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Abstract: Precision cancer medicine necessitates a personalized treatment plan for each individual
patient. Given cancer’s heterogeneity and dynamic nature, the plot of patient-specific signatures
composed of multiple cancer circulating biomarkers is useful to reveal the complete tumor landscape
for guiding precision medicine. As an emerging new technology, surface-enhanced Raman scattering
(SERS) shows the intrinsic advantage of performing multiplexed detection with the extremely narrow
Raman spectral line widths. In this review, we first discuss the design principle of SERS nanotags to
enable the detection of multiple circulating biomarkers, highlighting the important roles of plasmonic
nanostructures and triple bond-modulated Raman reporters. Following this, we detail the use of
isotropic and anisotropic nanostructures as SERS enhancement substrates for amplifying Raman
signals in multi-biomarker detection. Furthermore, we present the triple bond-modulated molecules
as Raman reporters in SERS nanotags to expand the multiplexing capability for biomarker mea-
surements. Finally, we offer critical insights into the challenges and perspectives of SERS nanotags
for cancer diagnosis, particularly from the aspect of future clinical transition. It is expected that
this review can facilitate the design of more functional SERS nanotags with high sensitivity and
multiplexing capability to assist early and accurate cancer screening. We also believe our review will
be of interest in the fields of molecular imaging, biomedicine, and analytical chemistry.

Keywords: SERS; Raman; nanotages; cancer diagnosis

1. Introduction

As the leading cause of death worldwide, cancer is responsible for nearly 10 million
deaths in 2020 [1]. Fortunately, emerging findings suggested that precision medicine can
significantly reduce cancer mortality through introducing timely and effective medical
interference [2–5]. To assist precision medicine, biomarkers circulating in body fluids
(e.g., blood or urine) are able to noninvasively provide a complete cancer profile to enable
early detection and guide personalized treatment management [6–8]. Currently, a variety
of cancer circulating biomarkers has been investigated as surrogates to indicate cancer
occurrence, progression, and treatment response, including proteins, circulating tumor cells
(CTCs), nucleic acids (NAs), and extracellular vehicles (EVs) [9–12].

Despite the significant role of circulating biomarkers in cancer detection, their practical
use for precision medicine is largely challenged by two issues: (1) the extremely low
abundance of cancer-associated circulating biomarkers in the presence of large amounts
of interference molecules. For instance, only 1–100 CTCs are found in one milliliter of
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blood with 1–2 million peripheral blood mononuclear cells, in which CTCs may experience
further loss during the isolation and purification procedures [13,14], and (2) the inaccurate
reflection of cancer status by considering only one relevant biomarker. Accumulating
evidence shows that the mere use of prostate-specific antigen (PSA) for prostate cancer
screening may not produce an improved survival benefit but comes with overtreatments
and life-alerting side effects [15,16]. As such, new technologies that enable highly sensitive,
specific, and parallel analysis of multiple circulating biomarkers are expected to assist
accurate decision-making [2,17].

Surface-enhanced Raman scattering (SERS) is an emerging spectroscopic technol-
ogy that has witnessed rapid developments in the past decade [18]. By integrating with
nanotechnology (e.g., noble metal nanoparticles), SERS allows 106–1015 Raman signal
amplification and thus sensitive sensing down to single molecules [19]. In addition, SERS
possesses extremely narrow Raman spectral line widths (i.e., ~1 nm), which are about
50 times narrower than the commonly used fluorescence bands [19]. The intrinsic narrow
Raman peaks particularly benefit multiplexed labeling with the potential to analyze 31
targets in parallel [20]. Taken together, with the advantages of high sensitivity and multi-
plexing capability, SERS is a good candidate to implement circulating biomarker detection
for early and accurate cancer detection.

In this review, we feature the use of the SERS technique, particularly SERS nanotags,
to detect cancer circulating biomarkers in a highly sensitive and multiplexed way (Figure 1).
We first deliberate on the SERS nanotag design principle. Following that, we focus on the
SERS nanotags using isotropic or anisotropic nanostructures as plasmonic nanostructures to
enhance Raman signals for highly sensitive biomarker detection. Furthermore, we discuss
the SERS nanotags with the use of triple bond-modulated Raman reporters to expand the
multiplexing detection. Finally, we provide our insights on the current challenges and
outlooks of SERS technique in cancer detection. This review will help researchers in the
fields of Raman imaging, nanomedicine, and biomedicine to develop promising Raman
agents for cancer early diagnosis and therapy.
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2. The Design Principle of SERS Nanotags

Figure 2 depicts the electromagnetic field-related SERS principle, which involves the
use of surface plasmonic resonance (SPR) surrounding nanostructure surfaces to enhance
the Raman signals of Raman reporters. To allow effective biomarker detection, SERS
nanotags are expected to identify the targets as well as readout specific signals. Typically, the
design of SERS nanotags should consider four key components, as illustrated in Figure 1a:
(1) plasmonic nanostructure, (2) Raman reporter, (3) protective shell, and (4) targeting
unit. The integration of these four parts together constitutes the functional SERS nanotags.
Table 1 summarizes the roles of each component, typical examples, and working principles.
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Table 1. Typical components of functional SERS nanotags.

Component Role Example Working Principle

Plasmonic
nanostructure Enhancing Raman signals • Gold/silver nanospheres

• Gold/silver nanostars/nanoboxes
Localized surface plasmon

resonance (LSPR)

