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Abstract: This research describes the modification of a glassy carbon electrode with spent coffee
grounds hydrochar (HDC) and copper nanoparticles (CuNPs) for the simultaneous determination
of hydroxychloroquine sulfate (HCS) and bisphenol A (BPA). Scanning electron microscopy, EDS
and cyclic voltammetry were used to characterize the nanocomposite. The analytical parameters
were optimized and the sensing platform was applied for the determination of HCS and BPA using
square-wave voltammetry (SWV). For HCS, the linear range was from 1.0 µmol L−1 to 50 µmol
L−1, with an LOD and LOQ of 0.46 and 1.53 µmol L−1, respectively. For BPA, the linear range was
from 0.5 µmol L−1 to 10 µmol L−1, with an LOD and LOQ of 0.31 µmol L−1 and 1.06 µmol L−1,
respectively. Finally, the developed electrochemical sensor was applied for the quantification of the
emerging contaminants in natural water, with recoveries between 94.8% and 106.8% for HCS and
99.6% and 105.2% for BPA. Therefore, HDC-CuNPs demonstrated themselves to be a good alternative
as a sustainable and cheaper material for application in electroanalyses.

Keywords: hydrochar; bisphenol A; chloroquine; electrochemical sensor; copper nanoparticles;
emerging contaminants

1. Introduction

With the development of technology, human-made substances have been largely
incorporated into industrial products, with little understanding of the consequences for
decades. Many of these synthetic chemicals are found in water bodies, coming from the
residual waste of several areas of industry [1,2]. Nowadays, numerous hazards for the
environment and human health caused by such contaminants have been described, but
there is no effective treatment to eliminate them [3]. The plastics industry significantly
contributes to this type of pollution due to the growth of market consumption [4]. Most
goods sold have plastic packages that, once thrown away, turn into microplastics [2,5,6].
Bisphenol-A is a chemical associated with microplastics, currently known as a potential
carcinogen and a contributor to endocrine disorders [7]. Along with untreated plastic
contaminants, pharmaceutical products are a concern for ecosystems and the quality of
potable water. Since drugs are not totally absorbed by organisms, the urine and feces of
patients go into the waters carrying excreted remainders or incompletely metabolized parts
of such chemicals [8]. That is the case for chloroquine and hydroxychloroquine, which
were increasingly used during the COVID-19 pandemic. [8] While their beneficial combat
to SARS-CoV-2 is still unsure, these medicals have been found in water and—similarly
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to bisphenol-A—have shown dangerous effects on both the environment and human
health [8,9].

Both bisphenol A and chloroquine are chemical compounds of interest in various
fields, and their detection can be carried out through specific analytical methods. Due to
the increasing detection of BPA and chloroquine residues in water, several analysis methods
have been developed. Among them, chromatographic methods such as Gas Chromatog-
raphy (GC) and High-Performance Liquid Chromatography (HPLC) are noteworthy [10].
When combined with detectors like UV–visible or fluorescence, these methods allow for
the separation and quantification of analytes. Mass spectrometry (LC-MS and GC-MS),
coupled with chromatography, is also a powerful tool for accurate detection during analy-
sis [10,11]. Electroanalytical techniques such as voltammetry and potentiometry, utilizing
the electrochemical properties of compounds, can also be considered as an alternative for
analyses [12]. The choice of analytical method depends on the sample’s characteristics,
detection needs and the limitations of available instruments. Conventional methods, while
effective, have shown limitations, especially when it comes to field analyses. Besides being
costly, detection using these methods can be time-consuming, susceptible to interference
and subject to contamination risks during different stages of sample treatment [11,13].
Electroanalytical methods, employing voltammetric techniques, offer a better analytical
alternative due to their high sensitivity and specificity, enabling detection at low concen-
trations, rapid analysis times, low cost and smaller instrument size. Thus, chemically
modified surface sensors can amplify a signal, provide sensitivity in various environments
and samples and have greater biological compatibility [14,15].

