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Abstract: The design, synthesis, and investigation of new molecular oxygen probes for bioimaging,
based on phosphorescent transition metal complexes are among the topical problems of modern
chemistry and advanced bioimaging. Three new iridium [Ir(NˆC)2(NˆN)]+ complexes with cyclomet-
allating 4-(pyridin-2-yl)-benzoic acid derivatives and different di-imine chelate ligands have been
synthesized and characterized by mass spectrometry and NMR spectroscopy. The periphery of these
complexes is decorated with three relatively small “double-tail” oligo(ethylene glycol) fragments.
All these complexes exhibit phosphorescence; their photophysical properties have been thoroughly
studied, and quantum chemical calculations of their photophysical properties were also performed.
It turned out that the changes in the nature of the di-imine ligand greatly affected the character of the
electronic transitions responsible for their emission. Two complexes in this series show the desired
photophysical characteristics; they demonstrate appreciable quantum yield (14–15% in degassed
aqueous solutions) and a strong response to the changes in oxygen concentration, ca. three-fold
increase in emission intensity, and an excited state lifetime upon deaeration of the aqueous solution.
The study of their photophysical properties in model biological systems (buffer solutions containing
fetal bovine serum—FBS) and cytotoxicity assays (MTT) showed that these complexes satisfy the
requirements for application in bioimaging experiments. It was found that these molecular probes
are internalized into cultured cancer cells and localized mainly in mitochondria and lysosomes.
Phosphorescent lifetime imaging (PLIM) experiments showed that under hypoxic conditions in cells,
a 1.5-fold increase in the excitation state lifetime was observed compared to aerated cells, suggesting
the applicability of these complexes for the analysis of hypoxia in biological objects.

Keywords: oxygen sensing; iridium complexes; phosphorescence; hypoxia; bioimaging; phosphores-
cence lifetime imaging

1. Introduction

Molecular oxygen is one of the key physiological components of aerobic organisms.
Monitoring its concentration in biological objects makes possible evaluation of the object’s
metabolic status, the presence of pathological changes, or the efficacy of the therapy used to
combat the pathology [1–4]. For these and a number of other reasons, which are discussed
in a wide range of original papers and reviews [5–12], the development of molecular
oxygen probes to be used in biomedical experiments is one of the most important areas of
functional biomedical imaging.

Among a number of probes applicable for noninvasive determination of O2 content,
phosphorescent complexes of transition metals stand out in particular. The presence of a
sensory response to molecular oxygen in phosphorescent metal complexes is related to
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the triplet character of their emission and the ability of oxygen molecules to quench it,
which results in a strong reduction in emission intensity and lifetime [5,13,14]. Measuring
intensity/lifetime variations vs. oxygen concentration allows for building up the calibration
curves, which make it possible to quantify the content of O2 in the objects under study.
The calibrations as well as the experimental determination of oxygen concentration can
be conducted by two independent approaches based either on emission intensity (a ratio-
metric approach) or phosphorescence lifetime measurements. The latter is a time-resolved
technique that is becoming more and more widespread in luminescent microscopy and is
also called phosphorescence lifetime imaging (PLIM). In bioimaging experiments, the PLIM
approach has a number of advantages; one of them is that there is no need to use internal
or external oxygen-insensitive emission standards, whereas the other advantage consists
in the independence of the sensory response from the variations in optical characteristics
of studied samples that may disturb correlative readings of ratiometric probes. The time-
resolved techniques, including PLIM, were successfully used for quantitative mapping
of the oxygen distribution in various biological samples by using probes based on highly
sensitive Pt and Pd porphyrins [5,11,12,15–17]. In these molecules, the chromophores have
been shielded from side interactions (primarily with albumin, which actively forms adducts
with hydrophobic molecules) either by packing into polymeric nanoparticles [18–29] or
into a corona of high molecular weight poly(ethylene glycol) substituents at the porphyrin
ligands [30–40]. These probes are commercially available, but they are not free from some
significant drawbacks, such as their large size that prevents internalization through the cell
membrane [30–40] or the instability of the nanospecies in physiological media [12,41].

However, recently, another type of molecular probe based on iridium complexes has
been designed and used for oxygen distribution studies in living cell cultures [42–46]. Simi-
lar to the Pt and Pd porphyrins [30–40], these emitters are shielded from side interactions
with the components of physiological media by oligo(ethylene glycol) (OEG) substituents
in the ligand environment, which also increase the probes solubility in aqueous media
and their biocompatibility, but the length of the OEG chains is substantially shorter com-
pared to that used in the Pt and Pd porphyrine probes [30–40]. The OEG corona in the
iridium complexes still protects the chromophores from side interactions, but the size of the
probe does not exceed 1–2 nanometers, which allows probe internalization into cells and
makes possible mapping of molecular oxygen distribution even in individual organelles
and cell compartments. Alternative approaches to imparting the iridium-based probes
biocompatibility and stabilizing their photophysical parameters are conjugation of the
chromophores with albumin [47] or embedding them into polymeric micelles [48]. It is
also worth noting that the photophysical characteristics of the probes, for example, emis-
sion/excitation wavelengths and excited state lifetimes, very often have to be fine-tuned to
meet the requirements of certain experiments, which implies the development of a broad
range of probes of different composition and structure. These requirements may stem
from the properties of the biological sample under study or may be determined by the
parameters of the instruments used in a particular bioimaging experiment.

