on MDS-BPNN model; (b) quantification effect of F and
P elements in the training set; (c) quantification effect of F and P elements in the validation set;
(d) quantification effect of F and P elements in the test set; (e) quantification effect of F in the test set
based on MDS-BPNN model; (f) quantification effect of P in the test set based on MDS-BPNN model.



Chemosensors 2023, 11, 377 14 of 19

The average spectrum of MMPs in Figure 11 shows a positive correlation between
element abundance and peak intensity. As element abundance increases, the intensity
of the atomic or molecular emission spectra they produce also increases. However, this
weak signal is highly susceptible to uneven sample mixing. Therefore, the residual of the
predicted values for the abundance of F and P elements in the model is relatively large.

4. Discussion
4.1. Discussion on Quantitative Analysis Results and Geological Background of CRMs

Among the eight major element oxides of 28 CRMs, the content of TiO2 is relatively
low, and the LIBS characteristic peak intensity of Ti element is weaker than that of active
metals. Therefore, the characteristic spectrum of Ti is not apparent in LIBS, indicating
a lack of obvious characteristic information. As a result, the MDS-BPNN model has the
worst predictive effect on TiO2. Although the content of CaO, MgO, K2O, and Na2O is also
low, as these major elements (Ca, Mg, K, and Na) will generate strong LIBS characteristic
spectra, the MDS-BPNN model has a good prediction effect on these four oxides. Figure 13a
shows the boxplot of eight major element oxides abundances for 28 types of CRMs, and
Figure 13b shows the boxplot of five minor and trace element abundances for 28 types
of CRMs. Among these elements, the content of Be and Sr is generally low, and their
characteristic spectral peaks are weak. Therefore, the quantitative analysis effect of the
model on these two elements is poor.
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China has a vast territory and diverse geography and climate. Therefore, this study
selected 28 typical sampling areas in China. The temperature zones of the sampling areas
cover the middle temperate zone, warm temperate zone, subtropical zone, tropical zone,
and Qinghai Tibet Plateau. The climate characteristics of the sampling areas include
temperate monsoon climate, temperate continental climate, subtropical monsoon climate,
tropical monsoon climate, and plateau mountain climate. The sampling areas’ dry and wet
characteristics include humid areas, arid, and semi-arid regions. Therefore, conducting
laboratory research on detecting major, minor, and trace elements in CCSSs, CCFSs, and
CCSs based on remote-LIBS has essential reference value for analyzing measured Martian
soil data.

For the quantitative analysis results of the abundance of F and P elements, it is likely
that the main factor affecting the predictive performance of the model is the uneven mixing
of the two substances during the sample preparation process, which results in a certain
spectral jitter in the 150 spectral data obtained for each concentration. This jitter is caused by
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the uneven composition of the ablated substance, as shown in Figure 14, with 3150 spliced
spectra corresponding to the 21 MMPs.

Chemosensors 2023, 11, x FOR PEER REVIEW 16 of 20 
 

 

by the uneven composition of the ablated substance, as shown in Figure 14, with 3150 
spliced spectra corresponding to the 21 MMPs. 

 
Figure 14. Splicing of 3150 LIBS-MLIF spectral peaks from 21 MMPs; (a) splicing of LIBS-MLIF spec-
tral peaks of F and P elements (2D); (b) splicing of LIBS-MLIF spectral peaks of F and P elements 
(3D). 

4.2. The Significance of Searching for Biominerals in SS 
Mars is the most similar planet to Earth in the solar system. Due to its rich ancient 

water activity and warm and humid ancient climate, Mars has always been a popular 
planet for human deep space exploration [33]. The ancient rivers, lakes, and deltas on 
Mars, rich in sediment, have become the preferred candidate areas for human probes to 
land on Mars and conduct patrols [34]. The Perseverance Mars rover is conducting de-
tailed exploration in the delta intending to search for extraterrestrial life “relics” [35,36]. 
LIBS is a significant payload for remote analysis of mineral categories and qualitative and 
quantitative elements analysis. It can achieve rapid, in situ, and multi-functional detection 
and research and is a “sharp tool” for quickly screening potential life indicator minerals 
in large areas. 

The complex physical and chemical matrix effects are the main factors affecting the 
accuracy of LIBS quantitative analysis [37]. Therefore, conducting quantitative research 
on major and trace elements in the geological background of CCSSs, CCFSs, and CCSs in 
sediments and soils has essential reference value for interpreting measured data in similar 
geological environments on Mars. This study focuses on 28 CRMs with Earth representa-
tive sediments and soils, demonstrating the performance and potential applications of 
LIBS in the rapid quantification of major, minor, and trace elements. 

Life-indicating minerals are a type of biominerals that have the potential to preserve 
traces of life. During their formation, organisms directly or indirectly participate in the 
“growth” of minerals. Weathering is an essential factor affecting the preservation of Mar-
tian biominerals [38]. Assuming that this type of mineral exists on Mars and is preserved 
in river sediments after weathering, conducting analogical studies of the geological envi-
ronment in which this type of life indicator mineral may be located in the laboratory is of 
great significance for discovering and identifying life indicator minerals on Mars. The re-
sults of this study prove that MLIF generated based on LIBS is an effective potential tech-
nology to identify biominerals. MLIF can carry out remote in situ rapid screening of bio-
minerals such as fluorapatite or fluorocarbon apatite and quantitatively analyze the dust-
ing substances formed by weathering. 

  

Figure 14. Splicing of 3150 LIBS-MLIF spectral peaks from 21 MMPs; (a) splicing of LIBS-MLIF spectral
peaks of F and P elements (2D); (b) splicing of LIBS-MLIF spectral peaks of F and P elements (3D).