Hydrochars are carbon-based materials resulting from hydrothermal carbonization
(HTC), a thermochemical process that converts biomass to this product using water at temper-
atures between 100 and 375 ◦C as a reaction medium under autogenous pressure [16,17]. In
recent decades, this material has attracted significant attention due to its feedstock being
abundantly available, renewable and inexpensive [18]. Although hydrochar has a low
surface area and porosity, it can be activated and functionalized by several modification
methods, such as CO2 treatment, the use of KOH or sulfonation with concentrated H2SO4
to improve its physicochemical properties [18–21]. Therefore, this carbonaceous material
has a wide range of applications, having been used in wastewater treatment [22], the
removal of heavy metals [18,23], soil amendment [24,25] and energy production [18,25,26].
However, despite the growing interest in hydrochar and its applications, very few studies
involving its use in electrochemical sensing have been reported in the literature [27].

Metallic nanoparticles (MNPs), such as gold, silver, copper, antimony and palladium,
are widely used as modifiers in electrochemical sensors due to their high surface area,
good conductivity, high chemical stability and enhancement of mass transport [28,29].
Furthermore, copper is notably a metal that is easier to manage and cheaper compared
to gold and silver [30], which makes its use quite attractive, and it has been successfully
applied in the analysis of dopamine [30], escitalopram [30], chloroquine [9], fluoxetine [31]
and isotretinoin [32].

Within this context, a nanocomposite based in hydrochar and copper nanoparticles was
synthesized for the simultaneous determination of hydroxychloroquine sulfate and bisphenol
A. This work provides a sustainable option for the study of emerging contaminants through
the use of spent coffee grounds as a carbon source for the confection of the sensors. The
proposed electrode was modified and successfully applied for the simultaneous determination
of an antimalarial drug and an endocrine disruptor in natural water.

2. Materials and Methods
2.1. Instrumentation

A potentiostat (PGSTAT-128N Autolab Electrochemical System, Utrecht, The Nether-
lands) and NOVA 2.1 software (Metrohm, Utrecht, The Netherlands) were applied in the
voltammetric experiments (square-wave voltammetry (SWV)), in a conventional three-electrode
glass electrochemical cell. The working electrodes used in the experiments were of three types,
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differing only on their modified surfaces: glassy carbon (GC) (diameter = 2 mm ± 0.1 mm),
hydrochar (HDC) and hydrochar with copper nanoparticles (HDC-CuNPs). The auxiliary
electrode was a platinum plate, and the reference electrode was Ag/AgCl/KCl (3.0 mol L−1).

The nanoparticles were characterized morphologically using scanning electron mi-
croscopy (SEM) equipment from IQ-UNESP Araraquara, Brazil.

2.2. Solutions and Reagents

All the solutions prepared for this work used ultrapure water (Millipore Milli-Q system
with resistivity ≥ 18.2 MΩ cm), and the reagents were of analytical grade (they were not
purified before being applied in the experiments). CuCl2 (≥99.0%), bisphenol-A (≥98.0%),
hydroxychloroquine sulfate (≥98.0%), copper standard, mercury standard, methomyl
(≥98.0%), sodium dodecyl sulfate (≥99.0%), sodium borohydride (≥98.0%), ethanol (≥99.5%),
alumina (0.3 µm) (≥99.0%), potassium phosphate monobasic (≥99.0%) and sodium phosphate
dibasic (≥99.0%) were obtained from Sigma-Aldrich (São Paulo, Brazil).

2.3. Synthesis of the Hydrochar

Wet spent coffee grounds (SCGs) were collected from Tim Hortons, Truro, Canada,
and oven dried at 105 ◦C for 24 h. The dried SCGs and distilled water were mixed in a
ratio of 1:8 and loaded into a 100 mL high-temperature/pressure reactor (Parr 4580, Moline,
Il, USA). The reactor was tightly sealed and purged with pure N2 for 2–3 min to replace
the air in it. Then, the vent was closed, and N2 was added to create an initial pressure of
20 bar. The reactor was then heated to 300 ◦C and held at this temperature for 60 min. When
the reaction was completed, the reactor was cooled to room temperature, and the gaseous
products were released into a fume hood, followed by transferring the solid–liquid mixture
to a beaker. The solid product was separated from the mixture via vacuum separation and
placed in an oven at 105 ◦C overnight, resulting in a dried solid product, namely hydrochar.