In this article, we present the synthesis, characterization, and photophysical study of
three novel phosphorescent [Ir(NˆC)2(NˆN)]+ complexes (Ir1–Ir3) containing identical met-
allated NˆC and different di-imine NˆN ligands, which were decorated with oligo(ethylene
glycol) substituents to make these compounds water-soluble and biocompatible. The oxy-
gen sensing properties of the most effective emitters (Ir2 and Ir3) were also investigated in
model physiological media and in living cells by using time-resolved PLIM mode.

2. Materials and Methods

Reagents: 4-(2-pyridyl)benzoic acid [49], 2-azidopyridine [50], 4-oxo-4-(prop-2-ynyloxy)
butanoic acid [51], and 2,5,8,12,15,18-hexaoxanonadecan-10-amine [52] (NH2-2OEG) were
synthesized according to the literature methods. Modified synthetic procedures were
used to obtain 4-Oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)-butanoic acid [53]
and its OEG-derivative NˆN2 [44], as well as 4-(2-(pyridin-2-yl)-1H-phenanthro [9,10-
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d]imidazol-1-yl)benzoic acid [45] and its OEG-derivative NˆN3 [45]. Synthesis of the NˆC
ligand, [Ir2(NˆC)4Cl2] dimer, and target complexes Ir1–Ir3, as well as modified synthetic
protocols for 4-Oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)-butanoic acid, (4-(2-
(pyridin-2-yl)-1H-phenanthro [9,10-d]imidazol-1-yl)benzoic acid, NˆN2 and NˆN3 ligands,
are described in the Supplementary Information File S1. Other solvents and reagents were
received from Merck (Darmstadt, Germany) and Vekton (St. Petersburg, Russia) and used
without additional purification.

The 1D 1H, 2D COSY 1H-1H NMR spectra were measured using the Bruker Avance
400 MHz; the solvent residual signals were used to reference the chemical shift values.
Mass spectra (ESI, positive mode) were recorded using an HRMS-ESI spectrometer (Bruker
maXis QTOF).

Details of photochemical and computational experiments, as well as data concerning
the description of installations and methods for conducting biological research, are given
in the Supplementary Information File S1.

3. Results and Discussion
3.1. Synthesis and Characterization

As a platform for the synthesis of the probes, we chose iridium bis-cyclometallated
complexes, [Ir2(NˆC)4(NˆN)]+, in which a di-imine moiety is used as the third chelating
ligand. Double-tailed oligo(ethylene glycol) fragments are attached to all ligands in the
coordination sphere of these complexes to protect the chromophores from side interactions
with the components of biological samples and to impart water solubility to the probes. For
this purpose, the initial organic compounds (NˆC pro-ligand) and the NˆN di-imine chelates
were appropriately modified by the introduction of OEG tails by using either the litera-
ture procedures (in the case of NˆN2 and NˆN3 ligands) or the approaches shown below
(Scheme 1) in the case of the newly synthesized compounds (NˆC pro-ligand and NˆN1).

Chemosensors 2023, 11, x FOR PEER REVIEW 3 of 15 
 

 

2. Materials and Methods 
Reagents: 4-(2-pyridyl)benzoic acid [49], 2-azidopyridine [27,50], 4-oxo-4-(prop-2-

ynyloxy)butanoic acid [51], and 2,5,8,12,15,18-hexaoxanonadecan-10-amine [52] (NH2-
2OEG) were synthesized according to the literature methods. Modified synthetic proce-
dures were used to obtain 4-Oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)-buta-
noic acid [53] and its OEG-derivative N^N2 [44], as well as 4-(2-(pyridin-2-yl)-1H-phenan-
thro [9,10-d]imidazol-1-yl)benzoic acid [45] and its OEG-derivative N^N3 [45]. Synthesis 
of the N^C ligand, [Ir2(N^C)4Cl2] dimer, and target complexes Ir1-Ir3, as well as modified 
synthetic protocols for 4-Oxo-4-((1-(pyridin-2-yl)-1H-1,2,3-triazol-4-yl)methoxy)-butanoic 
acid, (4-(2-(pyridin-2-yl)-1H-phenanthro [9,10-d]imidazol-1-yl)benzoic acid, N^N2 and 
N^N3 ligands, are described in the Supplementary Information File S1. Other solvents 
and reagents were received from Merck (Darmstadt, Germany) and Vekton (St. Peters-
burg, Russia) and used without additional purification. 

The 1D 1H, 2D COSY 1H-1H NMR spectra were measured using the Bruker Avance 
400 MHz; the solvent residual signals were used to reference the chemical shift values. 
Mass spectra (ESI, positive mode) were recorded using an HRMS-ESI spectrometer 
(Bruker maXis QTOF). 

