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Abstract: Lung cancer is the most prevalent severe illness in both sexes and all ages and the leading
cause of cancer-related deaths globally. Late-stage diagnosis is the primary cause of its high mortality
rate. Therefore, the management of lung cancer needs early-stage screening. Breath analysis is a
non-invasive, low-cost, and user-friendly approach to diagnosing lung cancer. Among the various
types of breath sensors, MOS gas sensors are preferred due to their high gas responses, fast response
times, robustness, and lower price. This review focuses on the critical role of MOS gas sensors in
detecting VOCs in lung cancer patients’ exhaled breath. It introduces the basic working mechanism
of MOS gas-sensitive materials, summarizes some high-performance MOS materials suitable for
detecting potential lung cancer biomarkers and provides performance enhancement strategies. The
review also briefly introduces the sensor array and its pattern recognition algorithm. Finally, we
discuss the challenges in developing MOS gas sensors for lung cancer screening and present the
prospect of using the e-nose for large-scale early lung cancer screening.
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1. Introduction

Cancer incidence and mortality rates have risen rapidly worldwide, making it a
significant cause of death for the global population [1,2]. The latest global cancer statistics
report, “Global Cancer Statistics 2020”, evaluated data on 36 major cancers from 185 countries
or regions worldwide, revealing nearly 19.3 million new cancer cases in 2020, with lung
cancer accounting for over 2.2 million cases and approximately 1.8 million deaths [2].
Of all cancer types, lung cancer has the highest mortality rate of 18%, posing a severe
threat to human health and life (Figure 1). The five-year survival rate for lung cancer
patients is only approximately 15% [3], with the prognosis varying significantly based
on the clinical stages [4,5]. The TNM (tumor-node-metastasis) staging system (version 8)
suggests that early-stage I lung cancer patients can achieve a five-year survival rate of over
70% after surgical treatment, while late-stage IV lung cancer patients remain below 10%,
even with adequate treatment [4]. Early diagnosis and treatment are critical to improving
the prognosis of lung cancer patients [6]. However, early lung cancer rarely exhibits
clinical symptoms, and nonspecific symptoms are the leading cause of obtaining a lung
cancer diagnosis [7–9]. As a result, lung cancer is often diagnosed in late-stage, and the
cancer tissue has already metastasized from the primary site, indirectly leading to the
high mortality rate of lung cancer [10]. Therefore, active screening is crucial in diagnosing
early-stage lung cancer, significantly reducing treatment pain, improving survival rates,
and avoiding the high costs of late-stage treatment.

Currently, clinical lung cancer diagnosis mainly relies on sputum cytology exami-
nation [11,12], histopathological examination [13–15], and imaging examination [16–21].
Sputum, secreted from the lungs, bronchi, and trachea, can carry pathological informa-
tion when these areas are diseased [11,12]. Despite its simplicity and low equipment
requirements, a cytology examination of exfoliated cells in the sputum is limited by its
identification of cell morphology and high false positive rate, which depends on the quality
of the sputum specimens and physician experience [12]. Histopathological examination,
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obtained through percutaneous puncture lung sampling, provides a reliable lung can-
cer diagnosis with high diagnostic accuracy and staging confirmation [15]. However,
histopathological examination is typically conducted after a lesion has formed due to its
high invasiveness and reliance on accurate localization, rendering it unsuitable for early
screening in high-risk populations. Bronchoscopy can visualize the lesion location and
provide a qualitative diagnosis by inserting a fiberoptic probe into the bronchus, but it is
limited by the probe’s reach and observation range and is unsuitable for early lung cancer
screening due to the difficulty of seeing early lesions under the mucosa [13,14]. Imaging
examination using CXR (Chest X-ray), CT (computed tomography), and PET (positron
emission computed tomography) has become a commonly used early lung cancer screening
method to quickly and non-invasively examine specific areas to show the position, size,
and shape of the tumors. However, each modality has limitations, such as CXR’s limited
resolution for detecting only larger lumps (greater than 10 mm) [16] and LDCT’s (low-dose
CT) higher false positive rate [17–19]. PET has high sensitivity and specificity for early-stage
lung cancer diagnosis but is costly, making it challenging to be popularized in large-scale
routine examinations [20,21]. Additionally, radiation exposure is a practical concern in all
imaging examinations.
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Breathing is the physiological gas exchange process between the human body and
the external environment. The human metabolism generates various volatile organic
compounds (VOCs) that can pass through the bloodstream to the alveoli and exhale via res-
piration. As such, the VOC composition in exhaled breath can indicate human metabolism
and health status [22]. Consequently, by detecting and analyzing the components of ex-
haled breath to identify lung cancer biomarkers, exhaled breath analysis is a promising tool
for early lung cancer screening [23–26]. Compared to conventional lung cancer diagnostic
methods, exhaled breath analysis is non-invasive, convenient, and provides rapid and
accurate results [27,28].

As early as the 1970s, Pauling et al. employed gas chromatography (GC) to identify
approximately 250 VOCs in the exhaled breath of healthy individuals [29]. Since then,
advances in detection methods have led to identifying a more significant number of VOCs.
Using gas chromatography–mass spectrometry (GC–MS), Phillips et al. detected 3481 VOCs
in exhaled breath samples from 50 healthy subjects, of which only 27 VOCs were found in all
subjects [30]. The study revealed that acetone, isoprene, ethanol, methanol, and 2-propanol
were the major VOCs in exhaled breath, with 2-propanol being considered exogenous due to
its similar concentration in exhaled breath and ambient air [31,32]. Inorganic gases, such as
N2, O2, CO2, and H2O, are the main components in exhaled breath, potentially interfering
with identifying VOCs [32]. These findings indicate that the exhaled breath composition is
complex, and identifying VOCs as lung cancer biomarkers remains challenging.



Chemosensors 2023, 11, 251 3 of 26

In 1985, Gordon et al. first used GC–MS to analyze the exhaled breath samples of
17 healthy individuals and 12 lung cancer patients and found 22 VOCs that differed between
the two groups. They first proposed using exhaled breath for lung cancer diagnosis [26].
Subsequently, Phillips’ team discovered that the exhaled breath of lung cancer patients
contained significantly more alkanes and emphasized the potential of VOCs in exhaled
breath for lung cancer diagnosis [33–35]. Additionally, they developed nonlinear multi-
variate analysis methods that improved the ability to diagnose lung cancer by utilizing
different combinations of VOCs in exhaled breath [36,37]. O-toluidine [38], toluene [39],
and 1-propanol [40] were commonly regarded as VOC biomarkers for lung cancer, as their
concentrations were found to be significantly higher in the exhaled breath of lung cancer pa-
tients than in that of healthy individuals. Koureas et al. found a strong correlation between
the presence of ethylbenzene, toluene, styrene, 2-propanol, and 1-propanol in exhaled
breath and the ability to distinguish between cancer patients and healthy individuals [41].
Schallschmidt et al. quantified the concentration of 24 potential VOC biomarkers for lung
cancer [42]. They found that the concentration of aromatic compounds in the exhaled
breath of smokers increased. In contrast, the oxygen-containing VOC concentration in lung
cancer patients’ exhaled breath increased significantly, such as aldehydes, 2-butanone, and
1-butanol. The production of these VOCs may be related to the oxidative stress behavior of
lung cancer cells caused by excessive free radicals and reactive oxygen species (ROS) in the
cells of lung cancer patients [43–45].

