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Abstract: The potential of applying Artificial Neural Network (ANN) models based on near-
infrared (NIR) spectra for the characterization of physical and chemical features of oil-in-aqueous
oregano/rosemary extract emulsions was explored in this work. Emulsions were prepared using a
batch emulsification process, with pea protein as the emulsifier. NIR spectral data were connected
to the results of the analysis of physical and chemical properties of the emulsions (zeta potential,
Feret droplet diameter, total polyphenolic content, and antioxidant capacity) with the final aim of
quantitative prediction of the physical and chemical features. For that purpose, robust non-linear
multivariate analysis (Artificial Neural Network modeling) was applied. The spectra themselves were
preprocessed using several approaches (raw spectra, Savitzky–Golay smoothing, standard normal
variate, and multiplicative scatter corrections) after which the impact of NIR spectral preprocessing on
the ANN model’s efficiency was evaluated. The results show that NIR spectroscopy integrated with
ANN computation can be employed to quantitatively predict the physical and chemical properties of
oil-in-plant extract emulsions (R2 > 0.9).

Keywords: oil-in-aqueous oregano/rosemary extract emulsions; NIR spectroscopy; artificial neural
network modeling

1. Introduction

Antioxidants are compounds that can limit the destruction caused by highly reactive
molecules [1]. Antioxidants, especially those derived from plants, have a well-known
ability to inhibit the creation of reactive species that are dangerous to human health [2].
Oregano (Origanum vulgaris L.) and rosemary (Rosmarinus officinalis L.), medicinal plants
of the Lamiaceae family, contain bioactive substances that have significant antioxidant
characteristics, including free radical scavenging activity [3–5]. Although they possess
notable effects on human health, their application is limited. The bioavailability and
integrity of polyphenols are key factors in their effectiveness. Due to their sensitivity
to environmental conditions (physical, chemical, and biological), polyphenols’ potential
health benefits are constrained. Their rapid oxidation, which results in the progressive
presence of a brown color and/or unpleasant smells, low water solubility, and unpleasant
taste, which should be disguised prior to being incorporated into food, are all issues
associated with their use [4,6].

In order to overcome the abovementioned limitations, polyphenol encapsulation is
one of the more interesting stabilization methods. The food, pharmaceutical, and cosmetic
industries, as well as personal care, agricultural products, biotechnology, biomedicine, and
veterinary medicine, use microencapsulated products to varying degrees [7–9]. For a variety
of biocompounds, emulsions represent one of the most diverting encapsulating and delivery
systems [10]. Their function is to protect and delivery a variety of bioactive substances, with
applications in the food industry, nutrition, medicine, and other fields [9]. The knowledge
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about the effect of factors such as emulsion constituents, homogenization mode, and
emulsifying agent type on emulsion stability is critical because practical benefits of emulsion
technology present numerous challenges [11,12]. Natural and synthetic emulsifiers are
frequently employed to stabilize emulsions used in food industries. Plant-based proteins
including zein originating from corn and pea proteins and oleosin from oilseeds like soy,
canola, and rapeseed are being investigated because of their significant bioavailability, low
autoimmune reaction profile, and preferred amino acid composition [13,14].

Many properties of emulsions can be analyzed based on their recorded near-infrared
spectra and explained using classical multivariate analysis [15–21]. Near-infrared spec-
troscopy (NIRs) has been used for decades in the food industry [22–24]. The key benefits of
this spectroscopic technique include low cost of analyses compared to standard analytical
techniques, lack of sample preparation, and the capacity to investigate a wide range of
products [24]. However, due to complexity of food matrixes, spectroscopic measurements
often produce misleading results, and chemometrics is mostly utilized to analyze the col-
lected NIR spectra. Chemometric approaches use mathematical and statistical tools to
analyze the obtained data and extract as much information as possible. The following
methods such as Principal Component Analysis (PCA), Canonical Correlation Analysis
(CCA), Factorial Discriminant Analysis (FDA), Principal Component Regression (PCR),
Common Components and Specific Weights Analysis (CCSWA), Partial Least Squares (PLS),
and Artificial Neural Networks Method (ANNs) are frequently employed in the analysis
of spectral data [5,19,25]. ANNs are effective tools for machine learning and data mining.
Building non-linear models is how Artificial Neural Network (ANN) models aim to solve
pattern recognition problems [5,20,26]. However, the fundamental drawback of employing
ANNs is their stochastic character and computational complexity (ANN training results
depend on the initial parameters) [27].

Therefore, the aim of this research was to build Artificial Neural Network (ANN)
models for estimating physical (zeta potential and the average Feret droplet diameter) and
chemical (total polyphenolic content, antioxidant activity determined by the DPPH, and
the FRAP methods) characteristics of oil-in-aqueous oregano/rosemary extract emulsions
based on their recorded NIR spectra. The emulsification was carried out in accordance
with the experiments reported in the paper by Sirovec et al. [12]. According to our best
knowledge, this is the first time NIRs have been used in combination with ANNs to predict
both physical and chemical properties of oil-in-aqueous extract emulsions manufactured
using natural plant pea protein as an emulsifier. The presented approach could be very
useful for monitoring the medicinal plant aqueous extract encapsulation process through
emulsification, especially regarding the total polyphenolic content and antioxidant activity.
To ascertain the impact of NIR spectra preprocessing on the ANN models, various spectral
preprocessing techniques (raw spectra, Savitzky–Golay smoothing, standard normal variate
(SNV), and multiplicative scatter corrections (MSC)) were used.

