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Abstract: Herein, we propose a transparent high-performance extended-gate ion-sensitive field-effect
transistor (EG-ISFET) using an electrospun indium-tin-oxide (ITO) nanofiber sensing membrane
with a high specific surface area. Electrospinning is a simple and effective technique for forming
nanofibers. Nevertheless, one-step calcination, such as conventional thermal annealing or microwave
annealing, cannot sufficiently eliminate the inherent defects of nanofibers. In this study, we efficiently
removed residual polymers and internal impurities from nanofibers via a two-step calcination process
involving combustion and microwave annealing. Moreover, Ar plasma treatment was performed
to improve the electrical characteristics of ITO nanofibers. Conformally coated thin-film sensing
membranes were prepared as a comparative group and subjected to the same calcination conditions
to verify the effect of the nanofiber sensing membrane. The characteristics of the ITO nanofiber and
ITO thin-film sensing membranes were evaluated using scanning electron microscopy (SEM), X-ray
diffraction (XRD), X-ray photoelectron spectroscopy (XPS), optical transmittance, and conductivity.
Moreover, the sensor operation of the EG-ISFETs is evaluated in terms of sensitivity and non-ideal
behaviors. The optimized process improves the sensor characteristics and sensing membrane quality.
Therefore, the ITO nanofiber sensing membrane improves the sensitivity and stability of the EG-ISFET,
suggesting its applicability as a high-performance biochemical sensor.

Keywords: extended gate; ion-sensitive field-effect transistor; pH sensor; electrospinning;
indium-tin-oxide; sensing membrane; nanofibers; calcination; combustion; microwave annealing;
plasma treatment

1. Introduction

With frequent outbreaks of pandemics threatening human life and the global econ-
omy, interest in healthcare has been increasing [1–4]. Rapid detection and point-of-care
(POC) analysis of disease-causing pathogens poses challenges in establishing appropriate
treatment strategies for the medical field. Among the various diagnostic techniques for
detecting pathogens, electrochemical biosensor technology has led to the development
of POC devices. Electrochemical biosensors have attracted considerable attention ow-
ing to their advantages, such as fast response, high sensitivity, selectivity, and ease of
miniaturization capability. In particular, pH sensors based on ion-sensitive field-effect
transistors (ISFETs) benefit from a smaller size, faster response time, and fabrication that is
compatible with standard metal–oxide–semiconductor (MOS) technology [5–8]. In addition,
the functions of pH ISFETs are diverse, particularly in biomedical applications [9–11]. In
a typical ISFET, the sensing membrane and transducer FET constituting the sensor are
placed on the same platform. Accordingly, when the sensing membrane is damaged from
repetitive measurements, the transducer unit becomes inoperable, and the entire sensor
platform needs to be replaced. Conversely, the extended-gate ion-sensitive field-effect
transistor (EG-ISFET) has a structural feature that isolates the transducer FET from the
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chemical environment. Specifically, the chemically sensitive membrane is positioned at the
end of the signal line, extending from the FET gate electrode, to separate the sensing and
transducer units. As a result, the structure has many advantages, such as being insensitive
to light, simple passivation and packaging, and shape flexibility of an extended gate area.
Moreover, the EG-ISFET enables continuous detection by replacing only the EG sensing
unit, which has a simple structure, is easy to prepare, and is inexpensive, without changing
the entire platform [12,13]. The sensitivity of chemical sensors is significantly influenced
by the surface conditions of the sensing materials. Since a higher specific surface area of
a sensing material leads to higher sensitivity of the sensor, nanostructured materials that
exploit the large specific surface area, such as nanoparticles, nanowires, nanofibers, and
nanotubes, are beneficial for sensor sensitivity [14–18]. In particular, nanofibers prepared
via electrospinning have a specific surface area that is approximately one to two orders of
magnitude larger than that of flat films [19]. Therefore, electrospun nanofibers are promis-
ing candidates for sensor applications. Moreover, ion-sensitive metal oxides have unique
electrical, electrochemical, and biocompatible characteristics, making them ideal candidates
for water and food quality monitoring applications because of their fast response and long
lifetime under various environmental conditions [20]. Therefore, metal oxide nanofiber
sensing membranes with a high surface-to-volume ratio are expected to be key building
blocks for electrochemical pH sensors with high sensitivity and selectivity. Nevertheless,
impurities and defects included in electrospun metal oxide nanofibers deteriorate their
physical and electrical characteristics. Therefore, calcination annealing is required at high
temperatures to vaporize the polymer matrix constituting the nanofibers and improve the
crystallinity of the metal oxide [21–23].