Details of photochemical and computational experiments, as well as data concerning 
the description of installations and methods for conducting biological research, are given 
in the Supplementary Information File S1. 

3. Results and Discussion 
3.1. Synthesis and Characterization 

As a platform for the synthesis of the probes, we chose iridium bis-cyclometallated 
complexes, [Ir2(N^C)4(N^N)]+, in which a di-imine moiety is used as the third chelating 
ligand. Double-tailed oligo(ethylene glycol) fragments are attached to all ligands in the 
coordination sphere of these complexes to protect the chromophores from side interac-
tions with the components of biological samples and to impart water solubility to the 
probes. For this purpose, the initial organic compounds (N^C pro-ligand) and the N^N 
di-imine chelates were appropriately modified by the introduction of OEG tails by using 
either the literature procedures (in the case of N^N2 and N^N3 ligands) or the approaches 
shown below (Scheme 1) in the case of the newly synthesized compounds (N^C pro-lig-
and and N^N1). 
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Scheme 1. Synthetic scheme of the new ligands NˆC and NˆN1.

The obtained cyclometallating ligand was employed in reaction with iridium chloride,
which affords the dimeric Ir(III) complex [Ir2(NˆC)4Cl2]. The further interaction of the
dimer with the corresponding di-imines gave the target complexes Ir1–Ir3 (Scheme 2) a
moderate yield (30–48%). For details of the synthetic protocols and characteristics of the
obtained compounds, see the Supporting Information file.
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Scheme 2. Scheme of synthesis of new Ir(III) dimer [Ir2(NˆC)4Cl2] and new complexes Ir1–Ir3.

The newly synthesized substances (a novel NˆC ligand, a dimeric complex, and three
target iridium compounds, Ir1–Ir3) are viscous, non-crystallizable compounds due to
the presence of the OEG substituents in their structure. This property neither allows the
crystallization and application of X-ray crystallography for the structural characterization
of these molecules nor the performance of a qualitative elemental analysis. Nevertheless,
all substances were studied with a set of modern physicochemical methods of analysis,
including 1D 1H, 2D 1H-1H COSY NMR spectroscopy, and high-resolution ESI mass
spectrometry, which make it possible to reliably establish their composition and structure.
A detailed description of the obtained NMR and mass spectra, as well as the assignment of
the observed signals, is given in the Supplementary Information File S1 (Figures S1–S18).

We carried out quantum chemical calculations with the aim of optimizing the struc-
tures of complexes in the ground state and elucidating the nature of the electronic transitions
responsible for the processes of excitation and emission. As an example, Figure 1 shows
the Ir1-0 complex, which differs from the obtained Ir1 complex in the absence of OEG
fragments in order to simplify calculations without substantial changes in the nature of the
chromophoric center. The other optimized structures (Ir2-0 and Ir3-0 for complexes Ir2 and
Ir3, respectively) are shown in the Supplementary Materials File S1 (Figures S22 and S23).
The optimized structural patterns obtained for iridium complexes display the architecture
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typical for this type of iridium bis-cyclometallated complex. The nitrogen and carbon atoms
of the NˆC ligands are disposed in the trans- and cis-positions of the coordination octahe-
dron, respectively, and the di-imine chelate completes the coordination environment of
the Ir(III) ion. The key structural parameters of Ir1-0, Ir2-0, and Ir3-0 optimized structures
(see Tables S9–S11) are not exceptional and fit well with the characteristics of previously
obtained iridium complexes of this type [54–56]. It is also worth noting that mass spectro-
scopic and 1H NMR data (Figures S1–S18) are in complete agreement with the optimized
structures. The major signals observed in ESI+ mass spectra represent [Ir(NˆC)2(NˆN)]+

molecular ions (with or without addition of H+ or Na+ ions), thus confirming the molecular
stoichiometry of the obtained compounds. In turn, the number of signals in the proton
NMR spectra, their multiplicity, and their relative intensity fit well with the structural
patterns shown in Figure 1, Figure S22, and Figure S23.
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Figure 1. Optimized structure of the model Ir1-0 complex (hydrogen atoms are omitted for clarity).
The calculations have been simplified by substituting OEG pendants in Ir1 complex with methyl
groups in Ir1-0 structure. Atom colors: Ir-blue; N-red; O-green; C-gray.

3.2. Photophysical Study

The Ir1–Ir3 complexes exhibit luminescence in a rather wide range of wavelengths
(with emission band maxima varying from 502 to 651 nm) and quantum yields up to 15%
in deaerated water. The complexes display large Stokes shifts (from 90 to 165 nm), excited
state lifetimes in the microsecond domain, and substantial dependence of luminescence
intensity and lifetime on the presence of molecular oxygen, which is indicative of the triplet
nature of their emissive excited states, i.e., phosphorescence. Absorption and emission
spectra of Ir1–Ir3 in aqueous solution are shown in Figure 2, and numerical spectroscopic
data are summarized in Table 1.