2. Materials and Methods
2.1. Materials
2.1.1. Plants, Sunflower Oil, and Pea Protein Powder

Edible sunflower oil (VitaDor, Germany) was bought from a nearby grocery store.
The organic pea protein powder was provided from Nutrigold (Zagreb, Croatia). Dried
plant materials such as oregano (Origanum vulgare L.) and rosemary (Rosmarinus officinalis
L.) were bought from SonnentoR (Sprögnitz, Austria) and Nutrigold (Zagreb, Croatia),
respectively. Oregano and rosemary were harvested in the 2020 and 2021 growing seasons,
dried naturally, and stored at room temperature until use. Austria (oregano) and India
(rosemary) are the countries where the plants were originally grown.

2.1.2. Chemicals

Sigma-Aldrich Chemie provided TPTZ (2,4,6-tris(2-pyridyl)-s-triazine), gallic acid
(98%), iron(II) sulphate heptahydrate, DPPH (1,1-diphenyl-2-picrylhydrazyl), and Trolox
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(6-hydroxy-2,5,7,8-tetramethylchromane-2 carboxylic acid) (Steinheim, Germany). Gram-
Mol d.o.o. supplied 30% hydrochloric acid, hexahydrate iron(III) chloride, and sodium
carbonate (Zagreb, Croatia). J.T. Baker supplied the sodium acetate trihydrate (Deventer,
The Netherlands). Kemika d.d. (Zagreb, Croatia) supplied the Folin–Ciocalteu reagent,
T.T.T. d.o.o. (Sveta Nedjelja, Croatia) supplied the acetic acid, and Carlo Erba Reagents
S.A.S. supplied the methanol (France). The chemicals used were analytical reagent grade.

2.2. Methods
2.2.1. Solid-Liquid Extraction Procedure

A solid-liquid extraction technique was applied for preparation of the aqueous oregano/
rosemary extracts. An amount of 12 g of dried plants was added to 600 mL of distilled
water and preheated to 80 ◦C. The Ika HBR4 digital oil bath (IKA-Werk GmbH & Co. KG,
Staufen, Germany) was used for the extraction performed under the following conditions:
T = 80 ◦C, rotational speed = 250 rpm, and t = 30 min. The samples were then filtered
through a 100% cellulose paper filter (LLG Labware, Meckenheim, Germany) with a pore
diameter of 5–13 µm using a vacuum filtration system [12,28].

2.2.2. Pea Protein Dispersion in Aqueous Plant Extracts

Pea protein suspensions in aqueous oregano/rosemary extracts were prepared as
described in the study by Sridharan et al. [29], with slight adjustments of their method [12].
To generate a 1% pea protein concentration, 4.5 g of pea protein powder was suspended
in 450 mL of aqueous plant extracts. Following homogenization and pH adjustment to
7 (0.5 M NaOH), the pea protein solution was filtered through a filter paper with pore
diameters ranging from 4 to 12 µm (Rundfilter, MN 640 m dia 11 cm, Macherey-Nagel,
Düren, Germany). The 0.1 and 0.5% pea protein concentrations were made by diluting 1%
pea protein concentration with a certain volume of distilled water.

2.2.3. Preparation of Oil-in-Water Emulsions Containing Oregano/Rosemary Extracts

The Box–Behnken experimental design was used for preparation of the oil-in-aqueous
oregano/rosemary extract emulsions. The design was made separately for the oregano
(17 experiments) and for the rosemary emulsions (17 experiments), resulting in 34 samples
of emulsions altogether. The independent variables tested were oil concentration (10, 15,
and 25%), emulsifier content (0.1, 0.5, and 1%), and homogenization rate (15,000, 25,000,
and 35,000 min−1). The procedure was previously described by Sirovec et al. [12]. Briefly, a
specific volume of aqueous plant extracts with a proper concentration of emulsifier was
combined with a specific volume of sunflower oil in a 15 mL falcon test tube (total volume
of 7 mL). Batch emulsification was performed using an OMNI TH220-PCRH homogenizer
(Omni International, Kennesaw, GA, USA). The duration of homogenization was 4 min.

2.2.4. Dry Matter Content Measurement

Plant materials (1–5 ± 0.0001 g) were dried to a constant weight at 105 ◦C for the
duration of 3 h [30]. All measurements were performed in duplicate.

2.2.5. Zeta Potential Measurement

Immediately after emulsification, the zeta potential of oil-in-aqueous oregano/rosemary
extract emulsions was measured as described previously by Sirovec et al. [12].

2.2.6. The Average Feret Droplet Diameter Measurement

Using a microscope with a camera, samples of the prepared oregano/rosemary emul-
sions were captured at 10× magnification (BTC type LCD-35, Bresser, Germany). Using the
software program ImageJ (v.1.8.0. National Institutes of Health, Bethesda, MD, USA), the
average Feret droplet diameter was determined for each emulsion as the average value of
30 measurements of the Feret droplet diameter [12].
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2.2.7. Measurement of Total Polyphenolic Content and Antioxidant Activity of the
Prepared Emulsions

As previously described by Singleton and Rossi [31], the total polyphenolic content
(TPC) of the oil-in-aqueous oregano/rosemary extract emulsions was assessed spectropho-
tometrically. All measurements were carried out in duplicate. The results were expressed as
mg of gallic acid equivalents per gram of dry matter of plant material [12]. DPPH and FRAP
were used to determine the antioxidant activity of the oil-in-aqueous oregano/rosemary
extract emulsions. According to Brand-Williams et al. [32], the DPPH (1,1-diphenyl-2-
picrylhydrazyl) scavenging method was used. The results were presented in duplicate as
mmol Trolox equivalents per gram of dry plant material [12]. According to Benzie and
Strain [33], the Ferric ion reducing antioxidant power (FRAP) assay was carried out. The
results were presented in duplicate as mmol FeSO4·7H2O equivalents per gram of dry
plant material [12].