2.4. Synthesis of the Hydrochar and Copper Nanoparticle Composites

In a clean beaker, 20 mg of hydrochar was combined with 20 mL of pure ethanol. The
mixture was placed in a benchtop ultrasonic bath for 30 min with sodium dodecyl sulfate in
a 10:4 proportion. Next, 16 mg of sodium borohydride was added, and the suspension was
again placed in the ultrasonic bath for 30 min. After this step, copper chloride (CuCl2) was
introduced in a ratio of 30% (m/m) relative to hydrochar weight, then diluted in ethanol.
In order to incorporate copper nanoparticles into the hydrochar’s structures, the CuCl2
solution was added while continuously stirred at a rate of one drop per second. Following
this procedure, the solution was sonicated for 30 min and subsequently centrifuged for
an additional 5 min, with the aim of separating suspended particles. After separation, the
material underwent a cleaning process using ethanol.

Before utilizing the composite to modify the electrodes, the suspension was placed in
a tip sonicator for 10 min to achieve a uniform solution.

2.5. Electrode Preparation

Firstly, the surface of the glassy carbon (GC) electrodes was polished with polystyrene
with silicon carbide sandpaper and a 0.5 µmol L−1 aqueous alumina suspension until a
mirrored surface was obtained. After this step, they were placed in a beaker with ethanol
and put in an ultrasonic bath for 5 min, and then this same process was conducted in
ultrapure water. After being polished, cleaned and dried at room temperature, the GC
electrodes were modified by drop casting 10 µL of composite suspension (HDC-CuNPs or
HDC) on their surfaces. Lastly, they were dried at 60 ◦C in an oven and taken out for the
electrochemical procedures.

2.6. Sample Preparation and Analysis of HCS and BPA in Natural Water

Natural water samples were collected at Municipal Park in Botucatu, São Paulo, Brazil.
Then, 1 mL of the collected sample without any treatment was added to an electrochemical
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cell with 19 mL of 0.2 mol L−1 of phosphate buffer solution (PBS) at a pH of 6.0. In order
to simulate contamination with HCS and BPA, the standard solution of these compounds
was combined with the voltammetric cell previously prepared. The quantitative analysis of
HCS and BPA was performed simultaneously using a standard addition method, which
consisted of adding 2.5 µmol L−1 of each contaminant to the stock solution and three
successive aliquots of these standard solutions (three additions of 0.5 µmol L−1 of each
analyte successively).

3. Results
3.1. Morphological and Electrochemical Characterization of the Nanocomposites

The HDC and HDC-CuNPs were morphologically characterized by using scanning
electron microscopy (SEM) in order to analyze the microstructural changes. As shown in
Figure 1A, the HDC material exhibits porous, rough and irregular surface morphology,
having a honeycomb-like structure with microstructural fragmentation [33,34]. Hydrochars
are generally amorphous materials with a low degree of crystallinity [35]. Furthermore,
pore formation on its surface is related to reaction time and temperature, and high temper-
atures are expected to cause an expansion of pores [33]. In addition, these pores’ features
can be useful for other applications, such as the removal of contaminants [33,34]. Figure 1B
shows the HDC-CuNPs nanocomposite. Copper nanoparticles can be observed on the
HDC surfaces, with diameters between 29 and 98 nm (Figure 1C), providing evidence of
the material’s modification. An EDS spectrum was used to confirm the presence of Cu in
the material, and as can be seen, this element was incorporated into the hydrochar.

1 
 

 
Figure 1. SEM images of (A) hydrochar (HDC); (B) hydrochar modified with copper nanoparticles
(HDC-CuNPs) (inset: EDS spectrum) and (C) the diameters of the copper nanoparticles.

The electrochemical analysis of the GC/HDC-CuNPs electrode was conducted using
cyclic voltammetry (CV) in a buffered solution of 0.2 mol L−1 of PBS with a pH of 7.0. The
scan rate was 50 mV s−1, and the potential was in the range of 0.5 V to −0.8 V (Figure 2).
In the cyclic voltammogram of the GC/HDC-CuNPs electrode, one can observe oxidation-
reduction reactions, which are marked by defined peaks. These peaks align with the
oxidation (Cu0 to Cu2+) and reduction (Cu2+ to Cu0) reactions of the copper, thus affirming
the integration of nanoparticles into the material. The detected peaks in this experiment
are in line with findings reported in prior published research [9].