Figure 2 summarizes the hypothetical basis for generating different types of VOC
biomarkers in the exhaled breath of lung cancer patients [46]. During oxidative stress, ROS
can cause oxidative DNA damage, polyunsaturated fatty acids (PUFAs), proteins, and other
substances in the body, while also generating volatile hydrocarbons and aldehydes, which
excrete through respiration [46–48]. Exposure to carcinogens (such as cigarette smoke,
benzene, and nitrosamines) can increase the risk of cell carcinogenesis by causing ROS
accumulation. It induces changes in cytochrome P450 enzyme activity patterns, generating
VOC biomarkers for lung cancer [46]. The Warburg effect, resulting from the prompt
proliferation of lung cancer cells in a hypoxic condition, is another possible source of VOC
biomarkers [49]. At this time, glycolysis activity is higher than oxidative phosphorylation,
increasing the metabolites of glycolysis, such as acetaldehyde, ethanol, and acetone, in
exhaled breath [50,51].

However, there is no consensus on lung cancer biomarkers in exhaled breath due to
the variations in breath sampling methods, gas detection technologies, and patient factors
(including lung cancer type, body weight, and dietary habits) [52–54]. Jia et al. compared
the VOC types in exhaled breath from lung cancer patients and the in vitro lung cancer cell
cultures and discussed the methodological issues that may cause inconsistencies between
studies. They suggested that potential VOC biomarkers for lung cancer may include 1-
propanol, isoprene, acetone, pentane, hexanal, benzene, toluene, and ethylbenzene [55].
Schmidt et al. reviewed research on the exhaled breath biomarkers for lung cancer over the
past four decades and proposed using frequently studied VOCs as potential biomarkers [56].
Figure 3 shows some of the most common VOCs identified as lung cancer biomarkers,
including BTEX (benzene, toluene, ethylbenzene, and xylene), isoprene, hexanal, nonanal,
2-butanone, acetone, pentane, and 1-propanol [56]. Notably, no VOCs have been identified
that are exclusively present in exhaled breath from lung cancer patients [42,57].

In order to assess the reliability of the diagnostic methods utilizing exhaled breath,
researchers have employed machine learning and selected various combinations of po-
tential lung cancer VOCs to build prediction models [8,41,53,58]. For example, Chen et al.
developed a model comprising 20 VOCs that achieved 93.9% accuracy in distinguishing
between non-small cell lung cancer (NSCLC) and small cell lung cancer (SCLC), and an-
other model composed of 19 VOCs that could differentiate between early and late-stage
lung cancer with an accuracy of 82.7% [8]. Nevertheless, the most prevalent method used
for exhaled breath diagnosis entails the application of large instruments such as GC–MS.
While effective in detecting low-concentration VOCs, they have limitations, such as com-
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plexity, high costs, and lack of portability, hindering their widespread use in routine home
check-ups. Furthermore, they cannot provide real-time analysis. In a prospective study,
Peled et al. used GC–MS and a gas sensor to detect the exhaled breath in 72 patients with
lung nodules, and the latter selectively distinguished between benign and malignant nod-
ules via pattern recognition, even successfully differentiating between two different types
of lung cancer (adenocarcinoma and squamous cell carcinoma) [54], indicating that gas
sensors have the potential to become low-cost, small, portable exhaled breath detection and
analysis devices. Advanced gas sensors have been developed for low-concentration gas
detection in recent years [54,59–65], including surface acoustic wave (SAW) sensors, quartz
crystal microbalance (QCM) sensors, electrochemical gas sensors, and oxide semiconductor
(MOS) gas sensors. In particular, the MOS gas sensors have made them a promising alter-
native for VOC detection due to their small size, low cost, fast response, and sensitivity in
low-concentration (ppt levels) gases [48,66].
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Figure 3. VOCs are most often noted as lung cancer biomarkers in exhaled breath. 
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Figure 2. Hypothetical basis of the breath test for lung cancer. Lung cancer may result from the
interaction of hereditary and environmental factors. Several cytochrome P450 mixed oxidases are
activated by exposure to environmental toxins such as tobacco smoke. The induced phenotype may
increase the risk of lung cancer by increased conversion of precursors to carcinogens. An altered
pattern of cytochrome P450 mixed oxidase activity could modulate the catabolism of endogenous
VOCs products of oxidative stress and generate an altered pattern of breath VOCs. The Warburg
effect is another possible source of VOCs in the exhaled breath associated with glycolysis in a
hypoxic condition.
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Many reviews about applying MOS gas sensors in exhaled breath disease diagnosis
exist. These studies have focused on various aspects, such as identifying a single gas
(such as acetone) [67,68], developing sensor devices [69,70], utilizing MOS materials
with special structures (such as MOF) [71,72], and improving sensitivity and selectiv-
ity [73]. However, despite the potential of MOS gas sensors in detecting VOCs in exhaled
breath [60–62], there is currently no universal marker for lung cancer. Considering the
urgency for early lung cancer diagnosis and the significant potential of MOS gas sensors in
this area, it is necessary to review the recent progress in this field. This review summarizes
the latest research on MOS gas sensors in lung cancer diagnosis, including their working
mechanisms, candidate MOS materials, and the current research progress of MOS sensor
arrays. We also discuss the challenges in developing MOS gas sensors for early lung cancer
screening.

2. MOS Gas Sensor for Lung Cancer Biomarker VOCs

MOS gas sensors are highly regarded for their high sensitivity, fast response, simple
fabrication, durability, small size, and easy integration [48,74]. The origin of semiconductor
gas-sensitive materials dates back to 1931 when Engelhard et al. discovered that the
conductivity of Cu2O changed with water vapor adsorption. Despite this finding, it
received little attention [75]. In 1962, Seiyama et al. first observed the distinct resistance
of ZnO thin films in combustible gases and air at high temperatures, establishing the
foundation for MOS gas sensors [74]. Since then, MOS gas sensors have evolved rapidly,
with the first commercial MOS gas sensor developed in 1968. To satisfy the requirements
of MOS gas sensors in complex environments, Persaud et al. proposed a method of
mimicking the animal olfactory system (e-nose) in 1982 to improve the selectivity of sensors
for VOCs by using an array of MOS materials with different characteristics to detect
mixed gases concurrently [76]. In the following decades, the gas-sensitive mechanism of
MOS was further explored [77–80], the gas sensitivity of a single MOS was continuously
enhanced [81], and the fabrication methods of sensor arrays and analysis algorithms were
constantly being improved [82,83].