2.2.8. Near-Infrared Spectroscopy (NIR)

Samples were diluted 200 times in distilled water prior to NIR measurements. An NIR
spectrophotometer NIR-128L-1.7-USB/6.25/50 µm (Control Development, South Bend, IN,
USA) with the installed software Spec32 and a halogen light source was applied to measure
the near-infrared spectra of the prepared emulsions (a total of 34 samples). The complete
spectral range (904 nm–1699 nm) was covered by three consecutive runs for each emulsion,
and the mean value of the spectra was further used [5,34].

2.2.9. NIR Data Preprocessing

Using the Unscrambler X software (Version 10.1. CAMO AS, Oslo, Norway), the
effectiveness of the preprocessing techniques for NIR spectra on sample grouping was
evaluated. Raw spectra, Savitzky–Golay smoothing (SG), standard normal variate (SNV),
and multiplicative scatter corrections (MSC) were examined as preprocessing techniques.
Principal Component Analysis (PCA) was also performed using raw and preprocessed
spectra. Statistica 14.0 (TIBCO®® Statistica, Palo Alto, CA, USA) was used to perform PCA.

2.2.10. Artificial Neural Network (ANN) Modeling

Artificial Neural Network (ANN) modeling was used for the prediction of physical
(zeta potential and the average Feret droplet diameter) and chemical (total polyphenolic
content and antioxidant activity) characteristics of the oil-in-aqueous oregano/rosemary
extract emulsions. ANN models were also developed for the prediction of physical proper-
ties, the prediction of chemical properties, and for the simultaneous prediction of physical
and chemical properties. Multiple Layer Perceptron (MLP) networks were developed using
the software Statistica 14.0. (TIBCO®® Statistica, Palo Alto, CA, USA). ANNs consist of
three layers: input, hidden, and output. Developed ANNs consisted of 4 neurons in the
input layer that represent the coordinates of the first four factors obtained from PCA. The
four factors’ principal components contributed to more than 99.99% of the data variability.
The number of hidden layer neurons ranged from 4 to 13, and they were randomly selected
by the algorithm. Identity, Logistic, Hyperbolic tangent, and Exponential functions were
chosen randomly as the hidden activation functions and the output activation functions.
The data set for the construction of ANNs was 68 × 9, with 68 rows representing oil-in-
aqueous plant extract emulsions, 4 columns representing 4 PCA coordinates (factors), and
5 columns representing the results for zeta potential, the average Feret droplet diameter,
TPC, DPPH, and FRAP. To ensure the development of the relabel models, cross validation
implemented in Statistica 14.0. (TIBCO®® Statistica, Palo Alto, CA, USA) was used. A sub-
sampling strategy was applied. Random subsampling with 5 subsamples and 1000 seeds
for subsampling was used. The back error propagation algorithm was used for model
training, and the error function was the sum of squares. R2 and Root Mean Square Error
(RMSE) values for training, testing, and validation were used to estimate the performance
of developed models. In order to develop ANN, data were randomly divided into three
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categories: network training (70%—48 data points), model test (15%—10 data points), and
model validation (15%—10 data points).

3. Results and Discussion
3.1. NIR Spectra of the Prepared Emulsions

The objective of this study was to investigate the feasibility of NIR spectroscopy to
evaluate the physical and chemical properties of oil-in-aqueous oregano/rosemary extract
emulsions using pea proteins as an emulsifier. According to Sridharan et al. [29], oil-in-
water emulsions are usually used in food products to provide texture and/or preserve the
encapsulated components. Oil/water interfaces of food-grade emulsions can be stabilized
by proteins, either animal or, lately intensively used, plant proteins [35,36]. Among many
proteins, pea proteins stand out as widespread vegetarian diet, gluten-free, and minimal
allergenicity molecules, indicating that they are safe for a wide range of people, and were
therefore considered as a surfactant throughout this study [37].

The continuous NIR spectra of oil-in-aqueous plant extract emulsions formed with
pea proteins were collected in range from 904 to 1699 nm. Figure 1 depicts the mean
raw spectra and preprocessed spectra of 17 samples of oil-in-oregano extract emulsions
and oil-in-rosemary extract emulsions produced based on the Box–Behnken experiment
designs.

It is clear that the raw spectra including both types of emulsions correspond to a single
absorbance pattern (Figure 1(a1,b1)). This can be explained by the fact that water is the most
abundant component in the prepared emulsions; therefore, spectra have the same specific
pattern characteristic of the aqueous samples. For the emulsions with oregano extract, there
are no specific outliers. On the other hand, for the emulsions with rosemary extract, it can
be noticed that the spectra for the emulsion prepared according to experimental condition
4 (25% of oil, 1% of emulsifier, and 35,000 rpm) show slightly higher absorbance than
other prepared emulsions along the whole analyzed wavelength range. This is probably a
consequence of the higher amount of the used emulsifier. There are additional variances
in the amplitude of typical wavelength bands extending from 900 to 1050 nm, 1100 to
1300 nm, and 1400 to 1699 nm. The C-H and N-H 3rd overtones, the C-H 2nd overtone, and
the O-H and N-H 2nd overtones, respectively, correspond to selected spectral areas [38,39].
The wavelength region from 1400 to 1699 nm, which is unique for the superposition of the
O-H bonds, shows the most obvious variations in the spectral profiles of both sample types.
As mentioned before by Valinger et al. [5], the discrepancies in this region of the spectrum
are clearly associated with the amount of water in the samples.

