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Abstract: The structural and gas-sensitive properties of n-N SnO2/κ(ε)-Ga2O3:Sn heterostructures
were investigated in detail for the first time. The κ(ε)-Ga2O3:Sn and SnO2 films were grown by
the halide vapor phase epitaxy and the high-frequency magnetron sputtering, respectively. The
gas sensor response and speed of operation of the structures under H2 exposure exceeded the
corresponding values of single κ(ε)-Ga2O3:Sn and SnO2 films within the temperature range of
25–175 ◦C. Meanwhile, the investigated heterostructures demonstrated a low response to CO, NH3,
and CH4 gases and a high response to NO2, even at low concentrations of 100 ppm. The current
responses of the SnO2/κ(ε)-Ga2O3:Sn structure to 104 ppm of H2 and 100 ppm of NO2 were 30–47 arb.
un. and 3.7 arb. un., correspondingly, at a temperature of 125 ◦C. The increase in the sensitivity of
heterostructures at low temperatures is explained by a rise of the electron concentration and a change
of a microrelief of the SnO2 film surface when depositing on κ(ε)-Ga2O3:Sn. The SnO2/κ(ε)-Ga2O3:Sn
heterostructures, having high gas sensitivity over a wide operating temperature range, can find
application in various fields.

Keywords: κ(ε)-Ga2O3:Sn; SnO2; HVPE; magnetron sputtering; n-N heterostructure; gas sensors

1. Introduction

Sustainable development in terms of preserving the environment requires employ-
ment of a great number of sensors: biosensors, image sensors, motion sensors, and chemical
sensors for indoor and outdoor as well as for industry-relevant gas surveillance and control.
Wide bandgap metal oxide semiconductors tin dioxide (SnO2) and gallium oxide (Ga2O3)
are of high interest for the development of gas sensors and transparent contacts, finding
applications in a number of devices [1–6]. Heterostructures based on metal oxide semicon-
ductors allow the advantages of each component to be combined in a single structure [7].
Thus, superior gas-sensitive characteristics can be achieved for heterostructures compared
to single semiconductors. It is reasonable to combine semiconductors with high catalytic
activity and concentration of electrons, involved in the physico–chemical processes at
chemisorption of gas molecules on the semiconductor surface.
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SnO2 is one of the most studied metal oxide semiconductors for gas sensor applica-
tions [1] primarily due to its high catalytic activity, which leads to a high gas sensitivity
compared to other metal oxides. Chemisorption of gas molecules on the SnO2 surface
occurs with the involvement of free electrons. However, pure SnO2 does not have a high
electron concentration. Localization of electrons in this semiconductor can be achieved
by forming heterostructures. Ga2O3 with an electron affinity χ = 4.0 eV can be paired
with SnO2, which is characterized by χ = 5.32 eV [8], to form such a heterostructure. In
turn, Ga2O3 needs to be doped to achieve the required concentration of free electrons. In
this case, one can expect an increase in the sensitivity of such heterostructure to gases as
compared to pure SnO2 and Ga2O3 films.

Gallium oxide has several polymorphs [9–12] namely α, β, γ, δ, and κ(ε). Metastable
κ(ε)-Ga2O3 polymorph is of particular interest for the development of electronic devices
due to its fundamental properties [13] such as the thermal stability up to 700 ◦C; the high
bandgap Eg of 4.5–5.0 eV; availability of the ferroelectric properties; the high symmetry of
a crystal lattice. κ(ε)-Ga2O3 is a novel material in terms of sensors, since its gas sensitivity
was researched for the first time in 2022 [14]. We have demonstrated that κ(ε)-Ga2O3:Sn
films grown by the halide vapor phase epitaxy (HVPE) have a low resistance (i.e., high
electron concentration), stable characteristics in the temperature range from 20 ◦C to 500 ◦C,
and exhibit sensitivity to H2 at room temperature (RT) [14]. In addition, the κ(ε)-Ga2O3
polymorph meets the conditions of heteroepitaxy on a commercially available (0001) Al2O3
substrate better than monoclinic β-Ga2O3 [15]. Thus, doped κ(ε)-Ga2O3:Sn can be chosen
to pair with SnO2 to form a heterostructure.

SnO2/β-Ga2O3 and SnO2/κ(ε)-Ga2O3 heterostructures have previously been inves-
tigated for the development of power diodes [16,17] and solar-blind avalanche photode-
tectors with high sensitivity [8]. β-Ga2O3 nanostructures covered with ultrathin layers of
SnO2 demonstrated high sensitivity to ethanol at T = 400 ◦C [18] and to H2 in the range of
T = 25–200 ◦C [19]. The gas-sensitive properties of SnO2/κ(ε)-Ga2O3:Sn heterostructures
have not been studied before.

The purpose of this work is to gain insight into the gas-sensitive properties of SnO2/κ(ε)-
Ga2O3:Sn heterostructures.