Table 1. Photophysical data for complexes Ir1–Ir3 in aqueous solutions at 310 K.

λabs
(nm)

λem
(nm)

Φaer
(%)

Φdeg
(%)

τaer
(ns)

τdeaer *
(ns) τdeg/τaer

Ir1 a
256; 271sh; 290sh;
317sh; 348; 388sh;

421sh; 486sh
651 1.5 2.0 46 59 1.3

Ir2 a 252sh; 265; 284sh;
313sh; 381sh 502; 535; 575sh 4.9 15.0 683 2190 3.2
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Table 1. Cont.

λabs
(nm)

λem
(nm)

Φaer
(%)

Φdeg
(%)

τaer
(ns)

τdeaer *
(ns) τdeg/τaer

Ir3 a
255; 271sh; 291sh;
315sh; 348; 388sh;

424sh; 483sh
543sh; 573 4.0 14.1 1220 4210 3.5

Ir1 b 651 44 57 1.3

Ir2 b 503; 537; 577sh 700 2195 3.1

Ir3 b 542sh; 575 1240 4220 3.4

Ir1 c 650 61 66 1.1

Ir2 c 500; 532; 575sh 880 2210 2.5

Ir3 c 540sh; 575 1560 4215 2.7
a measured in water; b measured in 0.01M phosphate buffer saline solution; c measured in DMEM solution with
10% fetal bovine serum; excitation at 365 nm for emission and quantum yield measurements, 355 nm for excitation
state lifetime measurements; * deaeration was not complete, residual O2 concentration is shown in Table S1.
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Figure 2. Absorption and emission spectra for complexes Ir1–Ir3 in water (310 K, λex 365 nm).

The DFT and TD DFT calculations (see Figure 3, Figures S19–S21, and Tables S2–S8)
indicate that the lowest energy transitions in the absorption spectra of Ir1–Ir3 are quite
similar and may be described in terms of the mixed metal to ligand (1MLCT) and ligand
to ligand (1LLCT, NˆC→NˆN#, NˆC→NˆC’) charge transfer with some contribution of the
NˆC ligand-centered (3LC) transitions. However, emissive T1→S0 transitions display an
essentially different nature, showing a mixture of 3MLCT and 3LLCT characters for Ir1
(with NˆN1 ligand as donor in the latter case), whereas emission of Ir2 and Ir3 occurs
from the triplet excited state with the major contribution of the NˆC ligand-centered (3LC)
character together with 3MLCT (localized at NˆC ligands). The location of the emissive
triplet state mainly at the NˆC ligand in Ir2 and Ir3 and the minimal contribution of the
NˆN ligand orbitals are evidently dictated by the lower energy of the NˆN1 π* orbitals
compared to those of NˆN2 and NˆN3 because of the electron-withdrawn substituents in
NˆN1. These observations are most probably responsible for the considerable difference (Ir1
vs. Ir2 and Ir3) in quantum yields and lifetimes for this group of compounds (see Table 1).
It is also worth mentioning that the location of the emissive triplet at the cyclometallating
NˆC ligands in Ir2 and Ir3 results in higher availability of the chromophores for energy
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transfer to oxygen molecules, thus giving the complexes a higher sensitivity to variations
in O2 concentration.
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Figure 3. Natural transition orbitals (NTO) for Ir2-0, violet, and terracotta colors show decreases and
increases in electron density, respectively. The calculations have been simplified by substituting OEG
pendants of Ir2 complex with methyl groups in Ir2-0 structure. Atom colors: Ir-lilac; N-blue; O-red;
C-gray, H-white.

For oxygen sensing experiments and bioimaging studies, we chose Ir2 and Ir3 com-
plexes because these probes demonstrate high emission quantum yield (15.0% and 14.1%)
and a much greater difference in the phosphorescence lifetime values in the aerated and
deaerated water (3.2 and 3.5 times, respectively), see Table 1, compared with the Ir1 probe
(only 1.3 times), thus showing a stronger sensory response to O2 molecules. To calibrate
these promising oxygen probes, we studied the dependence of their lifetimes on the O2
concentration (Figure 4 and Table S1) in different media, one of which (growth media
DMEM with 10% fetal bovine serum—FBS) proved to be a very good model of the in-
tracellular probe environment [44,45,47]. The standard Stern–Volmer calibrations gave
linear 1/τ vs. (O2) dependences for both complexes in water, phosphate buffer saline (PBS),
and DMEM-FBS solutions. It turned out that in aerated solutions in the presence of fetal
bovine serum, these complexes display bi-exponential phosphorescence decay. However,
the contribution of the second, longer exponent is insignificant (approximately 3–7%), so
the data processing was carried out using a mono-exponential fit.
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Figure 4. Stern–Volmer oxygen quenching plots of Ir2 (left) and Ir3 (right) in aqueous solution,
0.01 M PBS (pH 7.4), and in DMEM with 10% FBS. T = 37 ◦C, excitation at 355 nm.