Raman reporter Generating Raman signals

• 4-Mercaptobenzoic acid
• 2,3,5,6-tetrafluoro-4-

mercaptobenzoic
acid

• 5,5-dithio-bis-(2-nitrobenzoic acid)
• Crystal violet
• 4-Cyanobenzenethiol
• 4-mercaptopyridine
• 2-mercapto-4-methyl-5-

thiazoleacetic
acid

• Rhodamine 6G

Intrinsic molecular vibration
and rotation

Protective shell

• Preventing Raman
reporter from detaching

• Maintaining
nanostructure stability

• Reducing non-specific
binding

• Bovine serum albumin (BSA)
• SH-PEG
• SiO2
• Liposome

• Physical isolation
• Steric

hindrance/repulsive
force

• Block free and
high-energy
nanostructure surface

Targeting unit Providing required specificity

• Antibody
• Aptamer
• Nucleic acid
• Peptides
• Small ligands

Specific molecular interactions
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As the foundation of SERS nanotags, the plasmonic nanostructure plays a paramount
role in amplifying the weak Raman signals, which underpins the feasibility of single-
molecule detection. Briefly, the plasmonic nanostructure utilizes the localized surface
plasma resonance (LSPR) to enhance the surrounding electromagnetic field and thus
enlarge the molecular vibrational and rotational information [21,22]. Due to the electro-
magnetic field damping with the distance away from the nanostructures, this LSPR-based
Raman enhancement shows the distance-dependent feature with effective signal enhance-
ment limited to around 10 nm near the nanostructure surfaces [23]. Typically, plasmonic
nanostructure consists of noble metals (e.g., gold, silver, and copper) that show strong
LSPR properties. Importantly, plasmonic nanostructure with different morphology shows
variable electromagnetic field distributions and thus quite diverse LSPR-related Raman
signal enhancement [24–26]. For instance, plasmonic nanostructure that is isotropic (e.g.,
nanospheres) or anisotropic (e.g., nanostars and nanoflowers) performs differently in en-
hancing Raman signals. Based on these different morphology, scientists could design
promising Raman probes for in vitro and vivo imaging.

Raman reporter provides the intrinsic fingerprint molecular information, which can
be used as characteristic signals to indicate targets. As Raman peaks are extremely nar-
row, the use of different Raman reporters with non-overlapping characteristic bands is
capable of labeling multiple targets in parallel. Typically, the thiolated small molecules
(e.g., 4-mercaptobenzoic acid, 2,7-mercapto-4-methylcoumarin, 4-mercaptopyridine, and 2-
mercapto-4-methyl-5-thiazoleacetic acid) are preferred Raman reporters in multi-biomarker
analysis due to their easy functionalization on nanostructures through sulfur and gold/silver
interaction and few characteristic peaks to minimize Raman peak overlaps [19]. However,
this type of molecules suffers from a relatively low Raman signal enhancement, which is
largely related to their small Raman-scattering cross-section. By contrast, the dye-based
Raman reporters (e.g., crystal violet and rhodamine B) feature high Raman enhancement
but have the limitation of serious Raman peak overlap due to the complex molecular
structures with rich vibration and rotation [19]. Thus, these dyes as Raman reporters
are recommended to conduct the highly sensitive detection of an individual biomarker
instead of the simultaneous analysis of multi-biomarkers. In addition, the emerging triple
bond-modulated molecules are attracting an increasing attention as the next generation of
Raman reporters for multiplexed biomarker detection. These triple bond-based molecules
show unique and simple Raman signals beyond 1800 cm−1, which locate in the Raman
silent region without potential interferences from biological samples [27].

A protective shell is used to prevent the dissociation of Raman reporters on nanos-
tructure surfaces, provide sufficient colloidal stability to the nanostructures, and block
the exposed free nanostructure surfaces to avoid nonspecific binding events. The repre-
sentative protective materials include bovine serum albumin (BSA), SH-PEG, SiO2, and
liposomes [28–31].

The targeting unit (e.g., antibodies, aptamers, peptides, small ligands, and nucleic
acids) imparts the specificity to SERS nanotags for recognizing desired targets. The in-
corporation of targeting units on SERS nanotags can be performed through a simple
physical adsorption using electrostatic interactions or covalent binding with the assis-
tance of bifunctional linker molecules (e.g., ortho-pyridyldisulfide-polyethylene glycol-
N-succinimidyl propionate, dithiobis(succinimidyl propionate) and succinimidyl-4-(N-
maleimidomethyl)cyclohexane-1-carboxylate) [19].

To perform SERS measurements, the targets are typically isolated/purified from the
samples first and identified through SERS nanotags for signal readout. Experimentally,
under the laser illumination with specific wavelength (e.g., 632.8 nm and 785 nm), the
generated Raman spectra are recorded with either a portable Raman instrument in a cuvette
or confocal Raman microscope using user-defined integration time [32,33].

In this review, we focus on discussing the SERS nanotags that use isotropic and
anisotropic nanostructures as well as triple bond-modulated Raman reporters, aiming to
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achieve the goal of highly sensitive and multiplexed circulating biomarker detection for
the early diagnosis of diseases.

3. Morphology-Tuned Plasmonic Nanostructures in SERS Nanotags for
Multi-Biomarker Detection

As mentioned in the previous section, plasmonic nanostructure is the key component
to amplify Raman signals in SERS nanotags. Particularly, the morphology of plasmonic
nanostructures influences the electromagnetic field distribution and thus the Raman signal
enhancement performance. Thus, in this section, we discuss two classes of nanostruc-
tures with isotropic and anisotropic shapes as Raman signal amplifiers in SERS nano-
tags. Isotropic nanostructures allow the change in plasmonic resonance by varying the
nanoparticle sizes but typically show a relatively narrow plasmon resonance within a
small wavelength range (i.e., a few tens of nanometers) [34]. Furthermore, isotropic nanos-
tructures show a low SERS enhancement capability and thus require the nanostructure
aggregation to produce “hot spots” for sufficient signal amplification [35]. This, how-
ever, will lead to the SERS signal variation as the generated “hot spots” are randomly
distributed on the nanostructure surfaces [36,37], which may result in poor reproducibility
in biomarker detection. In contrast, anisotropic nanostructures enable a better control
of plasmon resonance wavelength due to the introduction of another degree of freedom
by shape anisotropy [38,39]. With the advantage of extremely strong electromagnetic
field on specific sites, anisotropic nanostructures demonstrate single-particle SERS activity
without relying on aggregation [40–42]. Thus, anisotropic nanostructures are believed to
provide robust and reproducible strategies for biomarker detection with high specificity
and sensitivity [43].

3.1. Isotropic Nanostructures

Gold/silver nanospheres are the representative isotropic nanostructures that are most
commonly used as plasmonic nanomaterials in SERS nanotags. Thus far, gold/silver
nanospheres’ syntheses are well-established and their properties (e.g., size) are fully investi-
gated to maximize the Raman signal enhancement. Here, we focus on the use of gold/silver
nanosphere-based plasmonic nanostructures in SERS nanotags to detect multiple cancer
circulating biomarkers.