2. Materials and Methods

The following films were deposited on (0001) single crystal Al2O3 substrates: κ(ε)-
Ga2O3:Sn and SnO2 thin films as well as SnO2/κ(ε)-Ga2O3:Sn heterostructure. The process
of the κ(ε)-Ga2O3:Sn films growth was multistage. In the first stage, a 3-µm-thick semi-
insulating (SI) GaN layer was deposited on the Al2O3 substrate by gas phase deposition
employing a homemade reactor. This layer served as a template for the κ(ε)-Ga2O3:Sn film
growth. In the second stage, a 1-µm-thick κ(ε)-Ga2O3 layer in situ doped by Sn was de-
posited on the SI-GaN layer by HVPE using a hot-wall homemade reactor. Gaseous gallium
chloride and oxygen were utilized as precursors. The doping of the κ(ε)-Ga2O3 films was
carried out during the growth by adding tin. The HVPE growth temperature of the κ(ε)-
Ga2O3:Sn film was 600 ◦C. The analysis of current–voltage (I–V) and capacitance–voltage
(C–V) characteristics applied at this stage showed that the effective donor concentration Nd
of the films was 5.13 × 1020 cm−3.

120-nm-thick pure SnO2 thin films were deposited by means of magnetron sputter-
ing of an Sn (5N) target in an oxygen–argon plasma on Al2O3 and κ(ε)-Ga2O3:Sn. An
Edwards A-500 (Edwards, USA) setup was employed. To prepare SnO2/κ(ε)-Ga2O3:Sn
heterostructures, SnO2 thin films were deposited through a mask with square-shaped slots
of 1 mm × 1 mm. The temperature of substrates during the deposition of the film was RT.
The working pressure and power were kept at 7 × 10−3 mbar and 70 W, respectively. The
oxygen concentration in the O2+Ar mixture was 56.1 ± 0.5 vol. %. The as-deposited SnO2
films were annealed ex situ at T = 600 ◦C; for 4 hours in air. The estimates showed that the
Nd value of these films was 5.26 × 1017 cm−3.
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Pt contacts were deposited on the κ(ε)-Ga2O3:Sn and SnO2 films (see Figure 1) by
means of the magnetron sputtering. Pt contacts were chosen on the basis of their high
stability at high temperatures and under exposure to various gases, which are of natural
surroundings- and industrial relevance.
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Figure 1. Schematic of the SnO2/κ(ε)-Ga2O3:Sn heterostructure.

X-ray diffraction (XRD) analysis of the samples was performed at DRON-6 diffractome-
ter (Bourevestnik, Petersburg, Russia) equipped with a copper anode (CuKα1, λ = 1.5406 Å).
The XRD patterns were registered in θ-2θ scanning mode. The phase composition of the
samples was identified by the position of the reflection peaks. XRD θ-2θ curves were
processed using the Scherrer method [20] to determine the characteristic size of the block
in the direction perpendicular to the plane of epitaxial growth.

The chemical composition of the samples was studied by X-ray photoelectron spec-
troscopy (XPS). The XPS measurements were carried out using a hemispherical analyzer
included in the ESCALAB 250Xi (Thermo Fisher Scientific, Waltham, MA, USA) labora-
tory spectrometer. The measurements were carried out using a monochromatized AlKa
radiation (hv = 1486.6 eV). Survey and core (O1s, Sn3d, Ga3d) photoemission (PE) spectra
were recorded at the analyzer transmission energy of 100 and 50 eV, respectively. The film’s
surface was irradiated with argon ions at an average energy of 3 eV for 60 s before XPS
measurements to remove adsorbed atoms and molecules of contaminants. The analysis of
the core spectra was processed employing the Avantage Data System software.

Measurement of transmission spectra was carried out using an Ocean Optics (Ocean
Insight, Orlando, FL, USA) spectrometric system to determine the Eg of SnO2 in the wave-
length range of λ = 300–600 nm. The transmission spectrum of κ(ε)-Ga2O3:Sn films was
measured using a UV-VIS two-beam SPECORD (Analytik Jena, Jena, Germany) spectropho-
tometer in the range of λ = 230–360 nm.

A high-resolution field emission scanning electron microscope (FESEM) Apreo 2S
(Thermo Fisher Scientific, USA) operating at an accelerating voltage of 5 kV was employed
to study the microrelief of the film surfaces with a high resolution.