As mentioned in the introduction of this work, the motivation for this research was to
analyze whether it is possible to interpret the physical as well as chemical characteristics of
the produced oil-in-aqueous oregano/rosemary extract emulsions based on the NIR spectra.
However, according to Gál et al. [40], because spectral data comprise a large amount of
information which could be partially visible, understanding the spectra in connection to
the detected physical as well as chemical properties of the materials is difficult. Because
of that, chemometric tools must be applied. One of the most prominent chemometric
methodologies for recognizing the variations across samples and decreasing the amount of
attributes is Principal Component Analysis [41]. PCA significantly reduces the number of
variables; it can account for the most variability, beginning with the first factor containing
the greatest variance explained and ending with the final factor with the least variance
explained [26]. Besides the fact that PCA enables observation of the variety between spectra
by evaluating the scores, studying the loadings derived from PCA also provides insight
into the source of the observed variability [42]. In this study, PCA was used to compare
the raw NIR spectra of the produced oil-in-aqueous oregano/rosemary extract emulsions.
Figure 2 depicts the derived PCA score plot and the corresponding loading plots of raw
NIR spectra of both types of emulsions.
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Figure 1. NIR spectra of oil-in-aqueous plant extract emulsions: (a1) raw spectra of oregano aqueous
extract emulsions; (b1) raw spectra of rosemary aqueous extract emulsions; (a2) oregano aqueous
extract emulsions spectra after Savitzky–Golay smoothing (SG); (b2) rosemary aqueous extract
emulsions spectra after Savitzky–Golay smoothing (SG); (a3) oregano aqueous extract emulsions
spectra after standard normal variate (SNV) preprocessing; (b3) rosemary aqueous extract emulsions
spectra after Savitzky–Golay smoothing (SG); (a4) oregano aqueous extract emulsions spectra after
multiplicative scatter corrections (MSC) preprocessing; (b4) rosemary aqueous extract emulsions
spectra multiplicative scatter corrections (MSC) preprocessing.
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Figure 2. PCA score plots of 68 raw NIR spectra of (a) oil-in-oregano aqueous extract emulsions and
(c) oil-in-rosemary aqueous extract emulsions and corresponding loading plots for (b) oil-in-oregano
aqueous extract emulsions and (d) oil-in-rosemary aqueous extract emulsions. The green arrows
present the direction of sample grouping according to the growing quantity of emulsifier used for
sample preparation.

It is evident that first and second principle components account for more than 98% of
the overall variation for both types of emulsions. For emulsions prepared with oregano
aqueous extract, the first four PCs have eigenvalues greater than 1 (PC1–741.8385, PC2-
38.8130, PC3-11.4431, and PC4-2.5197), and those four components explain over 99.9% of
overall data variation. In the case of emulsions prepared from rosemary aqueous extract,
again, the first four PCs have eigenvalues greater than 1 (PC1-748.2248, PC2-34.2854, PC3-
7.8000, and PC4-3.7133), and those four components also explain over 99.9% of the variation
in the data. Loading plots (Figure 2b,d), on the other hand, showed that PC-1 for oregano
extract emulsions is negatively correlated with wavelengths in a range from 900 to 1400 nm
and positively correlated with wavelengths in a range from 1400 to 1600 nm, while for the
rosemary extract emulsions, completely inverse outcomes were achieved. For both types of
samples, the highest absolute value of absorbance was noticed at 1550 nm corresponding
to the NH first overtone. Moreover, loading analyses showed that PC-2 and PC-3 have the
opposite trend to PC-1 but follow the same trend for both samples. Maximum loading for
PC-2 and PC-3 were obtained at 1100 nm, 1250 nm, and 1550 nm, corresponding to the
CH second overtone and NH first overtone, respectively. Furthermore, loading belonging
to PC-3 for oil-in-oregano aqueous extract emulsions is noisy at this range, indicating the
necessity of spectra preprocessing. Based on the results presented in Figure 1(a2–a4,b2–b4),
it can be noticed that the smoothing influence is not apparent visually, while SNV and MSC
revealed the highest spectral differences in wavelength ranges from 900 to 1000 nm, from
1050 to 1150 nm, from 1250 to 1350 nm, and from 1500 to 1560 nm.

PCA of the raw NIR spectra indicated particular specimen groupings all along the PCA
score plot (Figure 2a,c). A thorough examination of the findings shows that they had been
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classified based on the quantity of emulsifier used for sample preparation in the direction of
the green arrows shown in Figure 2a,c. The samples with the least amount of emulsifying
agent were positioned in the first quadrant, while those with the most emulsifying agent
were positioned in the second quadrant. The samples could not be distinguished based on
the amount of oil used or the rotational speed used for emulsification. Comparable findings
were given by Grgić et al. [19] who noticed sample grouping based firstly on the type of the
emulsifier and based secondly on the amount of the emulsifier used. Based on the above,
NIR spectra can be efficiently used to discriminate oil-in-water emulsion samples.

3.2. ANN Modeling of Oil-in-Aqueous Oregano/Rosemary Extract Emulsions Selected Physical
and Chemical Properties Based on NIR Spectra

Several examples in the literature demonstrate that NIR spectroscopy has great capabil-
ity for quantifying the diameter and moisture content of oil-in-water emulsions [17,19,20,43].
When working with emulsions, however, various interferences such as specimen width,
measurement geometry, or specimen physical characteristics may affect the light passing
distance and lead the spectra to alter [44,45]. Therefore, it is sometimes important to include
preprocessing into the development of chemometric models using NIR spectra [46]. Besides
the raw NIR spectra, preprocessed NIR spectra were also used, and the effectiveness of the
preprocessing on the ANN models was tested. Preprocessing included several methods:
Savitzky–Golay smoothing (SG), standard normal variate (SNV), and multiplicative scatter
corrections (MSC). Savitzky–Golay (SG) smoothing is a popular preprocessing approach
that successfully eliminates disturbances such as baseline drift and tilt [47]. Smoothing
parameters include the polynomial degree, polynomial derivative order, and number of
smoothing points [42,48]. Multiplicative signal correction (MSC) is a technique used when
the two principal impacts are present in the samples. The spectra are modified for the
baseline and multiplicative amplification influence, and a reference spectrum is defined,
which is normally the average spectrum of the calibration inputs collection [42,45,46,49]. By
reducing the average value for the whole spectrum and afterwards dividing the outcome
by the standard deviation of the complete spectrum, the standard normal variate (SNV)
reduces a continuous offset term [42,45,46,49]. ANN models were developed separately for
both types of emulsions. Because of their non-linearity, ANNs have already been proposed
as an effective tool for interpreting spectrum information [26,50,51]. The ANN learning
algorithm appears to be a viable replacement for traditional two-dimensional calibration
techniques utilized throughout NIR spectroscopy [5,20].