To allow the sensitive detection and phenotypic profiling of melanoma CTCs, Tsao
et al. used gold nanospheres to prepare four SERS nanotags that identified four protein
biomarkers on CTCs (Figure 3a) [44]. After the blood samples were purified to remove
irrelevant cells, the remaining CTCs were labeled by the four SERS nanotags and detected
by Raman spectroscopy. Specifically, the four SERS nanotags targeted four correspond-
ing biomarkers on melanoma cells, namely melanoma–chondroitin sulfate proteoglycan
(MCSP), melanoma cell adhesion molecule (MCAM), erythroblastic leukemia viral onco-
gene homologue 3 (ErbB3), and low-affinity nerve growth factor receptor (LNGFR). These
four SERS nanotags labeled melanoma CTCs and created a molecular signature of each
melanoma patient, which allowed the monitoring of patient phenotypic changes during
cancer treatments. Furthermore, based on either one SERS nanotag alone or four SERS
nanotags together, the assay can sensitively detect melanoma CTCs down to 10 cells/mL.
As a comparison, the use of a single surface biomarker for CTC isolation and detection
(e.g., epithelial cell adhesion molecule (EpCAM)) was deemed to introduce bias due to
the dynamic nature of CTCs that may have no expression or downregulate the expression
of the specific biomarker. Thus, this work highlighted the importance of SERS nanotag
enabled multi-biomarker analysis for accurate cancer diagnosis.

In a follow-up study, by changing the targeting units, Zhang and colleagues used a
similar strategy to prepare four SERS nanotags based on gold nanospheres as plasmonic
nanostructures (Figure 2b) [45]. Different from the above work, this research was focusing
on monitoring the epithelial to mesenchymal transition (EMT) to indicate cancer metastasis
by measuring the CTC surface biomarker level changes. In the breast cancer cell line
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models with induced EMT process, their finding suggested the downregulation of the
CTC biomarker and a mesenchymal biomarker but the upregulation of a mesenchymal
biomarker and a stem cell biomarker. Importantly, the gold nanosphere-based SERS
nanotags were able to detect breast cancer patients and phenotype their EMT-associated
characteristics. This approach offered a new strategy to monitor EMT development in
different cancer types and thus may be a useful tool to allow an early identification of
cancer metastasis.
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Figure 3. Gold nanosphere-based SERS nanotags for multi-biomarker detection. (a) Profiling of
four biomarkers on melanoma CTC surface to monitor patients’ response to drug treatments, which
involved Ficoll and CD45 depletion and incubation with Ab-SERS labels for Raman detection.
Reproduced with permission [44]. Copyright 2018, Nature Publishing Group. (b) Detection of
four biomarkers (i.e., EpCAM, E-cadherin, N-cadherin, and ABCB5) on melanoma CTC surfaces to
monitor epithelial to mesenchymal transition. Reproduced with permission [45]. Copyright 2021,
American Chemical Society.

Gold nanosphere-based SERS nanotags can further integrate with microfluidic systems
to improve the analytical performance in biomarker detection. For instance, Reza and
coworkers first utilized gold nanospheres to prepare four SERS nanotags, which were
able to detect the cancer-specific protein biomarkers circulating in blood (Figure 4a) [46].
Furthermore, a microfluidic chip was fabricated and functionalized with different capture
antibodies in separate channels. The presence of the targets was able to bridge the SERS
nanotags and the microfluidic surface in a sandwich structure. Importantly, this work
introduced electrohydrodynamic (EHD)-induced surface shearing forces on the microfluidic
system to control the fluidic flow. As a result, the interaction between the targets/SERS
nanotags and the microfluidic chip was enhanced along with the significantly reduced
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non-specific binding events. This work demonstrated the applications of SERS nanotags for
clinical potential by testing the protein biomarkers in breast and ovarian cancer patients.

The integration of gold nanosphere-based SERS nanotags and a multi-channel microflu-
idic system was also used to profile protein biomarkers on EV surfaces (Figure 4b) [47]. Specif-
ically, Wang and colleagues first prepared four SERS nanotags based on gold nanospheres,
followed by applying them on the fabricated microfluidic channels to form the conventional
sandwich structure and identify the target EVs. Due to the highly sensitive readout of the
prepared SERS nanotags and the incorporation of the EHD for EV enrichment, this work
demonstrated the direct EV profiling from plasma samples without the need for EV purifica-
tion. The test in melanoma patient samples revealed that specific EV profiles can indicate drug
resistance development, which can be employed to investigate cancer treatment outcomes.

Apart from the above multi-channel microfluidic devices, gold nanosphere-based SERS
nanotags were used together with the ring microfluidic system for biomarker detection.
For instance, Zhang et al. prepared two gold nanosphere-based SERS nanotags coupled
with the ring microfluidic chip to detect two soluble EMT biomarkers (Figure 4c) [48]. The
SERS nanotag preparation was conducted in a traditional approach, which was similar to
the above works. However, the design of the microelectrode chip with ring shapes further
improved the mixing effect (i.e., nanomixing) on the chip that accelerated the collision of
gold nanosphere-based SERS nanotags and chip surfaces. As a result of this, the sensitive
detection of soluble epithelial cadherin (E-cadherin) and neural-cadherin (N-cadherin) can
be performed from as low as 10 cells/mL. To demonstrate the clinical usage, this work
showed the successful detection of both E-cadherin and N-cadherin in the plasma samples
from breast cancer patients who were diagnosed in metastatic stage IV.

In addition to integrate with microfluidic systems, gold nanosphere-based SERS
nanotags can also be flexibly used with magnetic nanobeads for cancer biomarker detection.
Wang and colleagues designed a SERS assay for simultaneously detecting three cancer EV
biomarkers (Figure 5a) [49]. Instead of using antibodies as the targeting units, the gold
nanospheres were functionalized with aptamers to recognize the protein biomarkers on EV
surfaces and prepare SERS nanotags. Following the EV capture through the generic surface
protein CD63 by magnetic nanobeads, the SERS nanotags were applied to identify specific
biomarkers on EVs (i.e., human epidermal growth factor receptor 2 (HER2), prostate-specific
membrane antigen (PSMA), and carcinoembryonic antigen (CEA)) with the formation of
the apta-immunocomplexes. After isolating the apta-immunocomplexes from the solution
with a magnet, the EV existence was indicated by the reduced SERS signals. Based on the
obtained EV-associated SERS signals, this work achieved the screening of breast, colorectal,
and prostate cancers.