2.1. Working Mechanism

The working mechanism of MOS gas sensors depends on the sensing material’s con-
ductivity change when exposed to different gas environments, enabling target gas detection.
Several theories, including the chemisorbed oxygen model [78], the grain boundary barrier
model [79], the bulk resistance model [84], and the space-charge layer model (electron
depletion layer (EDL) and hole-accumulation layer (HAL)) [77,80], can explain the MOS
conductivity changes. The key to these theories is the interaction between the gas and
material surfaces [85]. When the affinity energy of the gas molecules exceeds the work
function of the MOS surface, electrons transfer from the MOS surface to the gas molecules,
resulting in gas anions forming and being adsorbed onto the MOS surface [86]. In partic-
ular, the chemisorbed oxygen species (O2

−, O−, O2−) play a crucial role in MOS surface
conductivity [78]—closely related to the working temperature and MOS type—determining
the MOS’s gas-sensing properties [87–89]. The formation process of chemisorbed oxy-
gen species on the surface of SnO2 can be summarized by the following formulas [89]
(Formulas (1)–(4)). We should note that MOS gas sensors have a broad response mode,
leading to low selectivity, which can be improved by compounding them with other types
of materials [90].

Inair : O2(gas)→ O2(abs) (1)

T < 150 ◦C : O2(abs) + e− → O−2 (abs) (2)

150 ◦C < T < 400 ◦C : O−2 (abs) + e− → 2O−(abs) (3)
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T > 400 ◦C : O−(abs) + e− → O2−(abs) (4)

For n-type SnO2, the gas–surface interaction process can be explained as follows
(Figure 4) [85,86]. Firstly, O2 in the air is adsorbed onto the oxygen adsorption site on
the SnO2 surface when heated to a specific temperature. Subsequently, oxygen molecules
capture the conduction band electrons of MOS to form chemisorbed oxygen species (O2

−,
O−, O2−) and simultaneously create an EDL at the MOS grain contact interface, which
results in a higher barrier, increasing the resistance. When introducing a reducing gas such
as ethanol, the gas reacts with the chemisorbed oxygen species and releases the electrons
back into the MOS simultaneously, thus lowering the resistance. These oxygen species can
desorb or be adsorbed again onto the MOS surface to create new oxygen anions. On the
other hand, introducing an oxidizing gas will further deplete the sensing layer electrons
and increases MOS resistance.
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Although there is no unified theory on gas-sensing mechanisms, rational experimental
designs based on existing materials can enhance their gas-sensing properties. The width of
the space-charge layer, also known as the Debye length, typically ranges from 2 to 100 nm
due to oxygen adsorption on the MOS surface. When the MOS grain size is close to or less
than twice the Debye length, it amplifies the sensitivity considerably, demonstrating the
remarkable potential of nanomaterials in gas sensors [91]. Nevertheless, excessively small
particle sizes can cause nanoparticle aggregation, which will hinder the participation of
internal particles in the reaction and decrease the gas-sensing properties of MOS [72]. Hence,
specific nanoscale structural designs are necessary to reduce particle size while preventing
nanoparticle aggregation. The heterojunction effect and synergistic effect can also impact
the gas-sensing properties of MOS materials [92], which can be achieved through metal ion
doping, metal particle modification, and compounding with other substances on the MOS
substrate. In summary, the micro/nanostructure design and “second-phase modification”
are essential methods for enhancing the gas-sensing properties of MOS materials. However,
designing a new gas-sensitive material from scratch is still challenging.

2.2. Candidate Materials

Early comments on gas sensor design suggested that any sufficiently fine dispersed
metal oxide could serve as a gas-sensitive layer for gas sensors, regardless of the practical
usage requirements [93]. However, the exhaled gas of humans contains many components
with low concentrations [30,32], making it necessary to identify the most appropriate can-
didate material among a wide range of available materials to accurately and efficiently
measure the components and concentrations of exhaled breath [94]. We conducted a search
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using keywords such as “material name”, “chemical formula”, and “gas sensor” to investi-
gate the most researched MOS over the past few decades. For the n-type semiconductors
SnO2, ZnO, TiO2, WO3, In2O3, Fe2O3, and CeO2, the number of search results was 12,663,
10,920, 5269, 4102, 3487, 2643, and 1012, respectively, while for the p-type semiconductors
CuO, NiO, Co3O4, Cr2O3, and Mn3O4, they were 3003, 2649, 1604, 822, and 564, respectively.
The statistics show in Figure 5 that the overall proportions of the research results for the
n-type and p-type MOS gas-sensitive materials were 82.3% and 17.7%, respectively. Among
the top five materials, SnO2, ZnO, TiO2, WO3, and In2O3 were n-type MOS materials,
indicating that more attention has been paid to the research and development of n-type
MOS gas-sensitive materials. According to Hübner et al., the inherent low sensitivity of
p-type MOS materials restricts their development [95]. Furthermore, only TiO2 belongs to
the bulk resistance-controlled MOS among the top five materials. The conductivity change
in them involves the reaction of gas with the lattice oxygen of the material, leading to
a higher reaction temperature (usually above 700 ◦C), slower response rate, and poorer
stability, making it less suitable for the detection of VOCs in exhaled breath [96–99].
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Figure 5. Publication of papers and patents on major MOS gas sensors before 15 February 2023. Here,
the papers and patents were searched on the Web of Science, refined by ‘keywords = gas sensor,
the chemical formula and the scientific name of the sensor material’ with all document types on 15
February 2023.

According to the statistical analysis of exhaled breath biomarkers for lung cancer
VOCs and MOS gas-sensing materials (Figures 3 and 4), the n-type surface resistivity-
controlled MOS materials have gained significant attention for detecting VOCs in exhaled
breath for lung cancer diagnosis. Among them, SnO2 and ZnO are currently the two most
widely studied MOS gas-sensing materials and receive the most attention. Therefore, the
following sections will focus on the latest research on n-type MOS gas-sensing materials
(especially SnO2 and ZnO), detecting exhaled breath biomarkers of lung cancer (BTEX,
isoprene, hexanal, nonanal, 2-butanone, acetone, n-pentane, 1-propanol, etc.), considering
the diverse types, low concentrations, and high-humidity conditions of exhaled breath
analysis. The aim is to guide the development of e-nose devices with higher sensitivity,
better selectivity, and more excellent stability to enable early lung cancer screening on a
large scale.