The obtained data indicate that the oxygen sensitivity of Ir2 and Ir3 decreases in the
presence of FBS, which results in a slightly different slope of the calibration plots and lower



Chemosensors 2023, 11, 263 8 of 15

values of Stern–Volmer constants (Figure 4). This deviation between the probe behavior
in different media can be explained by an increase in the viscosity of the DMEM-FBS
solution that affords a decrease in the oxygen diffusion coefficient, which also affects the
collisional quenching of phosphorescence with oxygen. Despite the different slopes of the
plots in water, PBS, and DMEM-FBS, all these calibrations gave the same lifetime values
in deaerated solutions, which points to the preservation of the chromophores structure
and their properties in all studied media. These observations indicate that Ir2 and Ir3 are
promising for application as oxygen probes in PLIM experiments with live cells with the
use of calibrations obtained in model physiological media.

3.3. Biological Experiments

Biological studies have shown that Ir2 and Ir3 complexes have low toxicity in mouse
colorectal cancer cells CT26 (cell survival is about 90% up to concentrations of 125–150 µM,
Figure 5). On the contrary, Ir1 turned out to be more toxic, which, together with the
more promising photophysical properties of Ir2 and Ir3, predetermined the application
of the latter compounds in the further bioimaging experiments. The low toxicity of these
complexes, as well as their water solubility, is evidently explained by the introduction of
hydrophilic biocompatible oligo(ethylene glycol) fragments in their structure.
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Figure 5. The MTT assay of CT26 cells after incubation with Ir1–Ir3 in DMEM with 10% FBS.
T = 37 ◦C, incubation for 24 h. The viability of control cells (without probe) was taken at 1. Black bars
show the standard deviation. N = 3 repetitions.

Investigation of the internalization dynamics (Figure 6), carried out using confocal
laser scanning microscopy, showed fast accumulation of the complexes Ir2 and Ir3 in cells
in the initial period of time (up to 1 h), which then slows down. In the case of the Ir3
complex, the intensity of its luminescence in cells practically reached maximum already
after 5 h, whereas Ir2 gave an appreciable luminescence intensity only after a day (see
Figure 6 top). In addition, the Ir3 complex displays more intense luminescence in cells
compared to Ir2, which is probably due to both the faster dynamics of its accumulation
and the stronger two-photon absorption at the excitation wavelength (750 nm).
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Figure 6. (Top): quantification of the internalization dynamics experiments of complexes Ir2 and Ir3
in CT26 cells after incubation with DMEM with 10% FBS. T = 37 ◦C, concentration of complexes, 25 µM.
Emission intensity is shown as the mean ± standard deviation. (Bottom): representative microscopy
images of cells in transmission channel and in luminescence channel (upper row, excitation 405 nm,
recording 490–790 nm, purple color). Scale bar: 20 µm.

Both studied complexes showed a non-uniform distribution in cells but were accu-
mulated in certain areas (Figure 7). Based on the colocalization data obtained for the
Ir2 complex with fluorescent trackers, it can be concluded that this probe was located in
both lysosomes and mitochondria, while the Ir3 compound was internalized primarily
into mitochondria. The difference in internalization behavior of Ir2 and Ir3 can be most
probably ascribed to a rather large hydrophobic fragment located at the NˆN3 ligand. This
makes the complex prone to preferential adsorption on the cell membrane, followed by its
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transfer to mitochondria, because of its positive charge and negative mitochondrial poten-
tial. Ir2 is essentially more hydrophilic and does not display selectivity in internalization
using both membrane sorption and endocytosis. Therefore, the Ir3 probe can be used in
the experiments aimed at simultaneous monitoring of the response of cells to changes in
oxygen concentration (by the phosphorescence lifetime of the complex) and determination
of cell metabolic status (by the fluorescence lifetime of the metabolic cofactor—reduced
nicotinamide adenine dinucleotide (phosphate)—NAD(P)H) [43].
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Figure 7. Subcellular distribution of Ir2 (top row) and Ir3 (bottom row) in CT26 cells (green color).
Co-staining of cells with the complexes and organelle-specific dyes for mitochondria (BioTracker
405 Blue Mitochondria Dye) and lysosomes (LysoTracker Red DND-99). Pearson’s (P) and Manders’
overlap coefficients (M1, the tracker signal overlaps the complex) are presented on merge images.
Scale bar: 50 µm.

We also carried out PLIM experiments with Ir2 and Ir3 complexes on the CT26 cells
under normal conditions and simulated hypoxia (Figure 8). The phosphorescence lifetime
of the Ir2 complex, measured inside the cells by the PLIM method, ranged from 900 to
1300 ns under normoxic conditions to 1500–1800 ns under hypoxia. The phosphorescence
lifetime increased similarly for Ir3 from 1900–2300 ns to 3100–3300 ns. It should be noted
that the indicated lifetime values are very close to those obtained in a cuvette for a model
biological medium (DMEM, with the addition of 10% FBS) and clearly reflect the oxygen
concentration variations between normoxic and hypoxic conditions in the cells.