Furthermore, gold nanosphere-based SERS nanotags can enhance the signal readout
by coupling with silver nanospheres. Gu et al. designed a SERS biosensor to simultaneously
detect alpha-fetoprotein (AFP) and CEA (Figure 5b) [50]. In this assay, through electrode-
position of gold on silica cavities, a gold microelectrode array (GMA) was fabricated and
functionalized with antibodies to capture the targets. SERS nanotags were prepared by
co-conjugating gold nanospheres with antibodies and capture DNA, in which the captured
DNA can initiate a hybridization chain reaction (HCR) to load Raman reporters. In the
presence of the desired biomarker, a conventional sandwich structure was formed between
GMA and SERS nanotags. A subsequent silver staining was performed that deposited
silver nanospheres on gold nanosphere-based SERS nanotags. The electromagnetic cou-
pling between gold and silver nanospheres enabled ultrasensitive detection of AFP and
CEA down to 0.6 and 0.3 pg/mL, respectively. Apart from SERS readout, this design also
allowed the quantification of biomarkers with electrochemical signals.

As discussed above, the majority of studies preferred to use gold instead of silver
as the basic material in nanostructures to enhance Raman signals. As a popular noble
metal, gold has the advantages of high stability and it is easy to tune the morphology in a
controlled manner, but pure gold has the slightly lower Raman enhancement capability. In
contrast, though silver is reported to produce a much higher Raman enhancement than
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gold, the poor stability and the difficulty to control the nanostructure uniformity limit their
practical use as SERS plasmonic nanostructures in nanotag design, particularly for the
application in biomarker detection. To integrate the advantages of gold and silver together,
the design of gold–silver alloys or core–shell nanostructures is a promising direction. Such
novel nanostructures are expected to possess the required physical stability and generate
significantly enhanced Raman signals due to the electromagnetic coupling effect between
gold and silver components, which will greatly benefit the robust and sensitive detection
of rare circulating biomarkers.
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Figure 4. Integration of gold nanosphere-based SERS nanotags with microfluidic systems for multi-
biomarker detection. (a) Detection of four circulating protein biomarkers (i.e., HER2, EGFR, MUC16,
and MUC1). Reproduced with permission [46]. Copyright 2017, Wiley-VCH. (b) Profiling of four
EV biomarkers from melanoma cell derived EVs. Reproduced with permission [47]. Copyright
2020, American Association for Advancement Science. (c) Measurement of two circulating protein
biomarkers (i.e., sE-cadherin and sN-cadherin). Reproduced with permission [48]. Copyright 2020,
Wiley-VCH.
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Chemistry. (b) Supersensitive detection of two circulating protein biomarkers by coupling with silver
nanospheres to further enhance the signals and using hybridization chain reaction to improve the
sensitivity. Reproduced with permission [50]. Copyright 2021, Elsevier.

3.2. Anisotropic Nanostructures

Compared to the above-mentioned isotropic nanostructures, anisotropic nanostructures
feature greatly enhanced electromagnetic fields on specific sites with high curvature (e.g., tips
and corners on the nanostructure surfaces). This property produces “hot spots” that are able
to significantly amplify Raman signals. Currently, a series of anisotropic nanostructures have
been investigated to enable highly sensitive cancer circulating biomarker detection.

Gold nanostar, which has extremely strong “hot spots” on the tips or branches, is a
typical and widely used anisotropic nanostructure in SERS assay. For instance, Li and
coworkers et al. architected gold nanostar-based SERS nanotags for breast cancer diagnosis
by detecting three circulating antigen biomarkers (i.e., cancer antigen (CA) 15-3, CA 27–29,
and CEA) (Figure 6a) [51]. In this work, an assay chip with pre-defined wells was function-
alized with antibodies to capture the targets. The sequential addition of targets and gold
nanostar-based SERS nanotags formed an immune sandwich structure for detection. Due to
gold nanostar-enabled enormous Raman signal enhancement, this assay outperformed the
traditional immunoassays and allowed the sensitive detection of three biomarkers down
to 0.99 U/mL, 0.13 U/mL, and 0.05 ng/mL for CA15-3, CA27-29, and CEA, respectively.
Simulated patient sample tests were conducted by spiking the targets into healthy human
serum. Though this work can readout three biomarkers, the target identification was based
on the spatial differentiation instead of the intrinsic Raman signal labeling.
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Figure 6. Anisotropic nanostructure-based SERS nanotags for parallel detection of multiple circulating
biomarkers. (a) Gold nanostars as plasmonic nanostructures to detect three breast cancer antigens
(i.e., CEA, CA27-29, and CA15-3). Reproduced with permission [51]. Copyright 2015, Royal Society
of Chemistry. (b) Gold nanoflowers allowing the parallel and sensitive detection of two lung
cancer-associated biomarkers (i.e., NSE and CEA) with the scanning electron microscope (SEM)
and transmission electron microscope (TEM) images showing the morphology of gold nanoflowers.
Reproduced with permission. Copyright 2016, Royal Society of Chemistry [52]. (c) Silver-gold
nanorods promoting multi-color and multi-mode detection of biomarkers (i.e., Keratin18, IGF-1,
CD44, and EpCAM) on breast cancer CTCs. Reproduced with permission [53]. Copyright 2014,
Nature Publishing Group.