Tables 1 and 2 show ANN structures for individual output factor and emulsion
category, with the resulting coefficients of determination for every output variable indicated
in Tables 3 and 4. The R2 and RMSE values for training, testing, and validation, in addition
to the number of hidden layer neurons, were used to choose the most effective ANN design.
For the oregano emulsion, the ANNs established for the prediction of emulsion chemical
characteristics achieved the best training, testing, and validation results, followed by the
ANNs developed for the concurrent prediction of chemical and physical characteristics and
ANNs developed for the prediction of physical characteristics. The findings can explain
the greater dispersion of data describing the physical properties of oil-in-oregano aqueous
extract emulsions. It can also be noticed that preprocessing of the NIR spectra did not
contribute to higher ANN model accuracy. The positive effect of the SNV preprocessing
method was only observed on the Feret diameter as the analyzed model output. The
multilayer perceptron (MLP) Artificial Neural Network MLP 4-5-3, considered as the most
favorable for the representation of chemical properties of oil-in-aqueous oregano extract
emulsions (R2

training = 0.9853, RMSEtraining = 6.0391, R2
test = 0.9812, RMSEtest = 7.7728,

R2
validation = 0.9674, RMSEvalidation = 11.3507) based on the NIR spectral region, had four

neurons in the input layer, five neurons in the hidden layer, and three neurons in the output
layer (Table 1). Tanh was the hidden activation function, and Exponential was the output
activation function.
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Table 1. The structure of ANNs chosen to describe physical properties (P) including zeta potential
and Feret diameter, chemical properties (C) including TPC, DPPH and FRAP, and combined phys-
ical/chemical (P + C) properties of aqueous oregano extract emulsions according to various NIR
spectra pretreatments.

MLP R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

Hidden
Activation

Output
Activation

Raw spectra

P MLP 4-4-2 0.8935
49.5475

0.8304
54.7184

0.7985
60.0452 Exponential Tanh

C MLP 4-5-3 0.9865
6.0391

0.9812
7.7728

0.9674
11.3507 Tanh Exponential

P + C MLP 4-6-5 0.8745
179.7719

0.8558
208.2232

0.7830
264.5242 Exponential Tanh

SG

P MLP 4-4-2 0.8792
67.5971

0.7667
90.3055

0.7394
95.8990 Exponential Exponential

C MLP 4-5-3 0.9803
43.3076

0.9749
55.0740

0.9612
63.6157 Tanh Identity

P + C MLP 4-4-5 0.8833
104.4711

0.8227
142.6231

0.7954
176.8579 Exponential Tanh

SNV

P MLP 4-3-2 0.7891
57.5630

0.7532
93.7165

0.7184
134.1752 Logistic Logistic

C MLP 4-5-3 0.9831
19.0224

0.9795
27.2635

0.9595
28.1258 Exponential Exponential

P + C MLP 4-5-5 0.9276
36.0402

0.9197
65.9584

0.8775
76.8929 Tanh Exponential

MSC

P MLP 4-3-2 0.8528
74.246

0.8184
79.5826

0.7596
80.1605 Logistic Identity

C MLP 4-4-3 0.9852
11.1603

0.9844
12.9489

0.9691
20.0684 Tanh Logistic

P + C MLP 4-5-5 0.9432
72.3190

0.9244
85.4091

0.9015
108.2861 Exponential Exponential

Table 2. The structure of ANNs chosen to describe the physical properties (P) including zeta potential
and Feret diameter, chemical properties (C) including TPC, DPPH and FRAP, and combined physi-
cal/chemical (P + C) properties of aqueous rosemary extract emulsions according to various NIR
spectra pretreatments.

MLP R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

Hidden
Activation

Output
Activation

Raw spectra

P MLP 4-3-2 0.8207
34.2804

0.8085
62.7199

0.7967
75.7252 Exponential Tanh

C MLP 4-4-3 0.9456
10.3888

0.9225
11.9938

0.8989
20.0926 Tanh Identity

P + C MLP 4-6-5 0.8889
42.5165

0.8133
57.3472

0.7999
117.9804 Logistic Logistic

SG

P MLP 4-4-2 0.8236
33.9466

0.7518
52.6949

0.7503
76.5493 Tanh Exponential

C MLP 4-4-3 0.8784
17.9444

0.8697
28.7077

0.8541
42.7062 Logistic Tanh

P + C MLP 4-5-5 0.8611
69.1007

0.8493
78.5401

0.8387
115.7696 Logistic Logistic
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Table 2. Cont.

MLP R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

Hidden
Activation

Output
Activation

SNV

P MLP 4-5-2 0.8745
39.4502

0.8485
51.0628

0.7282
52.2450 Tanh Tanh

C MLP 4-4-3 0.9423
13.5427

0.9324
30.3847

0.8642
43.6561 Logistic Logistic

P + C MLP 4-5-5 0.8718
57.9012

0.8577
69.7663

0.8434
86.8053 Exponential Identity

MSC

P MLP 4-5-2 0.8336
24.7871

0.8314
47.0239

0.7329
5.8123 Exponential Exponential

C MLP 4-4-3 0.9069
36.5873

0.9088
48.8569

0.8998
57.8222 Exponential Exponential

P + C MLP 4-5-5 0.8724
58.9583

0.8267
68.0744

0.8245
101.7221 Logistic Logistic

Table 3. Correlation coefficients (R2) and Root Mean Square Errors (RMSEs) of ANN models for
description of aqueous oregano extract emulsion physical properties (P) including zeta potential
and Feret diameter, chemical properties (C) including TPC, DPPH and FRAP, and combined physi-
cal/chemical (P + C) properties according to various NIR spectra pretreatments.