Gas sensing measurements of the samples were performed in a dedicated sealed
chamber with a volume of 100 cm3, equipped with a micro-probe Nextron MPS-CHH
station (Nextron, Busan, Republic of Korea). A ceramic-type heater, installed in the sealed
chamber, was used to heat the samples. The accuracy of temperature T control was±0.1 ◦C.
The experiments were carried out under dark conditions. Streams of pure dry air or gas
mixture of pure dry air + H2 were pumped through the chamber to measure the gas sensing
characteristics of the samples. The H2 concentration in the mixture was controlled by a gas
mixing and delivery system Microgas F-06 (Intera, Moscow, Russia). A special generator
(Khimelektonika SPE, Moscow, Russia) was used to produce pure dry air. The total flow
rate of the gas mixtures through the chamber was 1000 sccm. The relative error of the
gas mixture flow rate did not exceed 1.5%. A Keithley 2636 A (Keithley, Solon, OH, USA)
source meter was utilized to measure the time dependences of the current I and the I–V
characteristics of the samples. An E4980A RLC-meter (Agilent, Santa Clara, CA, USA) was
applied to measure the C–V dependences. Additionally, gas sensing measurements of the
samples were carried out under exposure to NH3, CH4, CO, NO2, and O2. A mixture of
N2 + O2 was used to study the sensitivity of samples to O2. To study the effect of relative
humidity (RH) on the response of the samples to H2, the pure dry air in one of the channels
was passed through a bubbler with distilled water. Then it entered the homogenizer, where
it was mixed with the pure dry air and/or pure dry air + H2 mixture streams from the other
channels. Varying the ratio of flows through the channels, we set the desired level of RH in
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the measuring chamber. An HIH 4000 Honeywell capacitive sensor with an absolute error
of ±3.5% was used to measure the RH. Just prior to these measurements, all the samples
were subjected to heat treatment at T = 500 ◦C for 90 s in pure dry air to stabilize the contact
properties and regenerate the surface.

3. Results and Discussion
3.1. Structural Properties

Figure 2a illustrates the θ-2θ XRD pattern of the SnO2/Ga2O3 heterostructure de-
posited on an Al2O3 substrate via a GaN template. The peaks at 2θ = 41.8◦ and 90.9◦

are associated with the (0006) and (0 0 0 12) reflections of the Al2O3 substrate (ICDD #
00-042-1468). A series of peaks at 2θ = 19.2◦, 39.0◦, 60.0◦, 83.6◦, and 112.7◦ correspond to
the 002, 004, 006, 008, and 0 0 10 planes of the κ(ε)-Ga2O3 phase. (The calculation was
made on the basis of the Bragg equation for the case of CuKα1 anode (λ = 1.5406 Å). The
peaks at 2θ = 34.7◦, 73.0◦, and 126.1◦ are due to the (0002), (0004), and (0006) reflections
of the GaN template (AMCSD # 99-101-0461). Peaks corresponding to SnO2 could not
be distinguished due to possible overlapping by neighboring reflections of other phases.
Thus, the (101) reflection of SnO2 (AMCSD no. 99-100-8661) is close to the (0002) one of
GaN, and the (111) reflection of SnO2 is close to the (004) one of κ(ε)-Ga2O3. The auxiliary
vertical red lines of equal intensity depicted in Figure 2a are the tabular values of the SnO2
reflection positions. In addition, difficulties in SnO2 peaks identification may be caused by
the low film thickness and the developed microrelief of the surface. Finally, the possible
low crystallinity of the SnO2 phase may be the reason for the absence of sharp peaks on the
XRD pattern. In this case, broad humps of a low intensity may be present.

κ(ε)-Ga2O3:Sn and SnO2 films are characterized by direct optical transitions according
to the analysis of transmission spectra (see Figure 2b), where α is the absorption coefficient.
Eg values were graphically calculated and proved to be equal to 4.61 ± 0.01 eV and
3.76 ± 0.01 eV for the κ(ε)-Ga2O3:Sn and SnO2 films, respectively.

According to XPS analysis, the composition of the SnO2 film includes Sn and O
elements only. However, carbon (C) as a common contaminant was also observed in the
subsurface layer a few nanometers thick. C atoms completely disappear after argon-etching
for 60 s. Ga, Sn, O, and C lines were observed in the survey PE spectra of κ(ε)-Ga2O3:Sn
film. The Sn concentration in this film appeared to be about 3 at. %, which indicates a
high level of doping. Thus, the chemical analysis has shown that there are no third-party
impurities in the composition of κ(ε)-Ga2O3:Sn and SnO2 films, which confirms the high
purity of the deposited films.

The analysis of the chemical state of Sn based on the Sn3d5/2 PE line revealed the
energy position of the main maximum of Sn at 486.5 and 486.3 eV (Figure 2c). The obtained
values are in good agreement with the literature data [21,22] and correspond to the higher
oxidation state of Sn–SnO2 oxide. A lower value of the SnO2 energy position for the κ(ε)-
Ga2O3:Sn film indicates the effect of Ga2O3 on the charge state of SnO2. Previously, we
have observed a similar effect of the Sn3d5/2 PE line shift to low binding energies of the
SnO2 film doped with rare-earth elements and platinum group metals [21,22]. Analysis of
the Ga chemical state in the κ(ε)-Ga2O3:Sn film based on the Ga3d PE line showed that Ga
corresponds to the higher Ga2O3 oxide [23] (Figure 2d).