In this study, we propose a high-performance, high-transmittance EG-ISFET sensor
platform that uses an electrospun indium-tin-oxide (ITO) nanofiber sensing membrane [24].
Conventionally, calcination using conventional thermal annealing (TA) or microwave
annealing (MWA) has been performed; however, the residual polymers on the surface
and impurities inside the nanofibers are not efficiently eliminated by the one-step cal-
cination process. Therefore, we efficiently removed residual polymers and impurities
from nanofibers via a novel two-step calcination process involving a combustion step and
microwave annealing step [18,25–28]. Subsequently, the electrical characteristics of the
ITO nanofibers are further improved by surface collisions with high-energy Ar plasma
particles. To demonstrate the effectiveness of the ITO nanofiber sensing membrane and
the improved calcination process, a spin-coated ITO thin-film sensing membrane with
the same composition was also prepared for comparison [29]. Based on the calcination
conditions, the characteristics of the ITO nanofibers and ITO thin-film sensing membranes
were evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray
photoelectron spectroscopy (XPS), optical transmittance, and conductivity. We fabricated
EG-ISFETs using an EG unit equipped with an electrospun ITO nanofiber membrane, ITO
thin-film membrane, and n-type MOSFET transducer unit. While the conventional EG unit
comprises a Si substrate, conductive electrode, and a sensing membrane, the EG unit pro-
posed in this study simplifies the process, making it cost-effective because ITO nanofibers
spun on low-cost glass substrates simultaneously serve as a conductive electrode and a
sensing membrane [11,30–32]. The differences between the EG-ISFET proposed in this
study and conventional EG-ISFETs were compared in Table 1 [33–38]. The excellence of the
electrospun ITO nanofiber-based EG-ISFET is verified through sensitivity and non-ideal
effect evaluation. Moreover, the EG-ISFET performance improvement via two-step calci-
nation and Ar plasma treatment of the electrospun ITO nanofiber [11,36–38] membrane is
quantitatively evaluated.
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Table 1. Comparison of EG-ISFETs according to various materials and process conditions.

References Sensing Layer Sensitivity Processing Method

[33] ITO thin-film 38.3 mV/pH RF sputtering

[34] TiO2 thin-film 50.5 mV/pH Sol-gel

[35] Bi2O3 thin-film 51.32 mV/pH E-beam evaporation

[36] Graphene 40 mV/pH CVD

[37] Au NPs/ITO
thin-film 43.6 mV/pH PLAL/RF sputtering

[38] WO3 nanofiber 25.6 mV/pH Electrospinning

Present study ITO nanofiber 55.44 mV/pH Electrospinning

2. Materials and Methods
2.1. Material Specifications

The material specifications of the study are as follows: glass substrate (Corning 7059;
Corning Inc., Corning, NY, USA), indium trichloride (InCl3; purity = 99.9%, Sigma-Aldrich,
St. Louis, MO, USA), anhydrous tin chloride (SnCl4; purity = 99.995%, Sigma-Aldrich,
St. Louis, MO, USA), N,N-dimethylformamide (DMF; purity = 99.8%, Sigma-Aldrich, St.
Louis, MO, USA), polyvinylpyrrolidone (PVP; average Mw ~1,300,000, Sigma-Aldrich, St.
Louis, MO, USA), 2-Methoxy ethanol (purity = 99.99%, Sigma-Aldrich, St. Louis, MO,
USA), mono-ethanolamine (C2H7NO; purity = 99.5%, Sigma-Aldrich, St. Louis, MO, USA).