Output Variable R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

Raw spectra

P

Zeta potential 0.8966
1.9274

0.8963
2.2835

0.8666
2.9133

Feret diameter 0.8907
2.8565

0.7941
6.4834

0.7005
8.9043

C

TPC 0.9982
3.4746

0.9953
3.9415

0.9894
6.5336

DPPH 0.9899
0.0276

0.9695
0.0340

0.9630
0.0443

FRAP 0.9756
0.0652

0.9742
0.0883

0.9499
0.1022

P + C

Zeta potential 0.9612
1.9824

0.9083
2.2806

0.8418
3.3636

Feret diameter 0.7576
11.1085

0.7539
14.3959

0.6931
17.9466

TPC 0.9282
11.8724

0.8918
16.9653

0.8741
28.3374

DPPH 0.8627
0.0997

0.7991
0.1024

0.7636
0.1468

FRAP 0.9623
0.0958

0.9256
0.1220

0.8433
0.1575

SG P

Zeta potential 0.8389
2.6495

0.8303
3.0937

0.7893
6.1019

Feret diameter 0.9281
11.3214

0.7445
11.9740

0.7398
14.2207
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Table 3. Cont.

Output Variable R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

SG

C

TPC 0.9816
9.3064

0.9652
10.4949

0.9467
14.3953

DPPH 0.9871
0.0293

0.9709
0.0466

0.9590
0.0594

FRAP 0.9883
0.0536

0.9776
0.0650

0.9724
0.0715

P + C

Zeta potential 0.7125
3.8091

0.6882
4.6766

0.6613
5.6044

Feret diameter 0.9177
9.0139

0.8272
10.3678

0.7259
11.8604

TPC 0.9776
9.8112

0.9288
12.4844

0.8968
19.9628

DPPH 0.9011
0.0831

0.8805
0.0848

0.8009
0.1066

FRAP 0.9526
0.1085

0.9406
0.1297

0.8949
0.1301

SNV

P

Zeta potential 0.8544
2.6495

0.7481
3.0937

0.7192
6.1019

Feret diameter 0.7583
11.3214

0.7098
11.9740

0.7025
14.2207

C

TPC 0.9884
9.3064

0.9694
10.4948

0.9504
14.3953

DPPH 0.9905
0.0293

0.9863
0.0466

0.9763
0.0594

FRAP 0.9784
0.0536

0.9746
0.0650

0.9516
0.0715

P + C

Zeta potential 0.9391
3.8091

0.8566
4.6766

0.8021
5.6044

Feret diameter 0.9722
9.0139

0.8686
10.3678

0.8372
11.8604

TPC 0.9946
9.8112

0.9889
12.4844

0.9804
19.9628

DPPH 0.9597
0.0831

0.8639
0.0848

0.8541
0.1066

FRAP 0.9782
0.1085

0.9642
0.1297

0.9634
0.1301

MSC

P
Zeta potential 0.9051

2.3980
0.8718
2.7542

0.7820
3.9036

Feret diameter 0.9236
11.8704

0.7649
12.0450

0.7142
12.3861

C

TPC 0.9983
4.7244

0.9935
5.0862

0.9863
6.3345

DPPH 0.9863
0.0304

0.9847
0.0370

0.9527
0.0636

FRAP 0.9757
0.0718

0.9733
0.0797

0.9701
0.1649
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Table 3. Cont.

Output Variable R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

MSC P + C

Zeta potential 0.9107
2.1143

0.8438
3.3898

0.7974
3.5012

Feret diameter 0.9547
8.1953

0.8004
11.3799

0.7973
12.1886

TPC 0.9879
5.4605

0.9869
7.9706

0.9831
8.0748

DPPH 0.9628
0.0526

0.9479
0.0529

0.9372
0.0857

FRAP 0.9925
0.0701

0.9797
0.0874

0.9740
0.0881

Table 4. Correlation coefficients (R2) and Root Mean Square Errors (RMSEs) of ANN models for
description of aqueous rosemary extract physical properties (P) including zeta potential and Feret
diameter, chemical properties (C) including TPC, DPPH and FRAP, and combined physical/chemical
(P + C) properties according to various NIR spectra pretreatments.

Output Variable R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

Raw spectra

P
Zeta potential 0.8510

4.1106
0.8497
4.7355

0.7922
5.5010

Feret diameter 0.7916
6.4024

0.7654
10.3573

0.7342
11.0086

C

TPC 0.9718
4.5579

0.9469
4.8426

0.8519
7.9168

DPPH 0.9493
0.0316

0.9436
0.0410

0.8942
0.0434

FRAP 0.9719
0.0458

0.9158
0.0488

0.8556
0.0523

P + C

Zeta potential 0.9577
2.1112

0.8748
4.1546

0.8706
4.9363

Feret diameter 0.8614
8.6155

0.8475
9.7587

0.8142
14.3121

TPC 0.9877
3.7226

0.9756
3.9809

0.9638
4.1216

DPPH 0.9124
0.0370

0.9025
0.0478

0.8896
0.0494

FRAP 0.9441
0.0429

0.9355
0.0550

0.9056
0.0883

SG

P
Zeta potential 0.8425

4.0238
0.8415
4.6788

0.8063
5.6473

Feret diameter 0.8046
6.5721

0.7726
9.3411

0.7265
11.0094

C

TPC 0.9161
5.9254

0.9112
9.2414

0.8752
12.2198

DPPH 0.8509
0.0440

0.7916
0.0714

0.7771
0.0649

FRAP 0.9568
0.0485

0.8731
0.0548

0.8546
0.0583
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Table 4. Cont.