FESEM images of the SnO2 films surface deposited on Al2O3 substrates and κ(ε)-
Ga2O3:Sn film are displayed in Figure 2e,f, respectively. The microrelief of the SnO2 film
on Al2O3 (Figure 2e) contains small spherical grains with a diameter of ~35 nm and large
agglomerates with a characteristic size of ~300 nm. Whereas the microrelief of the SnO2
film deposited on a κ(ε)-Ga2O3:Sn one (see Figure 2f) is represented by small grains with
a diameter of ~35 nm only. The formation of large agglomerates for these structures was
not observed.
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Figure 2. Structural characterization of the samples: (a) XRD pattern of the SnO2/Ga2O3 hetero-
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(c) Sn3d PE spectra of κ(ε)-Ga2O3:Sn and SnO2 films; (d) Ga 3d, Sn 4d PE lines for κ(ε)-Ga2O3:Sn; 
FESEM images of the SnO2 film deposited on Al2O3 (e) and κ(ε)-Ga2O3:Sn (f). 
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Figure 2. Structural characterization of the samples: (a) XRD pattern of the SnO2/Ga2O3 heterostruc-
ture grown on GaN/Al2O3; (b) α2 versus the photon energy for κ(ε)-Ga2O3:Sn and SnO2 films;
(c) Sn3d PE spectra of κ(ε)-Ga2O3:Sn and SnO2 films; (d) Ga 3d, Sn 4d PE lines for κ(ε)-Ga2O3:Sn;
FESEM images of the SnO2 film deposited on Al2O3 (e) and κ(ε)-Ga2O3:Sn (f).

3.2. Gas-Sensitive Properties of the SnO2/κ(ε)-Ga2O3:Sn heterostructure

The I–V characteristics of the SnO2 thin films equipped with Pt contacts are linear in
the range of applied voltages U = −40–40 V at RT as well as at higher T. Contrary to this,
the I–V characteristics of the κ(ε)-Ga2O3:Sn films equipped with Pt contacts are nonlinear.
The dependence of ln(I) on U1/4 is linear, indicating the presence of a Schottky barrier at the
Pt/κ(ε)-Ga2O3:Sn interface [24]. The I value through the Pt/κ(ε)-Ga2O3:Sn/Pt structures
exceeds 0.1 A at U > 12 V which leads to the samples self-heating.

The SnO2/κ(ε)-Ga2O3:Sn structure equipped with Pt contacts is a n-N isotype het-
erojunction and the Schottky barriers are connected in series. The I–V characteristics of
such heterostructures are nonlinear and asymmetric as can be seen in Figure 3a. The
I(U = 4 V)/I(U = −4 V) ratio reaches the value of ~2 × 103 at T = 25 ◦C, then drops by half
as T increases to 150 ◦C. The increase in reverse current with T rising is significantly higher
than the increase in forward current. The forward-bias region of the I–V characteristics is
approximated by the following function: If = A1 × exp(B1U), where If is a forward current;
and A1 and B1 are the constants: A1 = (3.0 ± 0.4) × 10−6 A and B1 = 0.88 ± 0.02 V−1 at
T = 25 ◦C. The reverse-bias region of the I–V characteristics can be approximated by a
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similar function of Ir = A2 × exp(B2|U|), where Ir is a reverse current; A2 and B2 are the
constants: A2 = (2.0 ± 0.4) × 10−9 A and B1 = 0.89 ± 0.04 V−1 at T = 25 ◦C. The forward-
bias mode of the structure corresponds to the application of a positive potential to the
SnO2/Pt interface.
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Figure 3. I–V characteristics of the SnO2/κ(ε)-Ga2O3:Sn heterostructure at T = 25 ◦C in pure dry air
in semi-logarithmic coordinates (a), at T = 150 ◦C under exposure to 104 ppm of H2 (b). The insertions
show these I–V characteristics in linear coordinates. Dependence of the response to 104 ppm H2 on
the applied voltage at different temperatures (c), the insertion shows the response to 104 ppm H2 on
the applied voltage at T = 25 ◦C and 200 ◦C.

Exposure to H2 leads to a reversible increase in the I through heterostructures at
T = 25–200 ◦C. Figure 3b shows the change in the I–V characteristics of the SnO2/κ(ε)-
Ga2O3:Sn heterostructure when exposed to 104 ppm of H2 at T = 150 ◦C. The type of the
functions, approximating the forward and reverse branches of the I–V characteristics, does
not change with increasing T to 200 ◦C and under exposure to 104 ppm of H2. The A1 and
A2 increase, but B1 and B2 values decrease with T. The A1 and A2 values increase, whereas
B1 and B2 practically do not change when exposed to H2. Table 1 shows the A1, A2, B1, and
B2 values at T = 150 ◦C and under exposure to 104 ppm of H2.

Table 1. A1, A2, B1, and B2 at T = 150 ◦C and under exposure to 104 ppm H2.