2.2. Fabrication of the EG Sensing Units

The EG sensing units, comprising a transparent substrate, sensing membrane, and
a polydimethylsiloxane (PDMS) reservoir, were fabricated in a 1.5 × 3 cm2 size using
Corning 7059 glass substrates. An ITO precursor solution for electrospinning was prepared
by mixing N,N-dimethylformamide (DMF) (1 mL), indium trichloride (InCl3) powder
(66.92 mg), and anhydrous tin chloride (SnCl4) powder (9.38 mg), followed by stirring
at 800 rpm for 3 h at room temperature [28]. A polyvinylpyrrolidone (PVP) solution
was prepared by stirring PVP powder (600 mg) in ethanol (3 mL) at 800 rpm for 3 h at
room temperature. The ITO nanofibers were electrospun using a syringe pump (NE-1000;
New Era Pump Systems, New York, NY, USA). While maintaining the electrospinning
environment at a temperature of 20 ◦C and humidity of 30%, the ITO nanofibers were
spun for 20 min by setting the flow rate of the syringe pump to 0.4 mL/h. A copper
plate was used as a grounded collector, and a voltage of 20 kV was applied between the
pin head and copper plate. Under these process conditions, the ITO nanofiber precursor
was electrospun from the pinhead flow 20 cm (working distance) to form nanofibers on
the substrate. As a comparative group, for the spin coating of the ITO thin-film sensing
membrane, an ITO precursor with the same composition (InCl3 66.92 mg, SnCl4 9.38 mg)
was synthesized via a sol-gel reaction. These powders were dissolved in 2-methoxyethanol
(4 mL), and mono-ethanolamine (C2H7NO) (0.5 mL) was added for stable coating, and
the mixture was stirred at 50 ◦C for 2 h [29]. The prepared ITO precursor solution was
spin-coated at 3000 rpm for 30 s and baked at 180 ◦C for 10 min to fabricate an EG unit
with a 100-nm-thick ITO thin-film sensing membrane. The thickness of the ITO thin-film
sensing membrane was measured to be ~100 nm using a stylus profilometer (DektakXT;
Bruker, Billerica, MA, USA). Following the fabrication of ITO nanofibers or thin-film sensing
membranes, calcination was performed to remove the residual polymers and impurities
from the surface. We distinguished the heat treatment process into one-step calcination
by MWA and two-step calcination by TA and MWA. Specifically, TA was performed at
180 ◦C for 30 min in a resistance-heating muffle furnace, and MWA was performed at
1800 W for 2 min in a 2.45 GHz microwave irradiation system. Both calcination processes
were performed under an oxygen ambient. In the subsequent process of calcination, Ar
plasma treatment was performed at 200 W for 2 min to improve the electrical characteristics
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of the ITO nanofibers [29,39–42]. The fabrication process flow of the electrospun ITO
nanofiber sensing membrane and photographs of the ITO nanofibers fabricated on the glass
substrate are depicted in Figure 1a,b, respectively.
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2.3. Characterization of the Fabricated EG-ISFET Sensor Platform

In the proposed EG-ISFET, as shown in Figure 2, an ITO nanofiber sensing membrane
was placed on the EG at the end of the signal line, extending from the FET gate electrode,
to isolate the transducer FET from the chemical environment.
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ITO nanofibers obtained through electrospinning were used as pH-sensitive membranes
for electrodes, which were connected to commercial NMOSFET devices (2N7000; ON Semi-
conductor, Phoenix, AZ, USA). In addition, an Ag/AgCl electrode (Horiba 2080-06T; Kyoto,
Japan) was used as the reference electrode, and the distance between the reference electrode
and ITO sensing membrane was fixed at approximately 3 mm. The reference electrode was
dipped into the buffer solution in the PDMS reservoir on the EG unit and connected to the gate
of the MOSFET. An Agilent 4156 B Semiconductor Parameter Analyzer (Agilent Technologies,
Santa Clara, CA, USA) was used to measure the threshold voltage (Vth) of the EG-ISFET at
pH 3, 4, 6, 7, 9, and 10 buffer solutions. The sensitivity of the EG-ISFET was determined
by measuring the change in the gate voltage at a drain current of 1 nA according to the pH
of the buffer solution. For non-ideal behaviors, the hysteresis effect, which represents the
stability during repeated operation, and the drift effect, which represents the stability during
long-term operation, were evaluated. The hysteresis voltage was defined as the difference in
the reference voltage (VREF) between the first pH 7 point and the final pH 7 point in the pH
loop 7→10→7→4→7. The drift effect was evaluated by exposing the sensing membrane to a
pH 7 buffer for 10 h and monitoring the change in the reference voltage.