2.3. Single MOS Gas Sensor and Performance Improvement Strategy

BTEX, comprising benzene, toluene, ethylbenzene, and xylene, has been frequently
detected in the exhaled breath of lung cancer patients [56], as demonstrated by the statistical
data presented in Figure 3. These compounds are metabolized similarly in lung cancer
patients and are often detected together in exhaled breath samples [46,56]. However, due
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to the limited selectivity of MOS gas sensors for VOCs in this family, it is advisable to
select one of the strongly correlated BTEX gases as a representative for detection [100]. For
instance, the toluene content in the exhaled breath of lung cancer patients is approximately
2–3 times higher than that of healthy individuals, ranging from 80 to 100 ppb [101].

When evaluating the performance of MOS gas-sensing materials for detecting lung
cancer exhaled breath biomarkers, several parameters should be considered beyond sen-
sitivity and response time. In particular, the selectivity, limits of detection (LOD), and
stability are significant. Selectivity refers to a gas sensor’s ability to detect the target gas
in the presence of other gases, which is crucial, given that over 3000 VOCs and various
inorganic gas matrices are in human exhaled breath [30,32,102]. LOD refers to the lowest
target gas concentration corresponding to the gas sensor’s minimum reliable response
sensitivity value. MOS sensors should exhibit high sensitivity to detect low-concentration
(ppt levels) VOCs [25,103]. Stability means the ability of MOS sensors to obtain reliable
results over time, which is essential for an accurate diagnosis [104].

2.3.1. Structures and Gas-Sensing Performance

The gas-sensing properties of MOS are significantly affected by its morphology and
size [72,91]. A general strategy to enhance its performance is to optimize its structure
and morphology, which can lead to a high specific surface area and excellent chemical
activity [91,105]. SnO2 is the most widely studied material in MOS gas sensors [106] due
to its exceptional stability and electron transfer ability [107] (as shown in Figure 4). As a
surface resistance-controlled MOS, SnO2 provides abundant surface chemical properties
owing to its bivalent states of tin elements (i.e., Sn4+ and Sn2+), making it more tunable
than other univalent MOSs [108,109]. To date, various SnO2 morphologies have been devel-
oped, such as nanoparticles [110], nanospheres [111], nanowires [112,113], nanotubes [114],
nanofilms [115], nanosheets [116,117], and 3D nanostructures [118–121].

Figure 6a,b shows two schematic diagrams of the synthesis route of multi-layer SnO2,
respectively. Bing et al. successfully synthesized SnO2 with a yolk-shell cuboctahedra
porous structure formed by self-assembled nanoparticles (Figure 6a); the response to
20 ppm toluene was 28.6 at 250 ◦C, with short response/recovery times of 1.8 s and 4.1 s,
respectively (Figure 6c) [120]. Compared with the solid cubes and single-shell structures of
SnO2 synthesized during the same period, the yolk-shell cuboctahedra structure of SnO2
exhibited higher sensitivity and a shorter response/recovery time at the same concentration
due to its loose and porous structure. This structure provides more active adsorption
sites for gas–surface interactions and greater stability than the single-shell structure, thus
promoting continuous gas–surface reactions. Wang et al. used a controllable multi-step
synthesis method to obtain three-layer, double-layer, and single-layer hollow cubic SnO2
samples at different experiment stages (Figure 6b). The gas-sensing test results for each
at 20 ppm toluene at 250 ◦C showed that the responses were 38.7, 33.4, and 22.1, with
corresponding response/recovery times of 0.8/6.1 s, 2.3/5.8 s, and 2.0/6.5 s, respectively
(Figure 6d). It can be observed that the response of the sample enhanced with the number
of layers in the hollow cubic structure. The three-layer hollow cubic structure of SnO2 [113]
exhibited a higher response value and a shorter response time compared to the “double-
layer” yolk-shell cuboctahedra structured one [120] under similar testing conditions. This
work demonstrates the significant promoting effect of multi-layer structures on the gas-
sensing performance of SnO2. However, the high LOD limits their application in detecting
exhaled gas components in patients with lung cancer; thus, it is necessary to consider other
methods to reduce the LOD.
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Figure 6. Structures and gas-sensing performance of SnO2. Schematic illustration for the formation
of (a) yolk-shell SnO2 hollow structures and (b) SnO2 THBs. (c) Dynamic sensing transients of three
SnO2 products to toluene with different concentrations. The right insets show the corresponding
response time (τres) and recovery time (τrecov) examined to 20 ppm toluene. (d) Response of sensors
based on different SnO2 nanostructures versus 20 ppm toluene concentration. The below part shows
the τres and τrecov examined to 20 ppm toluene for SnO2 THBs. Panels (a,c): reproduced with
permission from Ref. [120], © 2016 Elsevier B.V. Panels (b,d): reproduced with permission from
Ref. [121], © 2020 Elsevier B.V.

2.3.2. Noble Metal Modification and Gas Sensing Performance

The surface modification of noble metals has proven to be an effective strategy for
enhancing the response and selectivity of MOS gas sensors and reducing the operating
temperature and response/recovery time [122]. It is worth noting that noble metal surface
modification can be achieved through either chemical or electronic sensitization [79,123].
Chemical sensitization utilizes the catalytic effect of noble metal nanoparticles to directly
boost the reaction rate between the target gas and chemisorbed oxygen [79]. In contrast,
electronic sensitization indirectly enhances the gas sensor’s performance by transferring
electrons from the MOS to noble metal, thus providing more oxygen adsorption sites [123].
For example, Qiao et al. reported achieving a LOD of toluene below 100 ppb by loading Pd
nanoparticles onto a SnO2 monolayer nanocage (Figure 7d,e) [119]. Moreover, the 1%Pd-
SnO2 monolayer nanocage demonstrated superior gas-sensing performance to a larger
surface area of three-layered hollow cubic SnO2, where the response of 20 ppm toluene
was 41.4 and the response time was 0.4 s at 230 ◦C [121]. These results demonstrate the
significant role of noble metal loading in improving the gas-sensing performance of MOS,
which is attributed to Pd nanoparticles’ dramatic chemical and electronic sensitization
properties (Figure 7a–e).
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Suematsu et al. also investigated the potential of Pd-SnO2 as a sensing layer in gas
sensors, which has shown promising results [124]. They found that adding Pd to the original
SnO2 improved its catalytic activity and transformed its microstructure. Specifically, the
addition of Pd converted densely packed SnO2 nanoparticles (NPs) into SnO2 nanoparticle
clusters (CNPs), and Pd nanoparticles attached to the surface of SnO2 CNPs to form
Pd-SnO2 CNPs (Figure 7f,h). The large pores (approximately 10 nm in radius) between
the Pd-SnO2 CNPs facilitate the adsorption and diffusion of toluene molecules inside,
significantly shortening the response/recovery time (Figure 7g,i). The dual-action of Pd-
loading significantly enhances the sensing performance of original SnO2, allowing Pd-SnO2
CNPs to respond well to toluene concentrations as low as 1 ppb. Furthermore, its LOD for
toluene reaches 200 ppt, which far exceeds the detection limit requirements for exhaled
breath detection. It is worth mentioning that they recently proposed modifying the heating
pulse drive mode to improve the sensor response further, reducing the LOD of gas sensors
for toluene to 7 ppt [125].