Conditions A1 (A) A2 (A) B1 (V−1) B2 (V−1)

Dry pure air (1.1 ± 0.1) × 10−4 (1.1 ± 0.1) × 10−6 0.65 ± 0.03 0.65 ± 0.02
Dry pure air + 104 ppm H2 (2.6 ± 0.3) × 10−4 (1.3 ± 0.1) × 10−6 0.66 ± 0.03 0.63 ± 0.03
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To assess the effect of H2 on the I through the SnO2/κ(ε)-Ga2O3:Sn structures, the
current response SI was calculated based on the experimental I–V characteristics by the
following ratio:

SI = IH/Iair, (1)

where IH is the current of the charge carrier through the SnO2/κ(ε)-Ga2O3:Sn heterostruc-
ture in the gas mixture of pure dry air + H2; Iair is the current of the charge carrier through
the SnO2/κ(ε)-Ga2O3:Sn heterostructure in pure dry air. The SI values calculated on the
basis of the experimental I–V characteristics and time dependences of currents at a fixed
U (see Figure 4a) coincide. The SI value depends on the magnitude and direction of the
applied voltage (see Figure 3c). The highest response in the range of T = 100–125 ◦C was
observed at U = 0.5 V, whereas the highest SI was observed at U = 0.75 V at T = 150 ◦C. At
room temperature, the maximum SI was also noticed at U = 0.5 V (see Figure 3c, insertion).
The response decreases exponentially with the applied voltage in the range of U = 1–5 V.
SI values are significantly lower at the reverse-bias mode and decrease slightly with an
increase in the reverse voltage |Ur| from 0.25 V to 2.5 V. Moreover, the response increases
slightly with a further increase in |Ur| to 5 V.
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responses to 104 ppm of H2; (c) temperature dependences of response and recovery times upon
exposure to 104 ppm of H2 for different samples; (d) time dependence of current upon exposure to
different H2 concentration; (e) dependence of response on H2 concentration; (f) time dependence
of current upon cyclic exposure to 104 ppm of H2; (g) responses to fixed concentrations of NO2,
CH4, NH3, CO, H2, and O2; (h) effect of the relative humidity on responses to 104 ppm of H2;
(i) dependences of the capacitive response on applied voltage upon exposure to 104 ppm of H2 at
T = 125 ◦C and different frequencies; (j) effect of 104 ppm of H2 on C-V characteristics at T = 125 ◦C
and different frequencies; dependences in (d–h) were measured at T = 125 ◦C and U = 0.5 V.

The temperature dependences of the sample’s response to 104 ppm of H2 are presented
in Figure 4b. The κ(ε)-Ga2O3:Sn films show the highest response to H2 at T = 25 ◦C.
The SI of κ(ε)-Ga2O3:Sn films exceeds those of SnO2 films in the temperature range of
T = 25–50 ◦C; meanwhile, the SI of κ(ε)-Ga2O3:Sn films decreases and SI of SnO2 films
increases drastically with further increase in T. Sensitivity of SnO2 and κ(ε)-Ga2O3:Sn
films is based on reversible chemisorption of H2 molecules on the semiconductor’s surface
according to the mechanisms described in refs. [14,25]. High sensitivity to H2 at moderate
temperatures (T = 300 ◦C) is characteristic of the SnO2 thin films. Low SI for the κ(ε)-
Ga2O3:Sn films are caused by a significant influence of the bulk conductivity Gb, which
does not depend on the charge state of the surface. The dependence of the SnO2/κ(ε)-
Ga2O3:Sn heterostructures response to H2 on temperature is characterized by a maximum
at T = 125 ◦C. These samples demonstrate the highest SI in the range of T = 75–125 ◦C.

The experimental results displayed in Figure 4c prove that the SnO2/κ(ε)-Ga2O3:Sn
heterostructures are characterized by the high speed of operation compared to the SnO2
thin films when exposed to H2. The response tres and recovery trec times were calculated to
assess the speed of operation by the method described in ref. [9]. The calculated tres and trec
values can only be used to compare the speed of sensors operation at similar experimental
conditions. tres and trec decrease exponentially with T. trec and tres + trec of the SnO2/κ(ε)-
Ga2O3:Sn structures are significantly lower than those of SnO2 thin films at T = 25–200 ◦C.
SnO2 films are characterized by low tres. The speed of operation for the κ(ε)-Ga2O3:Sn films
was not evaluated due to their low responses at T > 50 ◦C. These samples are of interest for
developing room temperature H2 sensors. The tres and trec of these films under exposure
to 104 ppm of H2 at T = 25 ◦C are 349.2 s and 379.6 s, respectively. Obviously, SnO2/κ(ε)-
Ga2O3:Sn heterostructures are the most interesting for highly sensitive H2 sensors with
high speed of operation and low operating temperatures. Therefore, our further attention
will be focused on these structures.