Chemosensors 2023, 11, 562 5 of 13

Chemosensors 2023, 11, x FOR PEER REVIEW 5 of 14 
 

 

The electrochemical analysis of the GC/HDC-CuNPs electrode was conducted using 

cyclic voltammetry (CV) in a buffered solution of 0.2 mol L−1 of PBS with a pH of 7.0. The 

scan rate was 50 mV s−1, and the potential was in the range of 0.5 V to −0.8 V (Figure 2). In 

the cyclic voltammogram of the GC/HDC-CuNPs electrode, one can observe oxidation-

reduction reactions, which are marked by defined peaks. These peaks align with the oxi-

dation (Cu0 to Cu2+) and reduction (Cu2+ to Cu0) reactions of the copper, thus affirming the 

integration of nanoparticles into the material. The detected peaks in this experiment are in 

line with findings reported in prior published research [9].  

 

Figure 2. Electrochemical characterization through CV with scan rate of 50 mV s−1 for the GC, 

GC/HDC and GC/HDC-CuNPs electrodes in 0.2 mol L−1 of PBS with a pH of 7.0. 

3.2. Evaluation of Different Working Electrodes in Presence of a Redox Probe 

CV with a scan rate of 50 mV s−1 in a 5.0 × 10−3 mol L−1 ferricyanide/ferrocyanide redox 

probe and 0.2 mol L−1 of PBS with a pH of 7.4 was performed to study the GC/HDC-CuNPs 

electrode’s synergetic effect compared with the GC/HDC electrode without modification 

with nanoparticles and the GC electrode without any modification. The nanocomposite 

efficiency regarding conductivity was evaluated, and, as can be seen in Figure 3, the 

GC/HDC-CuNPs working electrode showed the highest peak currents and reversibility of 

the system compared to the other electrodes used in this experiment. Therefore, the incor-

poration of copper nanoparticles into the HDC provided a better electrochemical response, 

as can be seen from the values of currents and peak potentials shown in Table 1, and was 

applied to subsequent experiments. 

Figure 2. Electrochemical characterization through CV with scan rate of 50 mV s−1 for the GC,
GC/HDC and GC/HDC-CuNPs electrodes in 0.2 mol L−1 of PBS with a pH of 7.0.

3.2. Evaluation of Different Working Electrodes in Presence of a Redox Probe

CV with a scan rate of 50 mV s−1 in a 5.0 × 10−3 mol L−1 ferricyanide/ferrocyanide
redox probe and 0.2 mol L−1 of PBS with a pH of 7.4 was performed to study the GC/HDC-
CuNPs electrode’s synergetic effect compared with the GC/HDC electrode without modifi-
cation with nanoparticles and the GC electrode without any modification. The nanocom-
posite efficiency regarding conductivity was evaluated, and, as can be seen in Figure 3, the
GC/HDC-CuNPs working electrode showed the highest peak currents and reversibility
of the system compared to the other electrodes used in this experiment. Therefore, the
incorporation of copper nanoparticles into the HDC provided a better electrochemical
response, as can be seen from the values of currents and peak potentials shown in Table 1,
and was applied to subsequent experiments.

Table 1. Electrochemical parameters obtained from CV recorded using different working electrodes
in the presence of a ferricyanide/ferrocyanide redox probe (0.2 mol L−1 of PBS with a pH of 7.4 and
5.0 × 10−3 mol L−1 potassium ferricyanide/ferrocyanide).