Output Variable R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

SG P + C

Zeta potential 0.9066
3.1347

0.8598
4.369

0.8446
6.4960

Feret diameter 0.8466
5.7399

0.8263
9.2201

0.7410
11.9014

TPC 0.9155
6.6264

0.8957
8.1915

0.8877
8.4050

DPPH 0.8332
0.0465

0.7877
0.0720

0.7612
0.0725

FRAP 0.9855
0.0330

0.9513
0.0398

0.9212
0.0938

SNV

P
Zeta potential 0.9672

1.8772
0.9337
2.7578

0.8781
4.5652

Feret diameter 0.8153
7.5254

0.7268
8.8445

0.6782
9.8430

C

TPC 0.9398
7.7047

0.8780
9.3440

0.8075
10.9179

DPPH 0.9681
0.0251

0.9638
0.0277

0.9364
0.0336

FRAP 0.9509
0.0388

0.9486
0.0391

0.9233
0.0506

P + C

Zeta potential 0.9392
2.5100

0.8824
3.5757

0.8328
4.9122

Feret diameter 0.8485
3.5498

0.6723
9.9379

0.5764
10.8354

TPC 0.9434
5.9875

0.9184
6.5890

0.9096
7.7269

DPPH 0.9073
0.0382

0.9073
0.0585

0.8777
0.0617

FRAP 0.9819
0.0318

0.9479
0.0349

0.9149
0.0941

MSC

P
Zeta potential 0.9642

3.1605
0.8858
9.6204

0.7970
10.1486

Feret diameter 0.8703
3.9175

0.6987
8.778

0.5881
12.6877

C

TPC 0.8539
8.4527

0.8323
9.8816

0.8088
10.7537

DPPH 0.9721
0.0527

0.9522
0.0735

0.9224
0.0881

FRAP 0.9876
0.0343

0.9653
0.0355

0.9232
0.0534
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Table 4. Cont.

Output Variable R2
training/

RMSEtraining

R2
test/

RMSEtest

R2
validation/

RMSEvalidation

MSC P + C

Zeta potential 0.9633
2.7911

0.9109
3.0450

0.8837
4.2572

Feret diameter 0.6794
9.4931

0.5664
9.6395

0.5166
9.4931

TPC 0.9722
4.6885

0.9529
5.3897

0.91277
7.1686

DPPH 0.9639
0.0234

0.8939
0.0445

0.8632
0.0679

FRAP 0.9679
0.0394

0.9250
0.0404

0.9084
0.0496

Selected ANNs described all three analyzed chemical properties (Table 4) with high
precision (R2

training (TPC) = 0.9982, RMSEtraining (TPC) = 3.4746, R2
test (TPC) = 0.9953,

RMSEtest (TPC) = 3.9415, R2
validation (TPC) = 0.9894, RMSEvalidation (TPC) = 6.5336; R2

training

(DPPH) = 0.9899, RMSEtraining (DPPH) = 0.0276, R2
test (DPPH) = 0.9695, RMSEtest (DPPH)

= 0.0340, R2
validation (DPPH) = 0.9630, RMSEvalidation (DPPH) = 0.0443; R2

training (FRAP)
= 0.9756, RMSEtraining (FRAP) = 0.065, R2

test (FRAP) = 0.9742, RMSEtest (FRAP) = 0.0883,
R2

validation (FRAP) = 0.9499, RMSEvalidation (FRAP) = 0.1022). On the other hand, results
showed that developed ANN models based on the NIR spectra of the prepared emul-
sions were not reliable for Feret diameter prediction. To develop a more suitable model,
specific wavelength fingerprint selection would probably be required. Furthermore, the
results show the high potential of the developed ANN model for the simultaneous pre-
diction of selected physical and chemical properties of aqueous oregano extract emul-
sions (Table 3 and Figure 3) using raw NIR spectra. According to R2 and RMSE values,
MLP 4-6-5 is the most suitable for the description of the zeta potential data (R2

validation
(zeta potential) = 0.8418, RMSEvalidation (zeta potential) = 3.3636) and TPC data (R2

validation
(TPC) = 0.8741, RMSEvalidation (TPC) = 28.3374). Zeta potential data (Figure 3b) were dis-
tributed evenly around the whole spectrum, while for the TPC data, sample grouping in
three groups (Figure 3c) was noticed. As given in Figure 3 for DPPH data alone (Figure 3d),
specific outliers can be noticed. Based on the experimental values of zeta potential (in
range from −30 mV to −60 mV), it can be concluded that the prepared emulsions are
stable. According to the literature, emulsions with zeta potential values less than −30 mV
or greater than +30 mV are classified as stable [52].

According to the findings for the emulsions with oregano (Table 2), the ANNs estab-
lished for the estimation of emulsion chemical characteristics had the maximum training,
testing, and validation performances, followed by the ANNs established for the simultane-
ous assessment of chemical and physical characteristics and the ANNs established for the
assessment of physical characteristics.
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Figure 3. Comparison between observed and ANN model predicted values of physical (a) Feret
diameter, (b) zeta potential and chemical properties (c) total polyphenolic content (TPC), (d) antiox-
idant activity measured by DPPH method, (e) antioxidant activity measured by FRAP method of
oil-in-oregano aqueous extract emulsions based on the NIR spectra. A selected ANN model was
used for the simultaneous prediction of physical and chemical properties of the analyzed samples.
(o—traning data set; ∆—test data set; ♦—validation data set).
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Equivalent outcomes were produced by Valinger et al. [5] for modeling the physical
and chemical properties of olive leaf aqueous extract based on NIR spectra, by Marić
et al. [53] and Jurinjak Tušek et al. [54] for modeling the physical and chemical properties
of root vegetable extract based on NIR spectra, and Valinger et al. [26] for modeling the
physical and chemical properties of industrial hemp aqueous extract based on NIR spectra.
The same trend can be seen for raw spectra and the selected preprocessing methods. It
is also important to mention that spectra preprocessing did not have a positive effect
on the training, testing, and validation performances of ANN models. On the contrary,
the used preprocessing methods resulted in decreases in training, testing, and validation
performances of ANN models, particularly models used to predict emulsion physical
properties. The decrease in the model’s accuracy was mostly evidenced for the Feret
diameter as the ANN model output variable. This can be explained by the fact that
preprocessing can reduce valuable data or increase the impact of irrelevant data [55].
Therefore, the fact that the ANN model developed based on the raw spectra shows higher
accuracy can be considered an important advantage and very important and applicable
result.