The dependence of the SnO2/κ(ε)-Ga2O3:Sn structure response on the H2 concen-
tration nH2 is linear (Figure 4d,e) in the nH2 range of 100–30000 ppm. The Iair and IH
of the SnO2/κ(ε)-Ga2O3:Sn heterostructure decrease by 30% and 28%, respectively (see
Figure 4f), during a cyclic exposure to H2 (five cycles). At the same time, the current
response decreased by only 17%. The observed decrease in response during cyclic exposure
to H2 is caused by the manifestation of chemisorbed hydrogen atoms with high binding
energy. The temperature of 125 ◦C is not sufficient for the complete desorption of these
hydrogen atoms from the semiconductor surface. Short-term heating of the structure at
high temperatures can be used to regenerate the surface of semiconductors and for full
desorption of H atoms [26]. The results of the long-term tests of the SnO2/κ(ε)-Ga2O3:Sn
heterostructures at T = 125 ◦C and when exposed to 104 ppm of H2 demonstrated opposite
changes of SI. The samples after the experiments were stored in sealed packages. The
long-term tests lasted 8 weeks with an interval between the experiments of 7–8 days. Just
prior to each measurement the SnO2/κ(ε)-Ga2O3:Sn heterostructures were subjected to
heat at T = 500 ◦C for 90 s. There were increases in response from ~30 arb. un. to 47 arb. un.
during the long-term tests. Response increases mostly due to a decrease in Iair. The most
significant changes in response were in the first 4 weeks of testing.

The responses of the SnO2/κ(ε)-Ga2O3:Sn heterostructure to NO2, CH4, NH3, CO, and
O2 gases at T = 125 ◦C was measured to evaluate its selectivity (Figure 4g). Noteworthy,
is that I through heterostructure increases reversibly when exposed to 104 ppm of CH4,
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NH3h and CO. The response to these gases has been calculated by equation (1). The IH
was replaced by Ig, where Ig is the charge carrier current through the SnO2/κ(ε)-Ga2O3:Sn
heterostructure in the gas mixture of pure dry air + reducing gas (CH4, NH3, or CO). The
responses to CH4, NH3, and CO are insignificant compared to the SI to H2, which equates
to 29.92–46.98 arb. un. at T = 125 ◦C and nH2 = 104 ppm.

It was found, that the I value of the SnO2/κ(ε)-Ga2O3:Sn reversibly decreases when
exposed to NO2 and O2. The responses to NO2 (SNO2) and O2 (SO2) have been calculated
by the following equations, correspondently:

SNO2 = Iair/INO2 , (2)

SO2 = IN/IO2 , (3)

where INO2 is the charge carrier current through the SnO2/κ(ε)-Ga2O3:Sn heterostructure
in the gas mixture of pure dry air + NO2; IN is the charge carrier current through the
SnO2/κ(ε)-Ga2O3:Sn heterostructure in the nitrogen atmosphere; IO2 is the charge carrier
current through the SnO2/κ(ε)-Ga2O3:Sn heterostructure in the gas mixture of N2 + O2.
SI ratio when exposed to 100 ppm of H2 at T = 125 ◦C happened to be 26.7 times lower
than those for 100 ppm of NO2 (Figure 4g). The SnO2/κ(ε)-Ga2O3:Sn heterostructure also
demonstrated relatively high response to O2. The response to O2 appears to be higher than
to CH4, NH3, or CO at same concentration values. Hence, we have shown that SnO2/κ(ε)-
Ga2O3:Sn heterostructure is also attractive for developing highly sensitive NO2 and O2
sensors operating at low temperatures.

An increase in RH leads to a drop in the response of the SnO2/κ(ε)-Ga2O3:Sn het-
erostructure to H2 (Figure 4h). The most significant decrease in SI occurs when RH increases
from 0 to 34 %. In the range of RH = 34–90.0%, the response varies slightly.

Furthermore, the effect of 104 ppm of H2 on the C-V characteristics of the SnO2/κ(ε)-
Ga2O3:Sn heterostructures at T = 125 ◦C and signal frequencies f = 1 kHz, 10 kHz, and
1 MHz have been studied. The results are illustrated in Figure 4i,j. Evidently, exposure to
H2 leads to a reversible increase in the electrical capacity of the structures. The capacitive
response SC has been calculated by the following equation:

SC = CH/Cair, (4)

where CH is the electrical capacitance of SnO2/κ(ε)-Ga2O3:Sn heterostructure in the gas
mixture of pure dry air + H2; and Cair is the electrical capacitance of structures in pure dry
air. Visibly, the SC (see Figure 4i) is significantly lower than the SI (Figure 3c). At f = 10 kHz
and 1 MHz the capacitive response varies weakly. The highest SC value is observed in the
range of U = 0.95–5.00 V at f = 1 kHz and has a maximum at U = 2.9 V.

3.3. The Mechanism of the Sensory Effect

Initially, the resistance of the Pt/κ(ε)-Ga2O3:Sn interface is low and the Pt/SnO2
contact is ohmic. The change in the potential barrier at Pt/κ(ε)-Ga2O3:Sn and Pt/SnO2
interfaces upon exposure to gases can be neglected. The observed high responses of the
SnO2/κ(ε)-Ga2O3:Sn heterostructure at T = 25–175 ◦C; are due to the formation of the n-N
isotypic heterojunction, where SnO2 is the base.