Selectivity is a crucial factor in assessing the performance of gas-sensitive materials.
Numerous studies have demonstrated that incorporating noble metals can effectively
enhance MOS’s selectivity [114,126–130]. For instance, Moon et al. designed a dual-layer
gas sensor comprising a SnO2 sensing layer and an xRh-TiO2 (x = 0.5, 1, and 2 wt%) catalytic
layer that solely catalyzes aromatic compounds, resulting in a selective response to BTX
(benzene, toluene, and o-xylene) at the ppb level just by adjusting the Rh content in the
Rh-TiO2 catalytic layer [129]. The response of the pure SnO2 sensing layer and three xRh-
TiO2 dual-layer gas sensors to the 5 ppm mixed gas (benzene, toluene, o-xylene, ethanol,
formaldehyde, and carbon monoxide) is illustrated in Figure 7j–m. Within the operating
temperature range of 325–425 ◦C, the xRh-TiO2/SnO2 sensors selectively responded to
BTX compared to the pure SnO2 sensors. The specific response behaviors of each sensor
varied based on the Rh content, which demonstrates the possibility of customizing the
selectivity of aromatic compound sensors by adjusting the Rh content of the catalytic layer.
The quantification of BTX in the mixed gas was achieved successfully by forming the above
sensors into a sensor array, as shown in Figure 7n.

In addition, the study of noble metals in multi-layer MOS gas sensors is not limited to
the catalytic layer’s catalysis; it can also be used in the sensing layer. For example, Jeong et al.
developed a CeO2/Rh-SnO2 dual-layer gas sensor in which CeO2 acted as the catalytic
layer, and Rh-SnO2 acted as the sensing layer [130] (Figure 7q,r). They systematically
investigated the effect of the type of MOS in the sensing layer (SnO2, ZnO, In2O3, and WO3)
and the type of noble metal loaded onto it (Pt, Rh, and Au) on the sensors’ selectivity and
achieved quantitative differentiation of BTEXS (benzene, toluene, ethylbenzene, xylene,
and styrene) at the ppb level [130] (Figure 7s,t). Unlike the Rh-TiO2 catalytic layer of
Rh-TiO2/SnO2 [129], the CeO2 catalytic layer of CeO2/Rh-SnO2 [130] catalyzes interfering
gases other than aromatic compounds, thereby avoiding the cross-response of the MOS
sensing layer to interfering gases.
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diagrams of a SnO2 and Pd contact (a) with establishing the contact, with being exposed to (b) air and
(c) toluene ambience, respectively. (d,e) Schematic diagrams of possible gas-sensing mechanisms of
Pd-loaded SnO2 porous cages. Schematic diagrams of the gas-diffusion behavior in (f) SnO2 NPs and
(h) Pd-SnO2 CNPs. Transient response curve of the SnO2 NPs microsensor to (g) 20 ppm toluene and
(i) various toluene concentrations at an applied voltage of 1.04 V (~250 ◦C). Gas-sensing properties of
(j) pure SnO2, (k) 0.5Rh-TiO2/SnO2, (l) 1Rh-TiO2/SnO2, and (m) 2Rh-TiO2/SnO2 sensors to the 5 ppm
mixed gases (benzene, toluene, p-xylene, ethanol, HCHO, and CO) within the operating temperature
range of 325–425 ◦C. (n) PCA plot using the data from 0.5Rh-TiO2/SnO2, 1Rh-TiO2/SnO2, and
2Rh-TiO2/SnO2 sensors to demonstrate the discrimination of aromatic BTX compounds over the
interferences from ethanol, HCHO, and CO (concentration: 1–5 ppm). (o) Schematic diagram of
Rh-TiO2/SnO2 sensor. (p) Cross-sectional SEM image of Rh-TiO2/SnO2 sensing film. (q) Cross-
sectional SEM and (r) FESEM images of CeO2/Rh–SnO2 film. (s,t) Normalized signal intensities
of diverse single-layer sensors to 5 ppm analyte gases. Panels (a–e): reproduced with permission
from Ref. [119], © 2016 Elsevier B.V. Panels (f–i): reproduced with permission from Ref. [124], ©
2018 American Chemical Society. Panels (j–p): reproduced with permission from Ref. [129], © 2021
The Authors. Advanced Science published by Wiley-VCH GmbH. Panels (q–t): reproduced with
permission from Ref. [130], © 2023, The Author(s).
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2.3.3. Improve the Humidity Resistance

The sensitivity of MOS gas sensors will decrease when operating in a high-humidity
environment, resulting from “water poisoning” [131]. Such degradation is a major limita-
tion to the reliability of gas sensors [104]. The primary mechanism involves the reaction of
H2O with the chemisorbed oxygen species on the MOS surface, forming inert hydroxyl
groups at the oxygen-active site. This alteration significantly impacts the MOS gas-sensing
properties [79,104,132–134] and gas diffusion [135]. Moreover, water vapor is an unavoid-
able and substantial interference gas for MOS in exhaled breath detection. Researchers
have concentrated on improving the material’s humidity resistance to mitigate this issue.

The basic principle of eliminating the humidity’s effect is to suppress the formation
of hydroxyls on the MOS surface or increase oxygen vacancies to mitigate the impact
of hydroxyls. A practical approach is to avoid the connection between H2O and the ac-
tive sites on the MOS surface. Some researchers have used strong hydrophilics, such as
CuO, to composite with MOS to block the interaction between H2O and the MOS sur-
face. CuO/SnO2 [136] and CuO/In2O3 [137] have shown excellent humidity resistance
(Figure 8a,b). Bulemo et al. reported a porous Pt-loaded SnO2 nanotube based on SiO2,
which exhibited excellent sensing performance under high humidity (95% RH), attributing
to the residual SiO2 responsible for strong humidity adsorption [114]. Low-valence doping
is another method typically carried out in MOS to provide oxygen vacancies to improve
humidity resistance [131,138]. Kwak et al. doped Tb on the surface of yolk-shell sphere
SnO2, which demonstrated a comparable response and resistance in dry and humid en-
vironments (Figure 8c) [131]. This compensating effect can be attributed to substituting
Tb3+ for Sn4+ in SnO2, which creates oxygen vacancies. However, the humidity resistance
capacity obtained by the additive materials is limited.