Modified Electrode Epa (mV) Epc (mV) ∆Ep (mV) Ipa (µA) Ipc (µA) Ipa/Ipc

GC 500 7 493 69.24 −65.96 1.05
GC/HDC 396 79 317 86.93 −72.26 1.20

GC/HDC-CuNPs 318 189 129 99.57 −98.29 1.01

3.3. Electrochemical Oxidation of the HCS and BPA on the Nanocomposite

The electrochemical oxidation of HCS and BPA on the GC/HDC-CuNPs electrode was
conducted in 0.2 mol L−1 of PBS with a pH of 7.0 using CV with a scan rate of 50 mV s−1.
In Figure 4A, no oxidation processes (dotted line) can be observed in the absence of HCS.
However, after the introduction of 100 µmol L−1 of HCS, two peaks appear [9]: an anodic
peak at +0.93 V vs. Ag/AgCl and another at +1.14 V vs. Ag/AgCl. This oxidation is
related to the N-heterocyclic nitrogen of the aminoquinoline portion and the nitrogen of
the alkylaminoside group [9]. It is important to note that for a more precise analytical
interpretation of the anodic peaks, it is advisable to use the second peak, as it is more
prominent and therefore provides greater definition.
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Figure 4. (A) CV recorded in the presence of 100 µmol L−1 of HCS (blue line) and in the absence
of HCS (dotted line) in 0.2 mol L−1 of PBS with a pH of 7.0 at a scan rate of 50 mV s−1 (inset: the
mechanism of oxidation of the molecule). (B) CV recorded in the presence of 100 µmol L−1 of BPA
(blue line) and in the absence of the BPA (dotted line) in 0.2 mol L−1 of PBS with a pH of 7.0 at scan
rate of 50 mV s−1 (inset: mechanism of oxidation of the molecule).

As for BPA (Figure 4B), the curve exhibits an oxidation peak at +0.64 V versus
Ag/AgCl. The oxidation mechanism involves two protons and two electrons [36]. However,
the absence of reduction peaks during the cathodic potential scan for BPA indicates an
irreversible oxidation reaction.

3.4. Optimization of Parameters

Some electrochemical parameters were optimized for the voltammetry analysis of
HCS and BPA according to Table 2.
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Table 2. Parameters optimized for the voltammetry analysis of HCS and BPA with the proposed
electrode, an HDC-CuNPs electrode.

Parameters Optimization Range HCS—Optimized Values BPA—Optimized Values

HDC-CuNPs concentration (mg/mL) 0.02–1.00 1.00 1.00
Cu/HDC proportion in the synthesis (%) 20–40 40 40

Frequency (Hz) 20–45 40 40
Modulation Amplitude (V) 0.01–0.05 0.05 0.05

Step Potential (V) 0.001–0.007 0.007 0.007
pH 5–9 5 6

In order to optimize the oxidation process of HCS, firstly, the concentrations of HDC-
CuNPs composite were investigated using square-wave voltammetry (SWV), with 0.2 mol
L−1 of PBS at a pH of 7.0, a scan rate of 125 mVs−1, an amplitude of 20 mV and a potential
range from +0.7 to +1.5 V. The different concentrations of this composite were evaluated due
to the fact that it has been reported in the literature that the concentrations of composite on
the electrode surfaces interfere with the sensitivity of the sensor in the analysis of molecules
and a large amount of the modifier material can block blinding sites [4]. Therefore, as
can be seen in Table 2, the best concentration used for the electrode modification was
1.00 mg/mL of HDC-CuNPs.

Copper ratios of 20% to 40% CuCl2 were evaluated in relation to the HDC used to
produce the HDC-CuNPs composites. The 40% ratio was the one that showed the better
results, so it was used for the subsequent experiments.

After obtaining the optimum concentration of the composite as well as the copper
ratios, the dependence of the peak current of the HCS at different pHs was analyzed using
SWV with PBS of a varying pH from 5.0 to 9.0, a scan rate of 125 mVs−1, an amplitude
of 20 mV and a frequency of 25 Hz. As can be observed in Table 2, the best pH used to
analyze the HCS was 5.0, with the highest anodic peak current obtained. Then, this pH
was adopted for the following analysis.

The influence of SWV parameters was also investigated. The original configuration
of SWV used for the analysis was a step potential of 0.005 V, an amplitude of 0.02 V, a
frequency of 25 Hz and a scan rate of 125 mVs−1. Initially, the frequency was varied from
20 to 45 Hz while maintaining the original values of the other parameters. The best result
was observed at 40 Hz. Then, the amplitude was varied from 0.01 to 0.05 V, while keeping
the other parameters constant; the best result was obtained at 0.05 V. The same procedure
was conducted to find the best step potential, which ranged from 0.001 to 0.007 V, giving
the best result at 0.007 V.

All the procedures described for the optimization of the HCS analysis were also carried
out to optimize the oxidation process of BPA. Then, as can be seen in Table 2, the best
conditions were found to be 1.00 mg/mL of HDC-CuNPs; a copper ratio of 40%; a pH of
6.0; a frequency of 40 Hz; a modulation amplitude of 0.05 V; and a step potential of 0.007 V.