3. Results and Discussion
3.1. Evaluation of Electrospun ITO Nanofiber Sensing Membrane

Figure 3 illustrates the SEM images of electrospun ITO nanofibers under different
process conditions. The process conditions are classified into four categories: ‘MWA’,
‘TA+MWA’, ‘MWA→Ar plasma’, and ‘TA+MWA→Ar plasma’. It is evident that the surface
morphology of ITO nanofiber sensing membranes is significantly influenced by calcination.
The diameters of the nanofibers are approximately between 500–1000 nm after one-step
calcination (MWA), as shown in (a) and (b), whereas it reduced to approximately 50–100 nm
after two-step calcination (TA combustion + MWA), as shown in Figure 3c,d. Additionally,
the shapes of the nanofibers are unclear after one-step calcination. In contrast, the shapes
are clarified after two-step calcination. The result indicates that the two-step calcination
process is more effective in removing the residual polymer and internal impurities from
the electrospun ITO nanofibers.
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Figure 3. SEM images of electrospun ITO nanofibers according to calcination conditions and plasma
treatment.

Figure 4 shows the XRD pattern of the ITO sensing membrane according to calcination
conditions and plasma treatment. In both nanofibers and thin-film sensing membranes,
XRD peaks are observed at the same specific angle, with the peaks designated as (222),
(400), (440), and (622). The X-ray diffraction pattern shows that both sensing membranes
are cubic structures and preferentially grown along the (222) plane [28,29,43,44]. The effect
of the process conditions on the crystallization of the ITO sensing membrane is similar
to that of the SEM images shown in Figure 3. The ITO sensing membrane subjected
to two-step calcination (TA combustion + MWA) has larger and sharper peaks than the
sensing membrane with one-step calcination (MWA). Therefore, two-step calcination with
an additional TA combustion step eliminates residual polymers and internal impurities,
facilitating a sensing membrane with superior crystallinity. The crystallinity of the ITO
sensing membrane was quantified by extracting the average grain size from the main peak
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(222) using the Scherrer equation [45]. The average particle sizes of the ITO thin-films
for MWA, TA+MWA, MWA/Ar plasma, and TA+MWA/Ar plasma were estimated to be
approximately 11.5, 9.3, 9.8, and 7.8 nm, respectively. The average particle sizes of the ITO
nanofibers were estimated to be 27.5, 19.1, 25, and 15.6 nm, respectively, which are better
than those of the ITO thin-film in terms of crystallinity. It is worth mentioning that the TA
combustion step significantly influences ITO crystallinity enhancement.
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Figure 4. XRD patterns of the ITO sensing membranes according to the calcination conditions and
plasma treatment.

Figure 5 illustrates the XPS analysis performed to distinguish changes in the ITO
sensing membrane according to the calcination conditions. The O1s spectrum is decon-
volved by the M-O (530.5 eV) peak due to the In2O3 lattice, the M-Ovac (531.9 eV) peak
due to the In2O3 lattice with oxygen vacancies, and the M-OH (532.8 eV) peak due to
oxygen contamination [29,46–48]. In the case of nanofiber ITO spun on a glass substrate, an
O-Si (533.4 eV) peak is also detected due to the glass substrate partially exposed through
the gap between the ITO nanofibers [49,50]. The deconvoluted O1s spectra show that
the M-Ovac peak increases after the two-step calcination. Since oxygen vacancies con-
tribute to the conductivity of ITO by increasing the carrier concentration, the increase
in the M-Ovac peak suggests that the conductive characteristics of the ITO sensing mem-
brane are improved. Meanwhile, the C1s spectra, shown in the insets, compare the num-
ber of carbon-based impurities remaining in the sensing membrane and is divided into
C-C (285 eV), C-O-C (286.5 eV), C=O (288 eV), and O=C-O (289 eV) peaks [48,51]. When two-
step calcination was applied, the C1s spectra for thin-film ITO and nanofiber ITO decreased
by 54.71% and 25.42%, respectively. Owing to the characteristics of the electrospinning pro-
cess, it is essential to effectively remove impurities present in the ITO sensing membrane.
The decreased C1s spectrum proves that the two-step calcination process can perform
this role excellently.