Another strategy for improving MOS’s humidity resistance is to enhance its hydropho-
bicity. Zhu et al. deposited a few nanometers-thick hydrophobic inorganic CeO2 layer
on SnO2 thin film by magnetron sputtering to prepare the CeO2/SnO2 heterojunction
film, making the material humidity resistant without being limited by other conditions
(Figure 8d,e) [139]. However, the gas sensitivity of MOS is inevitably inhibited due to the
hydrophobic layer covering its active sites. Jeong et al. developed a dual-layer sensor with
a Tb4O7 coverage layer, which proved the universal humidity resistance effectiveness while
maintaining a gas response, selectivity, and resistance (Figure 8f–k) [140]. The synthesis
of surface-decorating materials requires additional materials and steps, increasing the
complexity and cost of the process.

Microscopic morphology modification has also been proven to be an effective method
for enhancing the humidity resistance of a single material [141]. Vallejos et al. fabricated
ZnO thin films with rod- and needle-like structures (Figure 8l,m) [142]. Both ZnO structures
show hydrophobicity, with static water contact angles (CA) of 120◦ and 134◦, respectively,
and maintain stable response values when only the humidity changes, indicating their
excellent humidity resistance. The needle-like ZnO film with a larger contact angle has more
excellent humidity resistance because it exposes more low-energy {100} facets, suggesting
its lower reactivity to water. This specific morphology preparation method provides a
novel approach to enhancing the humidity resistance of the material.

In addition to improving the humidity resistance of the materials themselves, gas
pre-drying [143–146] and humidity compensation [147–150] can also enhance MOS gas
sensor properties in high-humidity environments. Gas pre-drying can be achieved by evap-
orating [146] or condensing [143] the H2O from mixed gases and can utilize hydrophilic
sorbents, such as Nafion tubes [145], to absorb the H2O from the sample before testing. Al-
though gas pre-drying can alleviate humidity interference, it may remove the target VOCs,
thus losing diagnostic information. An additional dehumidifying device will complicate
the gas sensor and compromise its portability. Humidity compensation with reasonable
algorithms [147,149,150] is also an effective strategy to reduce the hindering effects of
humidity by incorporating a humidity sensor into the gas sensor system to measure the hu-
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midity levels and adjust the gas sensor’s output accordingly. Humidity resistance is pivotal
in gas sensor design to ensure accurate and dependable performance in practical scenarios.
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angle tests of (l) rod-ZnO and (m) needle-ZnO. Panels (a,b): reproduced with permission from
Ref. [137], © 2020 American Chemical Society. Panels (c): reproduced with permission from Ref. [131],
© 2018 American Chemical Society. Panels (d,e): reproduced with permission from Ref. [139], © 2022
American Chemical Society. Panels (f–k): reproduced with permission from Ref. [140], © 2020 The
Authors. Advanced Functional Materials published by Wiley-VCH GmbH. Panels (l–m): reproduced
with permission from Ref. [142], © 2019 The Authors. Published by Elsevier B.V.

In summary, we reviewed how morphology modification and secondary modification
can improve the performance of MOS gas sensors towards VOCs as lung cancer biomark-
ers in exhaled breath, considering the actual situation (diverse types, low concentrations,
and high humidity) of exhaled breath analysis. Table 1 summarizes the latest achieve-
ments of some MOS gas-sensitive materials in detecting exhaled breath VOCs as lung
cancer biomarkers.
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Table 1. MOSs have been reported for potential lung cancer biomarker VOCs.

Target Gas Material and
Structure Concentration Temperature (◦C) Response Res/Rec Time (s) LOD Interference Gas Ref.

Benzene Co-Al2O3 5/10/50 ppm 100/100/100 1.66/2.53/21.86
1.95/2.18,
2.23/2.59,
2.87/3.15

- - [151]

Benzene 2Rh-TiO2/SnO2, dual-
layer sensor 5 ppm 325 35 - - - [129]

Toluene WO3 mesoporous
nanofibers 1 ppm 350 11 8.56/9.2 100

ppb
H2, H2S, CO, ethanol,

NH3, CH4
[152]

Toluene ln2O3 50 ppm 27 9 26/28 -
methanol, ethanol,

acetone, n-butanol, and
benzene

[153]

Toluene WO3 porous
nanostructure 100 ppm 225 132 2/6 -

methanol, acetone, glycol,
formaldehyde, ethanol,

C2H2, NH3, NO2, and CO
[154]

Toluene Pd-SnO2 CNPs 1 ppb 250 3 - 200
ppt O2, H2, N2 [124]

Toluene Pd-SnO2 CNPs 7.9 ppb 250 15 - 7 ppt Air [125]

Toluene 1Rh-TiO2/SnO2, dual-
layer 5 ppm 325 103 - - - [129]

Toluene SnO2@SnO2 yolk-shell
cuboctahedra 20 ppm 250 28.6 1.8/4.1 - benzene, methanol,

acetone, and ethanol [120]

Toluene Three-, two-, one-layer
hollow cubic SnO2

20 ppm 250 38.7, 33.4,
22.1

0.8/6.1, 2.3/5.8,
2.0/6.5 - - [121]

Toluene Pd-loaded SnO2 cubic
cages 20 ppm 230 41.4 0.4/16.5 100

ppb - [119]

Toluene SnO2/NiO
nanoparticle 100 ppm 250 66.2 - 10

ppb - [155]

Xylene 0.5Rh-TiO2/SnO2,
dual-layer 5 ppm 325 120 - - - [129]

Xylene Pt/SnO2 nanosheet
flowers 200 ppm 200 154 29/47 - - [156]

Xylene Co3O4-SnO2 hollow
nanostructures 5 ppm 275 18.6 243/- - ethanol, toluene [157]

Xylene
CoWO4-Co3O4
heterojunctions

composites
100 ppm 200 51.6 - 300

ppb

ethanol, methanol,
formaldehyde, benzene,
toluene, acetone, NH3,

NO2, H2O

[158]

Styrene Pt-SnO2/α-Fe2O3
hollow nanospheres 1 ppm 206 10.56 3/15 50

ppb - [159]

Isoprene In2O3 nanoflowers 500 ppb 190 3.1 53/299 5 ppb NH3, ethanol, H2, CO [160]

Isoprene ZnO quantum dots 1 ppm 350 42 42/8 10
ppb - [161]

Isoprene In2O3/nanoparticles 1 ppm 350 231 3/35–200 1 ppb acetone, H2, CO2, CO,
CH4, [162]

Isoprene Pt-decorated
In2O3/microspheres 5 ppm 200 103.5 124/204 5 ppb H2O, CO, H2, ethanol,

ammonia [144]