4.2. The Significance of Searching for Biominerals in SS

Mars is the most similar planet to Earth in the solar system. Due to its rich ancient
water activity and warm and humid ancient climate, Mars has always been a popular planet
for human deep space exploration [33]. The ancient rivers, lakes, and deltas on Mars, rich
in sediment, have become the preferred candidate areas for human probes to land on Mars
and conduct patrols [34]. The Perseverance Mars rover is conducting detailed exploration
in the delta intending to search for extraterrestrial life “relics” [35,36]. LIBS is a significant
payload for remote analysis of mineral categories and qualitative and quantitative elements
analysis. It can achieve rapid, in situ, and multi-functional detection and research and is a
“sharp tool” for quickly screening potential life indicator minerals in large areas.

The complex physical and chemical matrix effects are the main factors affecting the
accuracy of LIBS quantitative analysis [37]. Therefore, conducting quantitative research
on major and trace elements in the geological background of CCSSs, CCFSs, and CCSs in
sediments and soils has essential reference value for interpreting measured data in similar
geological environments on Mars. This study focuses on 28 CRMs with Earth representative
sediments and soils, demonstrating the performance and potential applications of LIBS in
the rapid quantification of major, minor, and trace elements.

Life-indicating minerals are a type of biominerals that have the potential to preserve
traces of life. During their formation, organisms directly or indirectly participate in the
“growth” of minerals. Weathering is an essential factor affecting the preservation of Martian
biominerals [38]. Assuming that this type of mineral exists on Mars and is preserved in river
sediments after weathering, conducting analogical studies of the geological environment
in which this type of life indicator mineral may be located in the laboratory is of great
significance for discovering and identifying life indicator minerals on Mars. The results of
this study prove that MLIF generated based on LIBS is an effective potential technology to
identify biominerals. MLIF can carry out remote in situ rapid screening of biominerals such
as fluorapatite or fluorocarbon apatite and quantitatively analyze the dusting substances
formed by weathering.

4.3. The Scientific Research Value of Conducting Analogical Research on the Ground

The Martian atmosphere and water escape caused it to stop most of the chemical
weathering, thus preserving the evolution process of early Mars, which has significant
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reference value for humans to study Mars and to help understand the early geological
evolution history and origin of life on Earth [39]. Although most of the chemical weathering
has stopped, the wind erosion (Martian physical weathering) caused by the collision of
wind-moving particles continues to ravage the whole planet of Mars, and the physical
weathering results in the exposure of fresh materials to a high radiation environment,
causing a certain degree of chemical weathering [40]. Assuming that Mars experienced an
evolutionary process similar to early life on Earth during warm and humid periods and
produced many stromatolites, incredibly unique biological sedimentary structures such as
SPs. However, under the long Martian weathering, such biological sedimentary structures
exposed on the surface of Mars may gradually become dusty, thus losing the macro and
micro characteristics. How to discover this type of material in SS is an important research
topic for future human remote sensing in situ detection of the composition of Martian
surface materials. It is expected to solve the major scientific problem of whether there has
been earthlike life on Mars. It is also essential for selecting potentially significant scientific
targets in sampling missions for Mars.

4.4. Limitations of Ground Simulation Experiments

For a specific geological background, ground simulation experiments can verify the
application potential of LIBS-MLIF technology in the search for SPs, which can help scien-
tists to further analyze the measured data on Mars to the maximum extent and can also
provide technical reserves and references for future exploration of Mars exploration and
sample-return mission to the Earth. However, ground simulation experiments inevitably
have problems, such as the inherent heterogeneity of these samples. Although the samples
used in the simulation experiment have undergone a series of pre-treatment, the actual
Martian environment is not only cold and dry (with almost no liquid water) but also
has intense radiation. The minerals on Mars have undergone a long process of chemical
and physical weathering. Therefore, subsequent ground simulation experiments need to
consider more factors, such as changes in chemical composition or physical properties
caused by radiation.

5. Conclusions

This article applies laser-induced breakdown spectroscopy to remote detection of
major, minor, and trace elements in SS. This experiment aims to evaluate the efficient
remote in situ detection of SS in a large-scale area. Real-time detection of the chemical
composition of SS is an important research content in fields such as geological exploration
and deep space extraterrestrial life detection. Therefore, ground experiments on SS and its
mixed substances containing life-indicating minerals have essential reference values for real-
time detection of material composition and evaluation of potential life-indicating minerals.
This article proposes a method based on MDS-BPNN combined with LIBS-MLIF to detect
the composition and content of elements in SS. Taking SP as a potential indicator mineral of
extraterrestrial life, it is assumed that under weathering, the macro and micromorphology
of the stromatolite biological sedimentary structures disappear and become dust. The
identification and quantification of SP mixed with SS are discussed for the first time, and
the reference value of SP in extraterrestrial life detection is comprehensively considered.

We have demonstrated that combining MDS-BPNN with LIBS-MLIF can become a
feasible method for efficiently quantifying major, minor, and trace elements in SS over a
wide range of regions. In addition, we have specifically studied its potential application in
deep-space extraterrestrial life detection.

We realize that in extreme extraterrestrial environments, chemical weathering can alter
the specific composition of SP powder, which may lead to false negatives or false positives in
identifying life-indicating minerals. This is a problem that must be considered in detecting
extraterrestrial life and an essential direction for the future development of this research.
We plan to conduct ground laboratory simulations of the combined effects of physical and
chemical weathering in different extreme environments. In summary, the failure to consider
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chemical weathering may affect the determination of life-indicating minerals. But this does
not negate the practicality of LIBS-MLIF technology in quantifying the abundance of F and
P elements and the potential application of extraterrestrial life detection.

6. Patents

No patent.
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