As a similar structure to nanostars, nanoflowers show strong “hot spots” on the
protrusions and thus are efficient SERS plasmonic nanostructures. Song and colleagues
synthesized gold nanoflowers and achieved lung cancer-associated circulating protein
biomarker detection (Figure 6b) [52]. Using a traditional SERS nanotag preparation method,
the gold nanoflowers were coated with two Raman reporters and corresponding antibodies.
Using the magnetic nanoparticles to separate the targets (i.e., CEA and neuron-specific
enolase (NSE)), the gold nanoflower-based SERS nanotags were further applied to identify
the targets and enabled the readout of characteristic Raman signals for intensity-based
quantification. As the gold nanoflowers possessed a higher Raman signal enhancement
than the traditional gold nanospheres, this work demonstrated the sensitive detection of
CEA and NSE in human serum with the limit of detection of 1.48 pg/mL and 2.04 pg/mL,
respectively. Given that the plasmonic nanostructures with the optimal SERS enhancement
possess a size below 100 nm, gold nanoflowers with a size of ~750 nm in this work can be
reduced to a smaller size by optimizing the synthetic conditions to further improve the
analytical performance.

Nanorod is another class of commonly used plasmonic nanostructures in SERS assay.
Nima et al. designed silver–gold nanorod SERS nanotags for multicolor breast cancer CTC
identification (Figure 6c) [53]. Specifically, to prepare the SERS nanotags, gold nanorods
were first coated with a silver layer that produced electromagnetic coupling to improve
Raman enhancement, followed by conjugating Raman reporters and antibodies on the
surfaces. The prepared SERS nanotags targeted four surface biomarkers on breast CTCs,
namely Keratin18, insulin-like growth factor (IGF), CD44, and EpCAM. Significantly, this
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silver–gold nanorod SERS assay achieved the highly sensitive and specific detection of
single breast CTCs in unprocessed human blood. In addition to acting as SERS plasmonic
nanostructures, the silver–gold nanorods were further used as photothermal agents for
rapid screening. Thus, the silver–gold nanorods underpinned multi-biomarker and multi-
mode detection, which had the potential to improve the currently available complex
CTC analysis.

In addition, the nanobox is attracting more attention as a powerful SERS plasmonic
nanostructure for a range of circulating biomarkers’ detection, such as proteins, EVs, and
CTCs. Li and colleagues first synthesized gold–silver alloy nanoboxes and demonstrated
the single-particle SERS activity [54]. On the basis of this, they integrated nanobox-based
SERS nanotags with a nanopillar array for a digital analysis of four cytokines (Figure 7a) [55].
In this work, the nanopillar array with dimensions of 1000 nm × 1000 nm × 1000 nm was
designed to capture the individual cytokines by following Poisson distribution. The single-
particle active SERS nanotags then allowed the readout of the cytokine binding events
under confocal Raman microscope. Due to the optimization of the nanopillar height, the
nonspecific binding events were largely screened from the confocal signal detection, which
partly improved the assay specificity and sensitivity. Furthermore, unlike the conven-
tional quantification with SERS intensity, this nanobox-based digital platform relied on the
“yes/no” readout mode to count the targets. Such a novel design ensured the detection
sensitivity to the single-molecule level and avoided the potential SERS signal fluctuation
bias due to nanostructure aggregation. Importantly, this nanobox-based SERS digital assay
allowed the monitoring of melanoma patients receiving immune checkpoint therapy.

Following the cytokine detection, the nanobox-based SERS nanotags and the nanopillar
array were further extended into profiling EVs to differentiate malignant and benign lung
cancer (Figure 7b) [56]. Specifically, under Poisson distribution, individual EVs were
captured on the nanopillar array and identified by the nanobox-based SERS nanotags. The
EV molecular profile consisting of four biomarkers (i.e., CD63, thrombospondin 2 (THBS2),
versican (VCAN), and tenascin C (TNC)) was established to correlate with lung lesions. In
a patient cohort of 33 participants, the EV molecular profile allowed the identification of
malignant from benign with the area under the curve of 0.85, suggesting the possibility of
this tool in performing noninvasive lung cancer screening.

Moreover, nanobox-based SERS nanotags can be used to detect melanoma CTC signa-
tures for predicting the response of immune checkpoint blockade therapy (Figure 7c) [57].
To obtain a unique CTC signature, nanobox-based SERS nanotags were prepared to target
four biomarkers on melanoma CTCs, namely programmed cell death-ligand 1 (PD-L1), ma-
jor histocompatibility (MHC)-I/II, and MCSP. The nanobox-based SERS nanotags enabled
a simultaneous ensemble and single-cell level profiling of melanoma CTCs. Thus, this work
provided a comprehensive CTC phenotype with the ability to reveal cancer heterogeneity.
By comparing the CTC molecular profile changes before and after interferon-γ stimulation,
this work showcased the identification of immune checkpoint blockade responders in a
cohort of 14 melanoma patients. Furthermore, with the aid of magnetic beads for target
separation and purification, the nanobox-based SERS nanotags were also applied for multi-
plexed soluble cancer protein biomarker detection, which was able to fulfill the sensitivity
requirement of patient screening in clinical settings [58]. Taking all the evidence together,
the nanoboxes showed their capability as promising SERS plasmonic nanostructures in
multiplexed cancer circulating biomarker detection.
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Figure 7. Gold–silver alloy nanobox-based SERS nanotags for a variety of cancer biomarker detection.
(a) The integration with the nanopillar array for digital counting of four cytokines (i.e., FGF-2, G-CSF,
GM-CSF, and CX3CL1). Reproduced with permission [55]. Copyright 2021, Nature Publishing Group.
(b) Digital assay to measure four lung cancer-associated EV biomarkers for differentiating malignant
and benign lung cancers. Reproduced with permission [56]. Copyright 2022, Wiley-VCH. (c) Profiling
of four biomarkers on melanoma CTCs (i.e., PD-L1, MHC-I, MHC-II, and MCSP). Reproduced with
permission [57]. Copyright 2022, American Chemical Society.