Isoprene 1 wt%Cr2O3/In2O3
nanorods clusters 500 ppb 240 1.9 135/830 5 ppb

benzene, acetone, octane,
pentane, ethanol, NH3,

NO2

[163]

Hexanal MnO2/Ti3C2Tx 20 ppm 100 52 134/381 - - [164]

Hexanal In2O3 nanoparticle 50 ppm 300 18 - - - [165]

Hexanal CuO nanoflake 200 ppm 250 3.7 - 1.85
ppm linalool, methyl salicylate [166]

Hexanal ZnO nanoparticle 5 ppm 250 2.12 - - 1-pentanol, 1-octen-3-ol [167]

Nonanal Ru-W18049 urchin-like 30 ppm RT 16.1 25/154 - SO2, H2S, CO, NH3,
ethanol, acetone, [168]

Nonanal Sb2WO6 hierarchical
microspheres 30 ppm RT 62 32/145 1.6

ppm
C8H16O, C9H14O, C6H12O,

C10H18O [169]

Nonanal SnO2 nanosheets 0.1/0.3 ppm 250 1.383/2 - -

CO, NO2, acetone, H2,
ethanol, NH3, H2S,

formaldehyde,
acetaldehyde, butanal

[170]

Butanone Ce-SnO2 cuboids 20 ppm 175 23.9 20/- 500
ppb ethanol, toluene, acetone [171]

Butanone Pt-ZnO twin-rods 100 ppm 450 35.3 8/- - - [172]
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Table 1. Cont.

Target Gas Material and
Structure Concentration Temperature (◦C) Response Res/Rec Time (s) LOD Interference Gas Ref.

Butanone Cr2O3/WO3
nanosheets 100 ppm 180 40.51 9/15 - - [173]

Butanone 1 at% Ce-SnO2 thin
films 100 ppm 210 181 - - - [174]

Butanone ZnO small size 100 ppm 350 151 4.5/5 200 ppb

chlorobenzene, vinyl
benzene, xylene, toluene,
benzene, acetaldehyde,

formaldehyde

[175]

Butanone WO3 urchin-like
mesoporous 50 ppm 240 188.5 7/13 100 ppb - [176]

Butanone Ag-modified NiO
porous spherical 100 ppb 320 3.2 5.5/8 50 ppb Formaldehyde, methanol,

acetone, acetaldehyde [177]

Acetone Ru-NiO flower-like
microspheres 100 ppm 200 12 71/23 - ethanol, methanol,

formaldehyde, benzene [178]

Acetone TiO2/SnO2 100 ppm 300 301.5 - 20 ppb ethanol, acetone, NO2 [179]

Acetone PtCu-SnO2 5 ppm 240 27.8 - 5 ppb ethanol, toulene, pentane [180]

Acetone Pt-ZnO-SnO2 porous
nanofibers 100 ppm 170 104.26 - - C7H8, benzene, C3H6O [181]

1-Propanol Co-ZnO nanorods 100 ppm 250 491 2/19 10 ppb

formaldehyde, methyl
alcohol, ethanol,

triethylamine, 2-Propanol,
benzene, ammonia, glacial

acetic acid, formic acid

[182]

1-Propanol ZnSnO3 nanospheres 10 ppm 200 10.3 10/90 500 ppb acetone, xylene, ammonia,
hydrogen, methane [183]

1-Propanol
ZnO/NiO

one-dimensional chain
MOF

500 ppm 275 280.2 31.5/18.2 200 ppb
methanol, ethanol,

isopropanol, hexanol,
acetone

[184]

1-Propanol PdO-ZnSnO3 hollow
microspheres 100 ppm 140 30.8 1/25 -

formaldehyde, ethanol,
acetone, xylene, methanol,

ammonia
[185]

1-Propanol ZnO nanoparticles 40 ppm 125 6.6 190/200 - H2O, ethanol, acetone,
benzene, toluene [186]

1-Propanol Cu2O double-shell
hollow microspheres 100 ppm 187 11 50/40 10 ppm

acetone, carbon monoxide,
ethyne, formaldehyde,
isopropanol, ethanol,

methanol

[187]

1-Propanol NiO porous
nanoparticles 20 ppb 75 1.59 - 20 ppb ethanol, propanol, toluene,

methane, NO2
[188]

2-Propanol 10 at% Co-ZnO
nanoflower 5 ppm 225 22.5 330/475 /

N2, O2, CO2,
acetaldehyde, isoprene,

ethanol, acetone,
methanol

[189]

2-Propanol Fe-doped ZnO 250 ppb 275 4.7 51/762 250 ppb H2O, ethanol, acetone,
methanol [190]

2.4. Sensor Array and Pattern Recognition

This section focuses on developing the MOS gas sensor array for detecting potential
lung cancer biomarkers in exhaled breath. To date, no single VOC has been identified
as a specific biomarker for lung cancer [57]. Nevertheless, various highly sensitive MOS
gas sensors have been developed to detect potential lung cancer biomarkers. However,
detecting VOCs in exhaled breath poses significant challenges due to wide variations in
composition [30], interference from other gases [32], and the low concentration of many
biomarkers [25]. An ideal MOS sensor should be capable of detecting low concentrations of
VOCs in the presence of high levels of interfering gases, such as water vapor, and respond
rapidly to slight changes in concentration. It is difficult for a single MOS material sensor to
meet all these requirements.

Inspired by biomimicry, Persaud et al. first proposed using electronic devices to mimic
the olfactory system of animals in 1982, leading to the development of the e-nose [76].
The e-nose typically comprises an array of MOS gas sensors, signal acquisition, the pre-



Chemosensors 2023, 11, 251 16 of 26

processing unit, and a pattern recognition algorithm [191]. Unlike the high selectivity
of single MOS material sensors to a specific gas, each sensor in the MOS array need not
have high selectivity for any given analyte. Instead, this approach records the responses
between the exhaled breath and various MOSs, creating a set of specific signals known as
“breath prints”. Based on the existing statistical models, the “breath prints” are analyzed to
recognize a range of low-concentration lung cancer biomarkers’ VOCs [192]. As a simple
example, Guntner et al. developed an array of five gas sensors (Figure 9a), which demon-
strated excellent discrimination capabilities for mixed gases of ammonia, isoprene, and
acetone [193]. Three sensors in the array were used for pattern recognition, and a simple
multiple-linear-regression (MVLR) model was developed to analyze the linear response
characteristics of analytes at sub-ppm concentrations (Figure 9b). Under 90% RH, the
array achieved LODs of 2.9, 50.7, and 0.7 ppb for ammonia, isoprene, and acetone. These
were cross-validated by the SRI-TOF-MS method, indicating the high reliability of the
sensor array.