Diffusion of H atoms up to the SnO2/κ(ε)-Ga2O3:Sn interface at T = 25–175 ◦C; is
unlikely. Changes of I and C upon exposure to H2 occur mainly due to the chemisorption
of gas molecules on semiconductor’s surface. In the air atmosphere within a temperature
range of T = 25–175 ◦C, the oxygen chemisorbs mainly in a molecular form on metal oxide
semiconductors surface and captures electrons from their conduction band [25,27]. The
reaction of reversible chemisorption of oxygen molecules can be represented as follows:

O2 + Sa + e− ↔ O2
−

(c), (5)
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where Sa is a free adsorption center; e is the electron charge; O2
−

(c) is the chemisorbed
oxygen ion. As a result of reaction (4), an electron-depleted region is formed in the near-
surface part of the semiconductor. A negative charge on the surface causes the upward
of energy bands bending at eVs, where Vs is the surface potential and eVs~Ni

2, where Ni
is the surface density of chemisorbed oxygen ions. In our case, the Debye length LD for
SnO2 exceeds the grain size and the effect of grain boundaries on the transport of charge
carriers in a semiconductor can be ignored. Oxygen chemisorption weakly changes the
electrical conductivity of the κ(ε)-Ga2O3:Sn films due to the low contribution of the surface
conductivity Gs to the total conductivity of Gt. Thus, changes in the current during the
chemisorption of gases are mainly due to changes in the concentration of charge carriers in
the SnO2.

Gt = Gb + Gs and the relationship between Gt and eVs in our case is described by the
following equation [28]:

Gt = Gb × [1 − (LD/D) × [eVs/(kT)]], (6)

where D is the SnO2 film thickness; k is the Boltzmann constant. An increase in the eVs
due to the oxygen molecule’s chemisorption on the SnO2 surface leads to a drop of Gt.
The increase in Gt when exposed to H2 is caused by the interaction of H2 molecules with
previously chemisorbed O2

−
(c) on the SnO2 surface. This interaction can be represented

as follows:

2H2 + O2
−

(c) → 2H2O + e−. (7)

As a result of reaction (7), a neutral H2O molecule is formed and desorbed, an electron
returns to the conduction band of SnO2, the eVs decreases and the finally Gt increases.
When exposed to NO2 the following reactions take place [29]:

NO2 + Sa + e− → NO2
−,

NO2
− → O−(c) + NO,

O−(c) + O−(c) → O2
−

(c) + e− + Sa.
(8)

NO2 molecules chemisorb onto free adsorption centers and capture electrons from the
SnO2 conduction band. Meanwhile, eVs is proportional to (Ni + NNO2)2 in the mixtures
of air + NO2, where NNO2 is the surface density of chemisorbed NO2

− ions [25,27]. An
additional negative charge on the surface of the SnO2 film leads to a greater decrease in
Gt. Further, NO2

− ions are dissociated to form chemisorbed O−(c) ions and gaseous NO
molecules. In the low temperature region, atomic O−(c) ions associated to O2

−
(c) form and

a free electron e−, which returns to the conduction band of the semiconductor.
The κ(ε)-Ga2O3:Sn film is a source of electrons that are involved in reactions (5) and (8)

with the gas molecules on the SnO2 surface. This causes a high response of heterostructure
at T = 75–175 ◦C. The base region (SnO2) is filled with electrons from the κ(ε)-Ga2O3:Sn
film with T rising, Gb of SnO2 increases and the response decreases. SnO2 films deposited
on κ(ε)-Ga2O3:Sn are characterized by the absence of large agglomerates (see Figure 2e,f).
This leads to an increase in the specific surface area of SnO2 and the surface density of
adsorption centers for gas molecules.

Table 2 shows a comparison of the responses and optimal operating temperatures of
structures based on the Ga2O3 polymorphs when exposed to H2 and NO2 [9,14,18,19,30–42].
ng is a gas concentration. SnO2/κ(ε)-Ga2O3:Sn heterostructure in comparison with other
items listed in this table is characterized by relatively high sensitivity to H2 and NO2 at
a relatively low operating temperature. Ga2O3-based structures with higher responses
to gases are characterized by high operating temperatures [9,30,34–37,41,42], low speed
of operation [18,19], or are diode-type sensors based on high-cost materials [31,32,39].
SnO2/κ(ε)-Ga2O3:Sn heterostructures demonstrate relatively high responses to H2 and
NO2 at lower temperatures in comparison with the heterostructures based on other metal
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oxides (see Table 3). Nano-structured heterostructures are characterized by higher responses
to NO2 but generally do not differ in high speed of operation.

Table 2. Gas-sensitive characteristics of structures based on Ga2O3 polymorphs.

Structure ng (ppm) T (°C) Response (arb. un.) Ref.