However, for both cases, there was a slight increase in the lifetime of cells under
normoxia compared with the calibration data on solutions. This is probably due to the con-
sumption of oxygen by the cells and, as a result, a somewhat lower O2 content compared to
the solution saturated with air. A lower oxygen content in the incubation atmosphere (19.5%
instead of 21% in air) also has to be taken into account, as does a slower oxygen diffusion
in cells due to the presence of a number of different structures and biomacromolecules
and a higher media viscosity. The effects of these media characteristics are very similar
for Ir2 and Ir3 probes and can be easily seen in the lifetime variations between normoxia
and hypoxia, which are of the order of 3.2–3.5 in aqueous solutions, 2.5–2.7 in the growth
medium, and only about 1.5 in cells.
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calculated for the whole PLIM image. Two photon excitations at 750 nm, T = 37 ◦C, and 5% CO2.

4. Conclusions

Three new luminescent bis-cyclometallated iridium [Ir(NˆC)2(NˆN)]+ complexes with
various di-imine ligands were obtained and characterized. To impart them water solubility
and biocompatibility, the compounds were decorated with short-branched oligo(ethylene
glycol) fragments attached both to the NˆC and NˆN ligands. The photophysical study of
these emitters in aqueous media showed that they exhibit phosphorescence, with quantum
yields up to 15% in a deaerated aqueous solution.

The applied di-imine ligands noticeably differ from each other in the nature of their
electronic and structural characteristics, as well as in their hydrophobic–hydrophilic prop-
erties. Indeed, it turned out that the resulting complexes exhibit significantly different
photophysical properties that are due to the different influence and contribution of di-imine
ligands to the excitation processes and emissive relaxation. We also found significant
variations in the biological properties of the obtained probes (toxicity, localization, and
internalization), which are evidently due to differences in the nature of the ligands (NˆN3
is the most hydrophobic of the ligands used, NˆN2 is significantly more hydrophilic, and
NˆN1 contains twice as many OEG-groups as its counterparts NˆN2 and NˆN3).

According to the results of DFT and TD DFT calculations, the nature of the transitions
responsible for emission of the two most efficient phosphors (Ir2 and Ir3 complexes) is
associated with the formation of the NˆC ligand-centered excited state that gave appreciable
lifetime sensitivity to the variations in molecular oxygen concentration in various aqueous
media, ca. 3.3 times increase upon deaeration of water and PBS and ca. 2.6 in model
physiological solution (DMEM with 10% FBS).

The investigations of the obtained compounds in bioimaging experiments confirmed
their applicability as effective and low-toxic O2 molecular probes. The Ir3 complex is
primarily localized in cell mitochondria, whereas Ir2 displays localization in mitochondria
and lysosomes. PLIM studies of the CT26 cells incubated with these probes showed
a significant change in the phosphorescence lifetime values during the transition from
normoxia to simulated hypoxia. Moreover, the lifetime values obtained for complexes
inside cells are very close to the values measured in a cuvette in a model biological medium,
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which indicates an opportunity to apply these probes for semi-quantitative estimation of
oxygen concentration in biological samples with the PLIM technique and pave the way for
the use of these probes in in vivo experiments.
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37. Sakadžić, S.; Roussakis, E.; Yaseen, M.A.; Mandeville, E.T.; Srinivasan, V.J.; Arai, K.; Ruvinskaya, S.; Devor, A.; Lo, E.H.;
Vinogradov, S.A.; et al. Two-photon high-resolution measurement of partial pressure of oxygen in cerebral vasculature and tissue.
Nat. Methods 2010, 7, 755–759. [CrossRef]

38. Rytelewski, M.; Haryutyunan, K.; Nwajei, F.; Shanmugasundaram, M.; Wspanialy, P.; Zal, M.A.; Chen, C.-H.; El Khatib, M.;
Plunkett, S.; Vinogradov, S.A.; et al. Merger of dynamic two-photon and phosphorescence lifetime microscopy reveals dependence
of lymphocyte motility on oxygen in solid and hematological tumors. J. Immunother. Cancer 2019, 7, 78. [CrossRef] [PubMed]

39. Esipova, T.V.; Karagodov, A.; Miller, J.; Wilson, D.F.; Busch, T.M.; Vinogradov, S.A. Two New “Protected” Oxyphors for Biological
Oximetry: Properties and Application in Tumor Imaging. Anal. Chem. 2011, 83, 8756–8765. [CrossRef] [PubMed]

40. Esipova, T.V.; Barrett, M.J.; Erlebach, E.; Masunov, A.E.; Weber, B.; Vinogradov, S.A. Oxyphor 2P: A High-Performance Probe for
Deep-Tissue Longitudinal Oxygen Imaging. Cell Metab. 2019, 29, 736–744.e7. [CrossRef] [PubMed]

41. Dmitriev, R.I.; Kondrashina, A.V.; Koren, K.; Klimant, I.; Zhdanov, A.V.; Pakan, J.M.P.; McDermott, K.W.; Papkovsky, D.B. Small
molecule phosphorescent probes for O2 imaging in 3D tissue models. Biomater. Sci. 2014, 2, 853–866. [CrossRef]