Figure 6 shows the optical transmittance spectra of the ITO sensing membranes
on a glass substrate. The average transmittance extracted in the visible light region
(400–700 nm) is higher for the ITO nanofiber sensing membranes than for the ITO thin-
film sensing membranes. For the conditions of MWA, TA+MWA, MWA/Ar plasma, and
TA+MWA/Ar plasma, the ITO thin-film sensing membranes are 77.79, 83.24, 89.79, 88.91%,
and the ITO nanofiber sensing membranes are 83.15, 85.51, 87.61, and 91.21%, respectively.
In particular, the optical transmittance of the ITO nanofiber sensing membrane optimized
via two-step calcination (TA+MWA) and Ar plasma treatment exceeds 91% and is expected
to be a sensing material that is applicable to various transparent sensors.
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Figure 5. XPS O1s spectra of ITO sensing membranes according to the calcination conditions. Inset
shows the XPS C1s spectra of each condition.
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Figure 6. Optical transmittance spectra of ITO sensing membranes on glass substrates under different
calcination conditions and plasma.

Figure 7 illustrates a plot of the light absorption coefficient (α) versus photon energy
for the ITO sensing membrane. The absorption coefficient (α) was calculated from the
transmittance spectrum in the ultraviolet (UV) region using the following equation [52,53]:

α =
1
t

(
1
T

)
,

where t denotes the sensing membrane thickness, and T denotes the transmittance. We
extracted the optical bandgap (Eg) using the following relationship with the absorption
coefficient [52]:

α ∝
√(

hν− Eg
)
,
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where h denotes the Planck constant, and ν denotes the frequency of the photon. For the
conditions of MWA, TA+MWA, MWA/Ar plasma, and TA+MWA/Ar plasma, the ITO
thin-film sensing membranes are 4.51, 4.58, 4.55, and 4.60 eV, respectively, and the ITO
nanofiber sensing membranes are 4.56, 4.59, 4.60, and 4.66 eV, respectively. The extracted
Eg is higher for the ITO nanofiber sensing membrane than that for the ITO thin-film sensing
membrane. In particular, the ITO nanofiber sensing membrane optimized via two-step
calcination (TA+MWA) and Ar plasma treatment exhibits the widest optical bandgap.
These results show the same tendencies as the optical transmission spectrum shown in
Figure 5. Accordingly, the effectiveness of removing residual polymers and impurities via
two-step calcination and Ar plasma treatment is successfully demonstrated.
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Figure 7. Dependence of absorption coefficient on photon energy of ITO sensing membranes accord-
ing to calcination conditions and plasma treatment.

Figure 8 illustrates the current-voltage (I-V) curves of the ITO sensing membranes
according to the calcination conditions and plasma treatment. In the conduction character-
istics, it can be observed that the effect of Ar plasma treatment is dominant. Following Ar
plasma treatment, the current increased by ~13 times (MWA) and ~16 times (TA+MWA) in
the ITO thin-film sensing membrane, and by ~33 times (MWA) and ~17 times (TA+MWA)
in the ITO nanofiber sensing membrane. The results can be attributed to the improved
conductance of the ITO sensing membrane layer due to the Ar plasma treatment, which is
consistent with the results of a previous study [29]. In general, the conduction mechanism
of oxide semiconductors, including ITO, is described as a function of free electrons owing to
oxygen vacancies [54–56]. The ion bombardment effect of Ar plasma increases the number
of oxygen vacancies in the ITO layer through the surface collisions of high-energy plasma
particles. The conductivity of the ITO thin-film sensing membranes is 27.9, 254, 81.4, and
1286.1 S/cm, and the ITO nanofiber sensing membranes are 0.8, 27, 18.6, and 264.3 S/cm,
respectively, for the conditions of MWA, TA+MWA, MWA/Ar plasma, and TA+MWA/Ar
plasma [57–59]. A significant increase in current and conductivity provides evidence of an
improvement in the conduction characteristics of ITO sensing membranes due to the ion
bombardment effect, demonstrating the validity of the Ar plasma treatment.
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Figure 8. Current-Voltage (I-V) curves of the ITO sensing membranes according to calcination
conditions and plasma treatment.

Table 2 summarizes the experimental results of the physical property tests performed
on ITO nanofibers and thin-film sensing membranes.