The sensor array effectively overcomes the limited selectivity of a single MOS sensor.
A sensor array comprising multiple MOS gas sensors is generally required to analyze
complex gases. However, using too many sensors can lead to information redundancy
due to the MOS gas sensors’ broad-spectrum response characteristics, increasing the dif-
ficulty of recognition systems without improving accuracy [194]. Therefore, selecting
the appropriate composition of MOS sensor arrays based on specific detection require-
ments [195] and developing more accurate and efficient pattern recognition algorithms
are necessary [194,196,197]. Principal component analysis (PCA) and linear discriminant
analysis (LDA) are two of the most commonly used dimensionality reduction algorithms
to improve classification accuracy, reduce computational complexity, and facilitate the
visualization of output results in gas recognition.

Figure 9c depicts the response of a sensor array comprising eight MOS sensors to
five VOCs related to lung cancer biomarkers [198]. By combining the PCA method, the re-
sponse of each sensor is portrayed as a feature vector with arrows in PC1-PC2, successfully
identifying all gases (Figure 9d). Subsequently, testing was conducted in polluted air, and
the target gases were identified accurately (Figure 9e). Furthermore, after removing three
sensors, the array composed of fewer sensors showed a higher resolution for acetone and
methyl isobutyl ketone when tested in the same polluted air (Figure 9f), emphasizing the
importance of selecting suitable sensors [195]. Li et al. projected “breath prints” of lung can-
cer patients and healthy individuals onto the PC1-PC2 two-dimensional space [199]. They
found significant overlap between the two groups (Figure 9g), indicating little difference
in the main components of the exhaled breath between lung cancer patients and healthy
individuals; then, using LDA to extract the features from the two groups, the categories
showed a significant distinction between the two populations (Figure 9h). Combining
the features extracted by PCA and LDA showed superior identification results (Figure 9i),
demonstrating the advantages of different algorithms and their combinations. These results
proved the applicability of the MOS gas sensor array in lung cancer diagnosis.

To summarize, MOS gas sensor arrays offer a promising technology for simultaneously
detecting and identifying multiple gases. Environmental factors, such as temperature and
humidity, can affect their accuracy and reliability, which need to explore new materials and
fabrication techniques. In addition to PCA and LDA, many optimized algorithms have
been introduced to improve gas recognition rates [200]. Machine learning and artificial
intelligence techniques are also being used to improve gas identification algorithms.
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Figure 9. Sensor array and pattern recognition. (a) Schematic diagram of the sensor array. Each sensor
individually analyzes mixed gases, and a statistical model converts their signals. Utilize SRI-TOF-MS
for training or cross-validation. (b) Average sensor array measurements of five volunteers’ ammonia,
isoprene, and acetone concentrations as a function of entrapment time (the inside picture, RH, and
CO2 gas-sensing results). (c) Average sensor responses of eight sensors to 1 ppm of target gases in
pure humid air. PCA scores and eigenvectors from (d) eight sensors in pure humid air, (e) eight
sensors and (f) five sensors in polluted humid air. The 2D mapping results of all “breath prints” in
features space, extracted by (g) PCA, (h) LDA, and (i) LDA with PCA. Panels (a,b): reproduced with
permission from Ref. [193], © 2018 American Chemical Society. Panels (c–f) from Ref. [198]. Panels
(g–i): reproduced with permission from Ref. [199], © 2020 Published by Elsevier Ltd.

3. Summary and Outlook

In recent decades, lung cancer, characterized by the highest mortality rate, has severely
threatened human life and health. The primary reason for the high mortality rate is the
late-stage diagnosis, emphasizing the importance of early screening. The use of exhaled
breath analysis, a non-invasive, cost-effective, and user-friendly method, has been adopted
to diagnose lung cancer. This article addresses the detection of VOCs in exhaled breath for
early lung cancer screening using MOS gas sensors.

For a single MOS gas sensor, obtaining reasonable micro/nanostructure design and
secondary modification can effectively enhance the gas sensitivity response by exposing
more active sites on the MOS surface. Additionally, secondary modification is a proper
technique for enhancing material selectivity. The humidity in exhaled breath can adversely
affect the gas-sensing properties of MOS; therefore, this article summarizes ways to improve
the humidity resistance of materials. Excellent humidity resistance composite materials
can be obtained by compounding strongly hydrophilic or hydrophobic materials, low-cost
doping to supplement oxygen vacancies, or exposing special crystal planes. Moreover,
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compared with modifying the material, pre-drying the gas before testing or using an
algorithm for humidity compensation can also enhance the gas-sensing performance in a
high-humidity environment.

Although the sensitivity of some single MOS gas sensors is exceptional, their broad
response characteristics pose a challenge in detecting specific VOCs in exhaled breath. MOS
sensor arrays can effectively address the problem of insufficient selectivity of single MOS
sensors and are the future development direction of MOS gas sensing. For the analysis
of more complex gases, sensor arrays comprising multiple MOS gas sensors are generally
required, and efficient pattern recognition algorithms are critical to handling complex
gas-sensitive information. The combination of deep learning technology and sensor arrays
for detecting various diseases is an area that requires further exploration.

In summary, MOS gas sensors offer great potential for detecting human exhaled VOCs,
which is significant for the early diagnosis of lung cancer on a large scale; however, several
aspects require improvement:

1. Clinical diagnosis. At present, the biomarkers of the exhaled breath of lung cancer
patients have not been determined, which limits the application of MOS gas sensors
in diagnosing lung cancer. We urgently need a single exhaled VOC, or a unified
group of VOCs, as a standard marker for lung cancer to establish a highly reliable
“breath prints” comparative database, which can significantly improve the accuracy
of clinical diagnosis.

2. Materials. The prerequisite for the pattern recognition of the sensor array is that MOS
responds to low-concentration VOCs gas; therefore, the LOD of MOS needs to be
further reduced. The high-humidity environment of exhaled breath and MOS’s high-
working temperature seriously affect its stability and repeatability; thus, it is necessary
to develop better humidity-resistant and lower working-temperature MOS materials.

3. Algorithms. Deep learning algorithms based on olfactory recognition are needed
to identify gases accurately in complex environments. Although still in its early
stages, this technology has demonstrated strong recognition ability in other fields.
Collaborating with sensor arrays is essential to achieve precise gas identification.

4. Devices. The collaborative design and manufacturing of gas sensors using MEMS and
CMOS technology reduces their size. Multiple sensors are integrated into a sensor
array, and data processing modules enable chip-level packaging and manufacturing.

5. Mechanisms. Understanding the gas-sensing mechanism involves complex chemical
reactions, which are still not fully understood. Further research can improve the sen-
sor’s performance, address selectivity, and stability issues, and guide the development
of gas-sensing materials.

Through the collaborative efforts of multiple disciplines, it is possible to achieve
breakthroughs in all the developments mentioned above and expedite electronic noses’
clinical deployment.
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