42. Shirmanova, M.V.; Shcheslavskiy, V.I.; Lukina, M.M.; Dudenkova, V.V.; Kritchenkov, I.; Solomatina, A.; Tunik, S.P. Molecular
oxygen mapping in biological samples by time-correlated single photon counting technique and Ir(III)-based complexes. In
Optical Biopsy XVIII: Toward Real-Time Spectroscopic Imaging and Diagnosis; SPIE: Bellingham, WA, USA, 2020; Volume 11234,
pp. 26–33. [CrossRef]

43. Rueck, A.C.; Schäfer, P.; von Einem, B.; Kalinina, S. Metabolic NADH/FAD/FMN FLIM and oxygen PLIM: Multiphoton
luminescence lifetime imaging on the way to clinical diagnosis. In Multiphoton Microscopy in the Biomedical Sciences XX; SPIE:
Bellingham, WA, USA, 2020; Volume 11244, pp. 6–13. [CrossRef]

44. Kritchenkov, I.S.; Elistratova, A.A.; Sokolov, V.V.; Chelushkin, P.S.; Shirmanova, M.V.; Lukina, M.M.; Dudenkova, V.V.; Shch-
eslavskiy, V.I.; Kalinina, S.; Reeß, K.; et al. A biocompatible phosphorescent Ir(iii) oxygen sensor functionalized with oligo(ethylene
glycol) groups: Synthesis, photophysics and application in PLIM experiments. New J. Chem. 2020, 44, 10459–10471. [CrossRef]

45. Kritchenkov, I.S.; Solomatina, A.I.; Kozina, D.O.; Porsev, V.V.; Sokolov, V.V.; Shirmanova, M.V.; Lukina, M.M.; Komarova, A.D.;
Shcheslavskiy, V.I.; Belyaeva, T.N.; et al. Biocompatible Ir(III) Complexes as Oxygen Sensors for Phosphorescence Lifetime
Imaging. Molecules 2021, 26, 2898. [CrossRef]

46. Kritchenkov, I.S.; Solomatina, A.I.; Chelushkin, P.S.; Shirmanova, M.V.; Kornilova, E.S.; Rueck, A.; Tunik, S.P. Phosphorescent
Ir(III) oxygen sensors for bioimaging. In Proceedings of the 2022 International Conference Laser Optics (ICLO), St. Petersburg,
Russia, 20–24 June 2022; p. 1.

47. Kritchenkov, I.S.; Mikhnevich, V.G.; Stashchak, V.S.; Solomatina, A.I.; Kozina, D.O.; Sokolov, V.V.; Tunik, S.P. Novel NIR-
Phosphorescent Ir (III) Complexes: Synthesis, Characterization and Their Exploration as Lifetime-Based O2 Sensors in Living
Cells. Molecules 2022, 27, 3156. [CrossRef]

48. Elistratova, A.A.; Kritchenkov, I.S.; Lezov, A.A.; Gubarev, A.S.; Solomatina, A.I.; Kachkin, D.V.; Shcherbina, N.A.; Liao, Y.-C.; Liu,
Y.-C.; Yang, Y.-Y.; et al. Lifetime oxygen sensors based on block copolymer micelles and non-covalent human serum albumin
adducts bearing phosphorescent near-infrared iridium(III) complex. Eur. Polym. J. 2021, 159, 110761. [CrossRef]

49. Oki, A.R.; Morgan, R.J. An efficient preparation of 4, 4′-dicarboxy-2, 2′-bipyridine. Synth. Commun. 1995, 25, 4093–4097. [CrossRef]

https://doi.org/10.1152/ajpcell.00121.2015
https://www.ncbi.nlm.nih.gov/pubmed/26246428
https://doi.org/10.1117/12.2079604
https://doi.org/10.1117/1.jbo.23.12.126501
https://doi.org/10.1038/s41586-020-1971-z
https://doi.org/10.1038/s41467-020-14415-9
https://www.ncbi.nlm.nih.gov/pubmed/31996677
https://doi.org/10.1038/s41551-018-0220-3
https://www.ncbi.nlm.nih.gov/pubmed/30899599
https://doi.org/10.1021/ac501028m
https://doi.org/10.1177/0271678X20928011
https://doi.org/10.1038/nature13034
https://doi.org/10.1038/nmeth.1490
https://doi.org/10.1186/s40425-019-0543-y
https://www.ncbi.nlm.nih.gov/pubmed/30885258
https://doi.org/10.1021/ac2022234
https://www.ncbi.nlm.nih.gov/pubmed/21961699
https://doi.org/10.1016/j.cmet.2018.12.022
https://www.ncbi.nlm.nih.gov/pubmed/30686745
https://doi.org/10.1039/C3BM60272A
https://doi.org/10.1117/12.2549248
https://doi.org/10.1117/12.2546095
https://doi.org/10.1039/D0NJ01405B
https://doi.org/10.3390/molecules26102898
https://doi.org/10.3390/molecules27103156
https://doi.org/10.1016/j.eurpolymj.2021.110761
https://doi.org/10.1080/00397919508011487