3.5. Analytical Characteristics

The linearity intervals, limit of detection and quantification were obtained by plotting
an analytical curve. SWV was applied with the optimized parameters described in Table 2.
The anodic peak currents were plotted with the respective concentration of HCS and
BPA. Figure 5 is a graph presenting a linear range between a concentration of 1.0 and
50.0 µmol L−1 of HCS (Figure 5A,B) and 0.5 and 10.0 µmol L−1 of BPA (Figure 5C,D)
following the equations:

Ipa (µA) = 0.7 ± 0.2 (µA) + 0.24 ± 0.01 (µA/µmol L−1) × Chydroxychloroquine sulfate (µmol L−1) (1)

Ipa (µA) = 0.08 ± 0.02 (µA) + 0.30 ± 0.01 (µA/µmol L−1) × Cbisphenol A (µmol L−1) (2)
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concentration varying from 0.5 to 10 µmol L−1. (D) Linear relationship of anodic peak currents as a
function of BPA concentration.

Equations (1) and (2) present a coefficient of determination (R2) of 0.983 and 0.993,
respectively. Limits of detection and quantification of 0.46 and 1.53 µmol L−1, respectively,
for HCS were obtained, and 0.31 µmol L−1 and 1.06 µmol L−1, respectively, for BPA were
calculated. The calculations were made following the recommendations of IUPAC, using a
3σ/slope ratio and a 10σ/slope ratio for the detection and quantification limits, where σ is
the standard deviation of the mean value for 10 voltammograms of the blank. To perform a
repeatability test, the electrochemical measurements with HCS and BPA were performed
though 10 measurements via SWV with 10 µmol L−1 of each contaminant separately,
obtaining a value of 3.9% and 8.3% for HCS and BPA, respectively. A reproducibility test
was also carried out with HCS and BPA. It was performed in triplicate with three different
modified electrodes, obtaining a value of 7.9% for HCS and 9.6% for BPA.

The electrochemical sensor developed for the determination of HCS obtained a wide
linear range when compared with other sensors used to determine antimalarial drugs
(Table 3) [37–40]. This characteristic is important because it is useful for the analysis
of a large range of concentration values. Besides the linear range, the LOD was lower
than an electrochemical sensor produced with a highly regarded material such as carbon
nanotubes [38]. Another advantage that can be pointed out in relation to other sensors is
the use of renewable and less toxic materials, such as a hydrochar produced from spent
coffee grounds and copper nanoparticles. The HDC-CuNPs sensor is also cheaper than
sensors produced with noble materials such as gold [39] and doped diamond [40]. In
relation to BPA (Table 4), the sensor presented a lower LOD than many sensors reported
in the literature [41–44], even those produced with more recognized and noble materials
such as carbon nanotubes, graphene and silver [42,43]. The linear range was not as wide as
some works [42,43], but it was similar to others [41,44] and could determine a good range
of concentrations.
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Table 3. Comparison of different working electrodes for the determination of antimalarial drugs.

Electrode Method Linear Range (µmol L−1) LOD (µmol L−1) Ref

ePADs DPV 5–75 4.0 [37]
SDSMCNTPE CV 10–40 0.85 [38]
β-CD-AuNP DPV 0.01–0.05 0.00085 [39]

BDD SWV 0.1–1.9 0.06 [40]
HDC-CuNPs SWV 1–50 0.46 This work

Table 4. Comparison of different working electrodes for the analysis of BPA.

Electrode Method Linear Range (µmol L−1) LOD (µmol L−1) Ref

Gr/MXene/GCE DPV 1–10 0.35 [41]
MWCNT/GCE DPV 2–30 0.51 [42]

RGO-Ag/PLL/GCE DPV 1–80 0.54 [43]
CoPCTS DPV 0.5–10 0.43 [44]

HDC-CuNPs SWV 0.5–10 0.31 This work

3.6. Simultaneous Determination of HCS and BPA in Natural Water

The GC/HDC-CuNPs electrode was applied for the quantification of hydroxychloro-
quine sulfate and bisphenol A simultaneously in the natural water samples. The quantifi-
cation was performed in triplicate using the standard addition method. The Section 2.6
describes the preparation of the samples and the electrochemical cell. Three additions
of a known concentration of HCS and BPA (0.5, 1.0 and 1.5 µmol L−1) were applied to
2.5 µmol L−1 of each contaminant. The SWV voltammograms obtained for the study are
presented in Figure 6. The results for the detection of HCS and BPA are listed in Table 5. The
HCS had a mean concentration of 2.53 ± 0.12 µmol L−1 and recoveries between 94.8% and
106.8%, while the BPA had a mean concentration of 2.57 ± 0.06 µmol L−1 and recoveries
between 99.6% and 105.2%. The results demonstrate that the GC/HDC-CuNPs electrode
could be a great alternative for the determination of emerging contaminants such as HCS
and BPA in natural waters in terms of its sustainability, price, low toxicity and efficiency.