As for the oil-in-aqueous oregano extract emulsions, in the case of oil-in-aqueous
rosemary extract emulsions, the developed ANN model based on the raw NIR spectra
was the most suitable for the description of chemical properties. The MLP 4-4-3 (R2

training

= 0.9456, RMSEtraining = 10.3888, R2
test = 0.9225, RMSEtest = 11.9938, R2

validation = 0.8989,
RMSEvalidation = 20.0926) chosen as predictor of chemical properties of oil-in-aqueous
rosemary extract emulsions was able to describe all three analysis output variables with
high precision (R2

training (TPC) = 0.9718, RMSEtraining (TPC) = 4.5579, R2
test (TPC) = 0.9460,

RMSEtest (TPC) = 4.8426, R2
validation (TPC) = 0.8519, RMSEvalidation (TPC) = 7.9168; R2

training

(DPPH) = 0.9493, RMSEtraining (DPPH) = 0.0316, R2
test (DPPH) = 0.9436, RMSEtest (DPPH)

= 0.0410, R2
validation (DPPH) = 0.8942, RMSEvalidation (DPPH) = 0.0434; R2

training (FRAP) =
0.9719, RMSEtraining (FRAP) = 0.0458, R2

test (FRAP) = 0.9158, RMSEtest (FRAP) = 0.0488,
R2

validation (FRAP) = 0.8556, RMSEvalidation (FRAP) = 0.0523).
Moreover, MLP 4-6-5 (R2

training = 0.8889, RMSEtraining = 42.5650, R2
test = 0.8133,

RMSEtest = 57.3472, R2
validation = 0.7999, RMSEvalidation = 117.9804) designed for the concur-

rent prediction of physical and chemical properties of the analyzed emulsion based on raw
NIR spectra was able to describe the FRAP (R2

training = 0.9441, RMSEtraining = 0.0429, R2
test

= 0.9355, RMSEtest = 0.0550, R2
validation = 0.9056, RMSEvalidation = 0.0883), TPC (R2

training

= 0.9877, RMSEtraining = 3.7226, R2
test = 0.9756, RMSEtest = 3.9809, R2

validation = 0.9638,
RMSEvalidation = 0.4216), and zeta potential (R2

training = 0.8510, RMSEtraining = 4.1106, R2
test

= 0.8497, RMSEtest = 4.7355, R2
validation = 0.7922, RMSEvalidation = 5.5010) with high preci-

sion (Table 4 and Figure 4). The presented results confirm previous studies [17,19,20,43]
indicating NIR spectroscopy coupled with ANN modeling can be efficiently used for moni-
toring oil-in-water emulsion properties. Nevertheless, because the physical and chemical
characteristics of the obtained emulsions varied depending on the aqueous phase proper-
ties, it is possible to conclude that the developed models might be employed particularly
for the selected emulsification process.
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4. Conclusions

NIR spectroscopy combined with ANN modeling may be effectively utilized to moni-
tor the parameters of oil-in-water emulsions in qualitative as well as quantitative manners.
Given the physical and chemical features of the resulting emulsion changed depending
on the aqueous phase parameters, it can be deduced that the created models may be used
specifically for the chosen emulsification procedure.
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dissolved solids and bioactives in dried root vegetable extracts using near infrared spectroscopy. Spectrochim. Acta Part A Mol.
Biomol. Spectrosc. 2021, 261, 120074. [CrossRef] [PubMed]

55. Schoot, M.; Kapper, C.; van Kollenburg, G.H.; Postma, G.J.; van Kessel, G.; Buydens, L.M.C.; Jansen, J.J. Investigating the need
for preprocessing of near-infrared spectroscopic data as a function of sample size. Chemom. Intell. Lab. Syst. 2020, 204, 104105.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs11040450
https://doi.org/10.3390/foods11030281
https://doi.org/10.3390/mi13101590
https://doi.org/10.1016/j.apcbee.2014.01.003
https://doi.org/10.1016/j.fbp.2019.11.002
https://doi.org/10.1016/j.saa.2021.120074
https://www.ncbi.nlm.nih.gov/pubmed/34147736
https://doi.org/10.1016/j.chemolab.2020.104105

	Introduction 
	Materials and Methods 
	Materials 
	Plants, Sunflower Oil, and Pea Protein Powder 
	Chemicals 

	Methods 
	Solid-Liquid Extraction Procedure 
	Pea Protein Dispersion in Aqueous Plant Extracts 
	Preparation of Oil-in-Water Emulsions Containing Oregano/Rosemary Extracts 
	Dry Matter Content Measurement 
	Zeta Potential Measurement 
	The Average Feret Droplet Diameter Measurement 
	Measurement of Total Polyphenolic Content and Antioxidant Activity of the Prepared Emulsions 
	Near-Infrared Spectroscopy (NIR) 
	NIR Data Preprocessing 
	Artificial Neural Network (ANN) Modeling 


	Results and Discussion 
	NIR Spectra of the Prepared Emulsions 
	ANN Modeling of Oil-in-Aqueous Oregano/Rosemary Extract Emulsions Selected Physical and Chemical Properties Based on NIR Spectra 

	Conclusions 
	References