Chemosensors 2023, 11, 263 15 of 15

50. McCarney, E.P.; Hawes, C.S.; Blasco, S.; Gunnlaugsson, T. Synthesis and structural studies of 1,4-di(2-pyridyl)-1,2,3-triazole dpt
and its transition metal complexes; a versatile and subtly unsymmetric ligand. Dalt. Trans. 2016, 45, 10209–10221. [CrossRef]

51. Kritchenkov, I.S.; Chelushkin, P.S.; Sokolov, V.V.; Pavlovskiy, V.V.; Porsev, V.V.; Evarestov, R.A.; Tunik, S.P. Near-Infrared
[Ir(N∧C)2(N∧N)]+ Emitters and Their Noncovalent Adducts with Human Serum Albumin: Synthesis and Photophysical and
Computational Study. Organometallics 2019, 38, 3740–3751. [CrossRef]

52. Samudrala, R.; Zhang, X.; Wadkins, R.M.; Mattern, D.L. Synthesis of a non-cationic, water-soluble perylenetetracarboxylic diimide
and its interactions with G-quadruplex-forming DNA. Bioorganic Med. Chem. 2007, 15, 186–193. [CrossRef] [PubMed]

53. Kritchenkov, I.S.; Zhukovsky, D.D.; Mohamed, A.; Korzhikov-Vlakh, V.A.; Tennikova, T.B.; Lavrentieva, A.; Scheper, T.; Pavlovskiy,
V.V.; Porsev, V.V.; Evarestov, R.A.; et al. Functionalized Pt(II) and Ir(III) NIR Emitters and Their Covalent Conjugates with
Polymer-Based Nanocarriers. Bioconjugate Chem. 2020, 31, 1327–1343. [CrossRef] [PubMed]

54. Hanss, D.; Freys, J.C.; Bernardinelli, G.; Wenger, O.S. Cyclometalated Iridium(III) Complexes as Photosensitizers for Long-Range
Electron Transfer: Occurrence of a Coulomb Barrier. Eur. J. Inorg. Chem. 2009, 2009, 4850–4859. [CrossRef]

55. Su, N.; Lu, G.-Z.; Zheng, Y.-X. Highly efficient green electroluminescence of iridium(iii) complexes based on (1H-pyrazol-5-
yl)pyridine derivatives ancillary ligands with low efficiency roll-off. J. Mater. Chem. C 2018, 6, 5778–5784. [CrossRef]

56. Solomatina, A.I.; Kuznetsov, K.M.; Gurzhiy, V.V.; Pavlovskiy, V.V.; Porsev, V.V.; Evarestov, R.A.; Tunik, S.P. Luminescent organic
dyes containing a phenanthro[9,10-D]imidazole core and [Ir(NˆC)(NˆN)]+ complexes based on the cyclometalating and diimine
ligands of this type. Dalton Trans. 2020, 49, 6751–6763. [CrossRef]

57. Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.;
Nakatsuji, H.; et al. Gaussian 16, Revision B.01; Gaussian: Wallingford, CT, USA, 2016.

58. Austin, A.; Petersson, G.A.; Frisch, M.J.; Dobek, F.J.; Scalmani, G.; Throssell, K. A Density Functional with Spherical Atom
Dispersion Terms. J. Chem. Theory Comput. 2012, 8, 4989–5007. [CrossRef]

59. Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. Energy-adjusted ab initio pseudopotentials for the first row transition elements. J. Chem.
Phys. 1987, 86, 866–872. [CrossRef]

60. Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094.
[CrossRef]

61. O’boyle, N.M.; Tenderholt, A.L.; Langner, K.M. cclib: A library for package-independent computational chemistry algorithms. J.
Comput. Chem. 2008, 29, 839–845. [CrossRef]

62. Martin, R.L. Natural transition orbitals. J. Chem. Phys. 2003, 118, 4775–4777. [CrossRef]
63. Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1039/C6DT01416J
https://doi.org/10.1021/acs.organomet.9b00480
https://doi.org/10.1016/j.bmc.2006.09.075
https://www.ncbi.nlm.nih.gov/pubmed/17079147
https://doi.org/10.1021/acs.bioconjchem.0c00020
https://www.ncbi.nlm.nih.gov/pubmed/32223218
https://doi.org/10.1002/ejic.200900673
https://doi.org/10.1039/C8TC01182F
https://doi.org/10.1039/D0DT00568A
https://doi.org/10.1021/ct300778e
https://doi.org/10.1063/1.452288
https://doi.org/10.1021/cr9904009
https://doi.org/10.1002/jcc.20823
https://doi.org/10.1063/1.1558471
https://doi.org/10.1002/jcc.22885
https://www.ncbi.nlm.nih.gov/pubmed/22162017

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Synthesis and Characterization 
	Photophysical Study 
	Biological Experiments 

	Conclusions 
	References