4. Triple Bond-Modulated Raman Reporters in SERS Nanotags for
Multi-Biomarker Detection

Though the traditional Raman reporters allow the multi-biomarker labeling, their
multiplexing capability is restricted by the spectral overlap due to the rich vibrational
and rotational information in the Raman fingerprint region. To further expand Raman
multiplexing labeling, Min and coworkers pioneered the triple bond molecules as super-
multiplex Raman reporters. Particularly, they developed the Manhattan Raman scattering
(MARS) dyes (Figure 8a) and polyyne-based molecules termed as “carbon rainbow” with
tunable Raman shifts (Figure 8b) [27,59,60]. In contrast to the traditional Raman reporters,
the triple bond molecules featured simple Raman peaks in the Raman silent region, thereby
less likely to produce overlapping peaks with other molecules. Due to this advantage,
the triple bond molecules showed broad applications in multiplexed biological imaging,
live cell profiling, and volumetric mapping [61–63]. However, their usage was typically
performed with stimulated Raman scattering (SRS) to amplify the weak Raman signals,
which necessitated the employment of state-of-the-art equipment for detection. Recently,
accumulating investigations have demonstrated triple bond molecules as effective Raman
reporters in SERS assay.

With the assistance of density functional theory calculation, Chen et al. designed and
synthesized an alkyne-modulated palette with 16 molecules derived from 4-mercaptobenzoic
acid, 4-ethynylbenzenethiol, and 4-(buta-1,3-diynyl) benzenethiol [64]. Their finding sug-
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gested that the use of 4-ethynylbenzenethiol as a parent structure was only able to alter
the alkynyl Raman shifts to a slight extent by using different substituents at the benzene
ring (i.e., 2118 cm−1 to 2126 cm−1). However, the Raman shifts demonstrated a wide
range of changes with the addition of substituents to the terminal alkyne (i.e., 2118 cm−1

to 2238 cm−1). Furthermore, the increase in charge density on the C ≡ C led to the Ra-
man shift towards a higher wavenumber due to the enhanced bond energy. Following
these fundamental investigations, three alkyne-containing molecules with clearly sepa-
rated signals (i.e., 2105 cm−1, 2159 cm−1, and 2212 cm−1) were selected as representative
Raman reporters to prepare SERS nanotags, in which gold–silver nanospheres were used
as plasmonic nanostructures (Figure 9a). As a proof-of-concept demonstration, the three
SERS nanotags allowed the labeling of three targets on HeLa cells, showing the optical
interference-free advantage. This work can be further extended into profiling multiple
biomarkers on CTC surfaces.
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Figure 8. Designing the triple bond-modulated molecules as emerging Raman reporters to improve
the multiplexing capability. (a) 9-Cyanopyronin-based MARS dyes to adjust Raman shift through
Xanthene ring expansion, isotope editing, and alkyne terminal group control. Reproduced with
permission [27]. Copyright 2017, Nature Publishing Group. (b) Polyyne-based “carbon rainbow”
dyes with tunable Raman shift from 2000 cm−1 to 2280 cm−1. Reproduced with permission [60].
Copyright 2019, Nature Publishing Group.

Following the previous investigation of an alkyne-modulated palette, Bai et al. used
triple bond molecules (i.e., C ≡ N and C ≡ C) as Raman reporters to simultaneously label
three liver cancer-associated antigens: AFP, CEA, and ferritin (FER) (Figure 9b) [65]. In
this work, three triple bond molecules were designed to correlate with the three antigens,
respectively. Specifically, the triple bond molecules and antibodies were co-conjugated
to gold nanospheres as SERS nanotags, which produced well-separated Raman peaks
at 2105 cm−1, 2159 cm−1, and 2227 cm−1, respectively. After the three biomarkers were
isolated from serum by magnetic beads, the prepared SERS nanotags were applied to
further identify and readout specific signals. Due to the use of these triple bond molecules,
this assay avoided the potential interferences from human serum that produced Raman
signals in the fingerprint region. Importantly, the test on 39 clinical samples using this
assay produced consistent results as the hospital diagnosis. Thus, this work demonstrated
the potential of triple bond molecules as useful Raman reporters in future circulating
biomarker detection.
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Figure 9. Triple bond-modulated molecules as Raman reporters in SERS nanotags for biomarker
detection. (a) Three alkyne-containing molecules labeling surface receptors on HeLa cells (i.e., FA,
LHRH, and CPP). Reproduced with permission [64]. Copyright 2016, American Chemical Society.
(b) Three triple bond-containing molecules detecting specific liver cancer antigens (i.e., AFP, CEA, and
FER). Reproduced with permission [65]. Copyright 2019, American Chemical Society. (c) Three triple
bond-containing molecules for breast cancer phenotype detection by detecting three proteins on CTC
surfaces (i.e., integrinαvβ3, nucleolin receptor, and CD44 receptor). Reproduced with permission [66].
Copyright 2019, American Chemical Society.

Furthermore, Wang et al. utilized three triple bond-containing molecules as Ra-
man reporters to detect breast cancer phenotype and demonstrated their in vivo usage
(Figure 8c) [66]. In their work, the SERS nanotags were prepared by coating the diynl,
azide, and cyano-containing molecules with characteristic Raman peaks (i.e., 2205 cm−1,
2120 cm−1, and 2230 cm−1) and corresponding target ligands onto gold nanoflowers. The
SERS nanotags allowed the phenotype differentiation of two breast cancer cell lines (i.e.,
MDA-MB-231 and MCF-7). Importantly, without the interference from biological compo-
nents, the in vivo SERS detection showed identifiable Raman signals in the micro-tumor,
which indicated the possibility of early cancer phenotype detection. This work thus
highlighted the nonoverlap, high sensitivity, and background-free advantages of triple
bond-modulated SERS nanotags.

Similarly, Li and colleagues demonstrated the use of alkyne- and nitrile-containing
molecules as Raman reporters to prepare SERS nanotags and perform multi-color imag-
ing of cancer cells and human breast cancer tissues [67]. There are also some reports
demonstrating triple bond-based molecules in ion or inflammatory biomarker detection.
Taken together, all the evidence indicates the prospects and progress of triple bond-based
molecules in biosensing applications.
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5. Challenges and Outlooks

In the preceding parts, we detailed the design principle of SERS nanotags as well
as the use of SERS nanotags with different nanostructure morphologies and triple bond-
modulated Raman reporters in circulating biomarker detection. Compared with the tradi-
tional biochemical assays (e.g., electrochemical and fluorescence tests), the SERS nanotag-
enabled biomarker detection demonstrates an outstanding advantage of simultaneously
measuring multiple targets due to the extremely narrow Raman linewidths. The representa-
tive works using different SERS nanotags are summarized in Table 2. Despite the favorable
analytical performance in these studies (e.g., high sensitivity and specificity), the ultimate
application of SERS nanotags in cancer detection still faces several challenges, particularly
for use in clinical settings. In this section, we provide insight into the possible challenges
and outlooks of SERS nanotags in multiplexed detection of circulating biomarkers, aiming
to transit this technology into clinical use.