Table 2. Summary of experimental results on the ITO sensing membranes.

Sensing
Membrane Process Condition Average

Grain Size (nm)

Optical
Transmittance

(%)

Optical Band Gap
(eV)

Conductivity
(S/cm)

Thin−film ITO

MWA 7.8 77.79 4.51 27.9

TA+MWA 9.8 83.24 4.58 254

MWA/Ar plasma 9.3 89.79 4.55 81.4

TA+MWA/Ar
plasma 11.5 88.91 4.60 1286.1

Nanofiber ITO

MWA 15.6 83.15 4.56 0.8

TA+MWA 25 85.51 4.59 27

MWA/Ar plasma 19.1 87.61 4.60 18.6

TA+MWA/Ar
plasma 27.5 91.21 4.66 264.3

3.2. pH Sensing Operation of EG-ISFET with Electrospun ITO Nanofiber Sensing Membrane

Figure 9 shows the pH sensing characteristics of the EG-ISFETs with ITO thin-film
sensing membranes or ITO nanofiber sensing membranes according to the calcination
conditions and plasma treatment. The sensitivity was extracted as the amount of voltage
change at a reference current (IREF) of 1 nA from the transfer characteristic curves of the
FET for a buffer solution of pH 3–10.

The pH sensitivities of EG-ISFETs with ITO nanofiber sensing membranes are 40.09, 43.71,
51.49, and 55.44 mV/pH for MWA, TA+MWA, MWA/Ar plasma, and TA+MWA/Ar plasma
conditions, respectively. Meanwhile, the EG-ISFETs with ITO thin-film sensing membranes
exhibit sensitivities of 35.61, 36.25, 45.42, and 47.21 mV/pH, respectively. Evidently, the ITO
nanofiber membranes implemented a higher sensitivity of the EG-ISFET than the ITO thin-film
membranes under the same calcination process and plasma treatment.
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Figure 9. pH sensitivity of EG-ISFETs with ITO thin-film sensing membrane or ITO nanofiber sensing
membrane according to calcination conditions and plasma treatment.

It is essential for electrochemical pH sensors to maintain high stability and reliability,
along with sensitivity, for repeated and continuous operation. Non-ideal behaviors, which
are crucial performance indicators of the stability and reliability of electrochemical pH
sensors, include hysteresis and drift effects [60,61]. Figure 10 illustrates the hysteresis
effect of EG-ISFETs with ITO thin-film membranes or ITO nanofiber sensing membranes,
according to the calcination conditions and plasma treatment. Repeated exposure of the
sensing membrane to different pH buffer solutions causes a hysteresis effect owing to
the reaction between electrolyte ions (H+ or OH−) and the surface or slow transport of
ionic species in the membrane bulk, resulting in reliability deterioration [61]. The hys-
teresis experiments were performed under a loop cycle of pH 7−10−7−4–7 at room
temperature. The hysteresis voltage (VH) is defined as the difference in voltage val-
ues between the start and end points of the pH loop. The VH of EG-ISFETs with ITO
thin-film sensing membranes are 22.69, 31.61, 21.01, and 22.71 mV for MWA, TA+MWA,
MWA/Ar plasma, and TA+MWA/Ar plasma conditions, respectively. Meanwhile, the EG-
ISFETs with ITO nanofiber sensing membranes have VH values of 27.69, 17.97, 13.11, and
15.63 mV, respectively.
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Figure 10. Hysteresis effect of EG-ISFETs with ITO thin-film or ITO nanofiber sensing membranes
according to the calcination conditions and plasma treatment.