Table 5. Results of the simultaneous quantification of 2.5 µmol L−1 of HCS and 2.5 µmol L−1 of BPA
in natural water samples using 0.2 mol L−1 of PBS at a pH of 6.0.

Repetition HCS (µmol L−1) BPA (µmol L−1) HCS—Relative Errors (%) BPA—Relative Errors (%)

1 2.37 2.49 −5.2 −0.4
2 2.54 2.57 1.6 2.8
3 2.67 2.63 6.8 5.2

Mean ± SD 2.53 ± 0.12 2.56 ± 0.06 - -

3.7. Simultaneous Determination of HCS and BPA in Natural Water in the Presence of Other Analytes

The influence of some inorganic and organic contaminants on the anodic peak of
the hydrochar-based sensor in the presence of HCS and BPA was studied. Mercury and
copper are heavy metals known for their toxicity even at low concentrations, and they
are usually found in water matrices [45,46]. In addition, these heavy metals can form
complexes with organic ligands present in the water that can interfere in the analysis of
the studied molecules [47–50]. Methomyl is a carbamate pesticide, and depending on
its concentration, it can be mortal to mammals [51]. Therefore, these contaminants were
used to study their interference in the simultaneous determination of HCS and BPA in
natural water. An electrochemical cell was prepared according to Section 2.6, and then,
after the blank, the visualization of the anodic peak of 2.0 µmol L−1 of HCS and BPA was
performed. Concentrations of 1.0, 2.0 and 4.0 µmol L−1 of the interferents were added to the
electrochemical cell, and the anodic peak was analyzed. The results can be seen in Table 6.
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All contaminants (in addition to natural water components) interfered by increasing the
HCS signal, but it was not by more than 10% of the original signal, even in the highest
concentration of the contaminants added. In relation to BPA, the interferents reduced its
signal, but in all the cases studied, more than 82% of the signal was recovered. In this work,
it was observed that BPA tends to adsorb on the working electrode, and this characteristic
may also be the reason for a lower signal recovery after many measurements.
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one refers to HCS. (Inset: linear relationship of anodic peak currents as a function of contaminants
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Table 6. Effect of Cu(II), Hg(II) and methomyl on the anodic peak of 2.0 µmol L−1 of HCS and BPA
by SWV in 0.2 mol L−1 of PBS at a pH of 6.0.

Interferent Concentration (µmol L−1) % HCS Signal % BPA Signal

Cu(II)
1 104.0 96.2
2 106.9 88.1
4 109.3 84.4

Hg(II)
1 102.2 97.2
2 104.1 94.2
4 105.3 84.5

Methomyl
1 101.0 90.6
2 102.2 84.7
4 103.6 82.7

4. Conclusions

A glassy carbon electrode was modified with a spent coffee grounds hydrochar and
copper nanoparticles for the simultaneous determination of hydroxychloroquine sulfate
and bisphenol A. The nanocomposite was characterized using scanning electron microscopy,
EDS and cyclic voltammetry, which indicated the morphology and the modification into
the hydrochar.
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The parameters were optimized in order to generate a better response in the determi-
nation of the analytes, improving the sensitivity of the study. The LOD and LOQ obtained
were 0.46 and 1.53 µmol L−1 for the HCS and 0.31 µmol L−1 and 1.06 µmol L−1 for the
BPA, respectively, with a linear range from 1.0 to 50.0 µmol L−1 for HCS and from 0.5 to
10.0 µmol L−1 for BPA.

A GC/HDC-CuNPs sensor was applied in the simultaneous determination of HCS
and BPA in natural water samples, with recoveries between 94.8% and 106.8% for HCS and
99.6% and 105.2% for BPA. Finally, a study with interferents was carried out using natural
water with organic and inorganic contaminants. The use of a hydrochar-based sensor was
demonstrated to be a good alternative for monitoring the levels of emerging contaminants
using a sustainable and cheap material.
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