H2

α-Ga2O3:Sn 104 350 80 [9]
α-Ga2O3:Si 3 × 104 400 69.3 [30]
β-Ga2O3 500 RT 7.9 × 105 [31]
β-Ga2O3 2000 500 ∆I = 1.4 (mA) [32]
β-Ga2O3 3 × 104 600 4 [33]
β-Ga2O3 200 300 6.3 [34]

β-Ga2O3:Cr2O3 2500 500 60 [35]
β-Ga2O3/Pd nanoclusters 104 625 ~103 [36]
β-Ga2O3/SiO2 (filter) 5000 700 ~103 [37]
α-Ga2O3/κ(ε)-Ga2O3:Sn 2500 125 1.25 [38]

κ(ε)-Ga2O3 104 500 9.44
[14]

κ(ε)-Ga2O3:Sn 104 RT 1.2
Pt/β-Ga2O3/GaN 1000 RT 229.8 [39]
β-Ga2O3/SnO2 1000 400 8 [18]
β-Ga2O3/SnO2 1000 200 7075.5 [19]
β-Ga2O3/WO3 1000 200 4.1 [40]

SnO2/κ(ε)-Ga2O3:Sn 1000
125

5.7
This work104 47

NO2

β-Ga2O3/ZnO 10 300 73.5 [41]
β-Ga2O3 200 800

5.1
[42]

β-Ga2O3/La0.8Sr0.2CoO3 25.7
SnO2/κ(ε)-Ga2O3:Sn 100 125 3.7 This work

Table 3. Gas-sensitive characteristics of heterostructures based on different metal
oxide semiconductors.

Structure ng (ppm) T (°C) Response (arb. un.) Ref.

H2

CeO2/In2O3 50 160 20.7 [43]
SnO2/ZnO 100 350 18.4 [44]

Pd/BN/ZnO 50 200 13 [45]
SnO2/NiO 500 500 114 [46]

rGO/ZnO-SnO2 100 380 9.4 [47]
RGO/ZnO 200 150 3.5 [48]

Al2O3/CuO 100 300 2.37 [49]

SnO2/κ(ε)-Ga2O3:Sn 1000
125

5.7
This work104 47

NO2

m-WO3/ZnO 1 150 167.8 [50]
WO3/SnO2 200 200 186 [51]

WO3/MWCNT composite 5 150 18 [52]
ZnO/SWCNT composite 50 150 5 [53]
Sb2O3/In2O3 nanotubes 1 80 47 [54]
MoS2/In2O3 nanotubes 50 RT 209 [55]
PdO/SnO2 nanotubes 100 RT 20.3 [56]
TiO2/ZnO nanotubes 5 RT 2.05 [57]

In2O3/ZnO 50 200 78 [58]
NiO/In2O3 10 145 532 [59]

SnO2/κ(ε)-Ga2O3:Sn 100 125 3.7 This work

4. Conclusions

The structural and gas-sensitive properties of the n-N SnO2/κ(ε)-Ga2O3:Sn heterostruc-
tures were investigated for the first time. The κ(ε)-Ga2O3:Sn and SnO2 films were obtained
by the halide vapor phase epitaxy and the high-frequency magnetron sputtering, respec-
tively. The κ(ε)-Ga2O3:Sn crystalline film has a bandgap of 4.61 ± 0.01 eV. The SnO2
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nanocrystalline film has a bandgap of 3.76 ± 0.01 eV and is characterized by a developed
microrelief of the surface, represented by grains with a size of ~35 nm. Exposure to H2
leads to an increase in electrical current and capacitance of SnO2/κ(ε)-Ga2O3:Sn structures.
The current response of heterostructures to H2 significantly exceeds the capacitive one.
Gas sensor response and speed of operation of the SnO2/κ(ε)-Ga2O3:Sn heterostructure
under H2 exposure overperform those of the single κ(ε)-Ga2O3:Sn and SnO2 films in the
temperature range of 25–175◦C. This heterostructure demonstrates a low response to CO,
NH3, and CH4 and a high response to NO2 even at low concentrations. The current re-
sponses of SnO2/κ(ε)-Ga2O3:Sn heterostructure to 104 ppm of H2 and 100 ppm of NO2 at
125 ◦C were 30–47 A.U. and 3.7 A.U., correspondingly. The sensory effect is realized mainly
due to the chemisorption of gas molecules on the SnO2 surface, which is the base region
of the heterostructure. The κ(ε)-Ga2O3:Sn film is a source of electrons that are involved
in reactions with gas molecules on the SnO2 film surface. The SnO2 film deposited on
the κ(ε)-Ga2O3:Sn film is characterized by a more developed surface microstructure. This
leads to an increase in the surface density of adsorption centers for gas molecules. The
advantages of the SnO2/κ(ε)-Ga2O3:Sn heterostructure for gas sensors are shown, the
main one being high sensitivity at relatively low operating temperatures. Doubtfully, this
structure has every chance of being the base of the sensor.
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