Table 2. Representative SERS nanotags in circulating biomarker detection.

Plasmonic
Nanostructure Reporter Detected Biomarker Samples Application Ref.

Gold nanospheres

• 4-mercaptobenzoic acid
(MBA)

• 2,3,5,6-tetrafluoro-4-
mercaptobenzoic acid
(TFMBA)

• 4-mercapto-3-nitro benzoic
acid (MNBA)

• 4-mercaptopyridine (MPY)

• Melanoma–
chondroitin sulfate
proteoglycan (MCSP)

• Melanoma cell
adhesion molecule
(MCAM)

• Erythroblastic
leukemia viral
oncogene homologue 3
(ErbB3)

• Low-affinity nerve
growth factor receptor
(LNGFR)

Human
serum

Melanoma cancer
detection and

treatment
monitoring

[44]

Gold nanospheres

• 5,5-dithiobis
(2-nitrobenzoic acid)
(DTNB)

• MBA
• TFMBA
• MPY

• EpCAM
• E-cadherin
• N-cadherin
• ATP-binding

cassettesubfamily B
member 5 (ABCB5)

Human
serum

Breast cancer
metastasis
monitoring

[45]

Silver–gold
nanorods

• MBA
• p-aminothiophenol (PATP)
• p-nitrothiophenol (PNTP)
• 4-(methylsulfanyl)

thiophenol (4MSTP)

• EpCAM
• CD44
• Keratin 18
• Insulin-like growth

factor antigen (IGF-1)

Human
blood

Breast cancer
detection [53]

Gold–silver alloy
nanoboxes

• DTNB
• MBA
• TFMBA
• MMTAA

• Fibroblast growth
factor 2 (FGF-2)

• Granulocyte
colony-stimulating
factor (G-CSF)

• Granulocyte–
macrophage
colony-stimulating
factor (GM-CSF)

• Fractalkine (CX3CL1)

Human
serum

Melanoma cancer
treatment

monitoring
[55]
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Table 2. Cont.

Plasmonic
Nanostructure Reporter Detected Biomarker Samples Application Ref.

Gold nanospheres

• 4-Cyanobenzenethiol
• OPE0
• OPE2

• AFP
• CEA
• FER

Human
serum

Liver cancer
detection [65]

Gold nanoflowers

• Methyl 4-(4-ethinyl-
phenylbuta-1,3-diyn-1-yl)
benzoate acid

• 4-
Ethynylphenylacetonitrile

• 4-Ethynylphenylazide

• Oligonucleotide
aptamer (AS1411)

• Cyclic arginine–
glycine–aspartic acid
(cRGD)

• CD44

Human
cell lines
and mice

Breast cancer
detection [66]

5.1. Improve the Nanostructure Reproducibility and Stability

To ensure the successful application of SERS nanotags in cancer detection, the first
criterion is to produce accurate signal readouts with sufficient reproducibility. As the
signal is highly dependent on the electromagnetic field enhancement, the preparation of
uniform nanostructures from batch to batch is essential. Furthermore, the freshly prepared
nanostructures may have the required stability in the beginning. In practice, the nanostruc-
ture is susceptible to aggregate in buffer solutions, which normally happens during the
functionalization of Raman reporters or targeting units on nanostructure surfaces [68,69].
The nanostructure aggregation can cause significant variations in SERS signals because of
the random “hot spots” produced in the aggregates. Thus, more effective approaches to
prepare highly stable nanostructures that can endure multiple steps of functionalization
should be investigated. Moreover, the facile one-step functionalization or one-pot synthesis
and modification strategies should also be developed to reduce the aggregation issue in
the future.

5.2. Explore New Strategies to Tune the Raman Shifts of Triple Bond-Modulated Raman Reporters

Currently, the triple bond-modulated molecules allow an easier separation of Raman
peaks from each other in the Raman silent region, which is the major advantage compared
to the molecules with Raman signals in the fingerprint region. Although different strategies
have been used to tune their Raman shifts (e.g., introducing heavy atoms), the practical
synthesis of a series of triple bond-modulated molecules is still difficult. To enable con-
venient and widespread use of triple bond-modulated Raman reporters, exploring new
approaches that allow an easier control of Raman shifts are desired [70,71]. For instance,
the test of a library of molecular structures that have flexible vibration and rotation can be
a good starting point [72]. The subsequent applications can select the molecules allowing
easier synthesis.

5.3. Promote Broad Collaborations

SERS is a technology that involves multidisciplinary knowledge. Specifically, the syn-
thesis of nanostructures relies on material scientists to ensure the controllable morphology
and strong Raman signal enhancement [73–75]. The achievement of characteristic Raman
spectra with non-overlapping signals requires organic synthetic scientists to rationally
design novel molecular structures [76,77]. Furthermore, the final application of SERS assay
to perform various biomarker detection necessitates researchers from analytical chem-
istry [78,79]. Taking these thoughts into consideration, the successful SERS application
should promote broad collaborations among researchers with different areas of expertise.
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5.4. Realizing SERS with Multifunctional Abilities for Multimodal Imaging and Theranostics

Raman imaging holds the merits of multiple analyses and demonstrates the disadvan-
tages of sensitivity and resolution. It is well known that the frontier fluorescence imaging
and photoacoustic imaging modalities, especially in the NIR region, display in vivo imag-
ing in deep tissue with high sensitivity and resolution (Figure 10) [80–82]. Therefore, the
combination of other molecular imaging modalities with SERS will undoubtedly over-
come the limitation of each imaging modality [83–85]. On the other hand, the integration
of Raman imaging and photo/thermal/chemotherapy modalities could achieve precise
image-guided therapy or imaging monitoring of therapeutic performance [86–88]. For ex-
ample, the combination of gold/silver nanoparticles with small-molecule Raman reporters
could be easily applied to construct multifunctional probes for in vivo cancer diagnosis and
therapy [89,90]. Therefore, many effects should be considered to design novel multifunc-
tional imaging agents based on the SERS for future in vivo theranostics with high-quality
imaging figures and therapeutic performance.
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5.5. Integration of SERS with Other Imaging or Therapy Modalities toward Precision Medicine