Figure 11 illustrates the drift effect of EG-ISFETs with ITO thin-film membranes or
ITO nanofiber sensing membranes, depending on the calcination conditions and plasma
treatment. During long-term continuous operation of the pH sensor, a hydration layer
is formed on the surface of the sensing membrane, causing a drift effect that hinders an
accurate sensing operation [60,62]. The drift rate (Rdrift) was measured by exposing the
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sensing membrane to a pH 7 buffer solution at room temperature for 10 h. For MWA,
TA+MWA, MWA/Ar plasma, and TA+MWA/Ar plasma conditions, the Rdrift values of
EG-ISFET with ITO thin-film membranes are 8.82, 9.56, 5.59, and 6.05 mV/h, respectively,
whereas those of the EG-ISFET with ITO nanofiber membranes are 5.14, 4.06, 3.42, and
3.75 mV/h, respectively. Therefore, the non-ideal behaviors derived from the hysteresis
voltage and drift rate were suppressed in the nanofiber sensing membrane and effectively
improved by the two-step calcination and plasma treatment. These results suggest that the
proposed two-step calcined, and plasma-treated ITO nanofiber sensing membranes have
stable operational capabilities in repeated and continuous measurement environments. The
experimental results of the pH sensitivity, hysteresis voltage, and drift rate performed on
the ITO nanofiber and thin-film sensing membranes are summarized in Table 3.
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Table 3. pH sensing characteristics of EG-ISFETs with ITO sensing membranes.

Sensing
Membrane

Process
Condition

Sensitivity
(mV/pH)

Hysteresis Voltage
(mV)

Drift Rate
(mV/h)

Thin−film
ITO

MWA 35.61 22.69 8.82

TA+MWA 36.25 31.61 9.56

MWA/Ar plasma 45.42 21.01 5.59

TA+MWA/Ar plasma 47.21 22.71 6.05

Nanofiber
ITO

MWA 40.09 27.69 5.14

TA+MWA 43.71 17.97 4.06

MWA/Ar plasma 51.49 13.11 3.42

TA+MWA/Ar plasma 55.44 15.63 3.75

4. Conclusions

We propose a transparent and high-performance EG-ISFET using an ITO nanofiber
sensing membrane with excellent electrical, electrochemical, and biocompatibility charac-
teristics. ITO, a metal oxide material, has excellent optical properties and has a wide range
of electrical applications. In addition, electrospun nanofibers can realize a higher specific
surface area than thin-films, so using ITO nanofibers as a sensing membrane is advanta-
geous for high-sensitivity electrochemical pH sensors. The ITO nanofibers spun on the glass
substrate simultaneously serve as a conductive electrode and a sensing membrane, making
the fabrication process simple and cost-effective compared to conventional EG units. A
two-step calcination process involving the combustion step and microwave annealing step
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was developed to efficiently remove residual polymers and impurities that deteriorate the
sensing characteristics of electrospun ITO nanofibers. As a subsequent process to boost
pH sensitivity, Ar plasma treatment was applied to improve the conductivity of the elec-
trospun nanofiber sensing membrane. The characteristics of the ITO nanofibers and ITO
thin-film membranes according to the calcination conditions and plasma treatment were
evaluated by SEM, XRD, XPS, optical transmittance, and conductivity. The combustion
step was found to be the most effective in improving crystallinity, optical transmittance,
and conductivity. Meanwhile, Ar plasma treatment significantly improved the optical
transmittance and conductivity of the sensing membranes. The effectiveness of the ITO
nanofiber was verified by evaluating the sensitivity and non-ideal behavior of EG-ISFETs
comprising an n-type MOSFET transducer unit and an EG unit with an ITO nanofiber or
an ITO thin-film sensing membrane. The ITO nanofiber-based EG-ISFET has a sensitivity
of 55.44 mV/pH, hysteresis of 15.63 mV, and a drift rate of 3.75 mV/h, while the ITO
thin-film-based EG-ISFET has a sensitivity of 47.21 mV/pH, hysteresis of 22.71 mV, and
a drift rate of 6.05 mV/h. Under the same calcination and plasma treatment conditions,
the ITO nanofiber sensing membrane exhibited 1.1 to 1.2 times better sensitivity than the
ITO thin-film sensing membrane. Two-step calcination and Ar plasma treatment enhanced
the sensitivity of the same sensing membrane material by 1.3 to 1.4 times. In particular, in
the non-ideal behaviors, the hysteresis voltage and drift rate of the nanofibers decreased to
56% and 73%, respectively, after the two-step calcination and Ar plasma treatment. The
results indicate that the electrospun ITO nanofiber sensing membrane is more transparent
and sensitive than the ITO thin-film and provides higher stability and reliability as well as
high sensitivity via the proposed two-step calcination process and Ar plasma treatment.
Therefore, we expect that the proposed electrospun ITO nanofiber sensing membrane-based
EG-ISFETs can be utilized as multifunctional and high-performance biochemical sensors.
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