Because of the high sensitivity and intrinsic fingerprint spectrum, SERS nanotags have
attracted much attention for in vivo and intraoperative imaging. Recently, in vivo fluo-
rescence imaging and photoacoustic imaging in the second near-infrared (NIR-II) region
have demonstrated remarkable advances with better spatial resolution and deeper tissue
penetration than in the traditional visible and NIR-I regions [91–93]. The development of
SERS nanotags at the NIR-II window is therefore highly valuable. The resonant strategy,
i.e., the use of resonant substrates and resonant molecules, can be helpful in fabricating
bright SERS nanotags at the NIR-II window; however, this strategy has not been demon-
strated with sufficient quantitative assessments. Recently, Lin and coworkers reported
a quantitative study on the Raman enhancements of the resonant strategy in preparing
NIR-II SERS nanotags [94]. By comparing the resonant and nonresonant plasmonic nanorod
substrates, the resonant substrates have been shown to provide an enhancement factor of
up to four orders of magnitude. When using the resonant Raman reporter molecules, SERS
intensities can be further increased by 25–546 times. This work opens a new strategy for
fabricating ultrasensitive NIR-II SERS nanotags and provides insights into the design of
related plasmonic devices in the future.
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5.6. Test the Assay Performance on a Large Cohort of Clinical Samples

The ultimate goal of SERS assay is to shift from fundamental research into clinical use
for cancer diagnosis. Admittedly, the current SERS assay reported acceptable analytical
performance, with a low limit of detection and wide dynamic detection range. Most of
the studies performed testing in buffer solutions or simulated patient samples. However,
clinical samples are much more complex than the buffer system, with the existence of a high
abundance of interfering molecules, which may lower the analytical performance and even
lead to detection failure [95]. Therefore, the test of SERS assays on real samples is essential to
allow the transition into clinical use. Though some works may try a few real samples, this is
still far behind the required number of samples to achieve the transition to clinical settings.
Therefore, our SERS assay can start by testing a relatively large patient cohort (e.g., 50 samples).
Gradually, we can increase the recruited patient cohort to progress into a clinical trial.

5.7. Pushing SERS Nanoprobesfrom In Vitro to In Vivo Applications

SERS technology is extremely sensitive and specific, can be multiplexed, and exhibits
less photo-bleaching as compared to fluorescence [96]. Therefore, SERS is desirable for
the development of non-invasive in vivo diagnostic and imaging tools. Compared with
traditional imaging modalities such as MRI, FL, and PA, SERS imaging can provide high-
resolution and molecular information for biomarkers at a lower cost. For example, recent
research has confirmed that gold nanomaterials such as gold nanoparticles, gold nanostars,
and gold nanorods are promising Raman substrates with outstanding surface plasmon
resonance effects, adjustable structure, and adequate biocompatibility, making them widely
used as SERS nanoprobes for in vivo diagnosis and imaging [97]. Though several types of
gold nanomaterial-based SERS nanoprobes have been successfully applied for in vivo ap-
plications, the in vivo biocompatibility, sensitivity, and specificity still need to be improved.
On the other hand, the SERS technique should also be integrated with other imaging
techniques such as fluorescence/photoacoustic imaging. Finally, to speed up the in vivo
applications of SERS imaging probes, specific attention should be paid to develop SERS
probes in the NIR-II region.

6. Conclusions

As SERS is a powerful technology, in this work, we detailed SERS-based assays for the
highly sensitive detection of multiple circulating biomarkers in parallel. In particular, we
featured the use of SERS nanotags as the core for biomarker detection. We fully discussed
the basic design principle of SERS nanotags, highlighting the four major components (i.e.,
plasmonic nanostructure, Raman reporter, protective shell, and targeting unit). Following
that, we focused on the SERS nanotags that used two types of plasmonic nanostructures and
triple bond-modulated Raman reporters in circulating biomarker detection. We also present
our opinions on the challenges and outlooks of SERS-based assays in cancer diagnosis. We
hope this review can guide the rational design of novel types of SERS nanotags and expend
their applications in multiplexed biomarker detection for accurate cancer detection in vitro
and in vivo.
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Abbreviations

SERS surface-enhanced Raman scattering CTCs circulating tumor cells
NAs nucleic acids EVs extracellular vesicles
PSA prostate-specific antigen BSA bovine serum albumin
LSPR localized surface plasma resonance MCSP melanoma–chondroitin sulfate proteoglycan
MCAM melanoma cell adhesion molecule EpCAM epithelial cell adhesion molecule
EMT mesenchymal transition EHD electrohydrodynamic
CEA carcinoembryonic antigen HER2 human epidermal growth factor receptor 2
AFP alpha-fetoprotein GMA microelectrode array
HCR hybridization chain reaction CA cancer antigen
SEM scanning electron microscope TEM transmission electron microscope
NSE neuron-specific enolase IGF insulin-like growth factor
THBS2 thrombospondin 2 VCAN versican
TNC tenascin C PD-L1 programmed cell death-ligand 1
MHC major histocompatibility MARS Manhattan Raman scattering
SRS stimulated Raman scattering MBA 4-mercaptobenzoic acid
TFMBA 2,3,5,6-tetrafluoro-4-mercaptobenzoic acid MNBA 4-mercapto-3-nitro benzoic acid
MPY 4-mercaptopyridine DTNB 5,5-dithiobis(2-nitrobenzoic acid)
PATP p-aminothiophenol PNTP p-nitrothiophenol
4MSTP 4-(methylsulfanyl)thiophenol FGF-2 fibroblast growth factor 2
G-CSF granulocyte colony-stimulating factor AS1411 oligonucleotide aptamer
cRGD cyclic arginine–glycine–aspartic acid FL fluorescence imaging
PA photoacoustic imaging
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