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Abstract: Metal–organic frameworks (MOFs), as high-surface-area materials, have shown promise
in various areas of application, such as chiral sensing and separation, due to their flexibility in
design and organized porous cages. Researchers have been striving to design and develop high-
performance enantiorecognition and separation analytical techniques in chiral science fields. The
main aim of this review is to provide a comprehensive overview of chirality, state-of-the-art MOFs in
chirality, and chiral analysis in the past decade, 2012–2022. The classification of this review includes
chirality, principles of chiral analysis, the attraction of functional materials in chirality, MOFs in chiral
analysis, MOFs for designing enantioselective sensors (fluorescence, circular dichroism, quartz crystal
microbalance, electrochemical), and MOFs as chiral stationary phases (CSPs) for chromatographic
enantioseparation (high-performance liquid chromatography, gas chromatography, and capillary
electrochromatography). Finally, this review covers the vital progress of these materials with attention
to the available opportunities and challenges in this topic.
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1. Chirality

Chirality is one of the universal and fundamental phenomena in the natural world.
It serves a vital role in chemistry, biology, pharmacology, medicine, and food science [1].
The word “chirality” is derived from the Greek word χEÌρ (kheir), “hand” in English, and
explains the concept that it is impossible to superimpose a molecule onto its mirror image,
which is a crucial feature of an asymmetric molecules [2]. Molecular chirality was initially
discovered by French scientists Jean-Baptiste Biot and Louis Pasteur in 1848. However,
when the “thalidomide disaster” happened in the 1960s, scientists realized the importance
of chirality. At present, chirality is considered one of the crucial attributes of a living
system, since it is well-known that many “building blocks of life”, such as amino acids,
carbohydrates, proteins, and nucleotides, are chiral [2].

Chiral compounds are a pair of a specific type of stereoisomer termed enantiomers
or optical isomers (D- and L-forms or R- and S-forms). They are non-superimposable
mirror images of each other in 3 dimensions (3D). Although enantiomers possess identical
compositions and functional groups, they have distinct, similar, or even reverse biologi-
cal, pharmacological, and physiological performances in chiral environments, such as the
human body, because of various interaction pathways with enzymes or receptors [3,4].
Mainly, a single pure isomer (D-form or L-form) is the active constituent of one molecule
and may have desirable features. In contrast, the other isomer may be dysfunctional or
exhibit adverse and severe side effects [5]. Most drugs and amino acids (AAs) are generally
active in an optically pure form and present as mixtures or racemates with the ineffectual or
toxic contrary enantiomer [6]. The enantiomeric purity of various composites has a pivotal
role in producing pesticides, food additives, pharmaceuticals, and stereo-specific synthesis.
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In contrast, only one of the enantiomers may have satisfactory interaction [7]. Due to
their diversity in physiological and pharmacological activities, there is a growing need to
separate enantiomeric molecules as single enantiomers. Therefore, chiral analysis and chi-
rality are paramount in chemical, biological, and pharmaceutical technologies and modern
chemistry. However, because enantiomers have the same chemical and physical character-
istics in an achiral environment, chiral separation has long been believed to be one of the
most complicated analytical separations. Nevertheless, numerous improved techniques
have been developed by creating an exceptional chiral climate using various chiral solid
substances. Subsequently, analytical methods play an indispensable role in differentiating
enantiomers as more scientists become aware of the significance of chirality [2].

2. Principles of Chiral Analysis

Chiral studies refer to stereoisomer separation. Two enantiomers have the same
physicochemical characteristics, such as molecular weight and substituent groups. The
enantiomers lead to the rotation of polarized light in the reverse direction with diversely
substituent groups orientated in a 3D space. However, these groups are oriented diversely
in the area. According to this feature, they lead to polarized light rotation in the opposite
direction. Therefore, for the separation of chiral analytes, creating or selecting a suitable
chiral environment is of paramount importance due to the potential of enantiomers having
a stereo-specific interaction with that chiral environment [8].

The enantiomers can be separated by applying two approaches: indirect and direct
resolution. In an indirect resolution, a chiral compound reacts with the chiral derivatization
agent and produces stable diastereomeric complexes; chemical bonds are formed. Generally,
chiral derivatization requires easily derivatizable functional groups, such as carboxylic
acids, amines, thiols, and hydroxyls, in the analyte that is in contiguity with the stereogenic
center [2]. In a direct approach, enantiomers interact with a chiral selector (CS), which
leads to the production of labile diastereomeric compounds with weak bonds included.
The environment of the separation system contains the chiral selector. [9].

From a mechanistic point of view, chiral identification is commonly assumed to ne-
cessitate a three-point interaction arising from the stereogenic centers of the chiral analyte
and selector. Therefore, generating transient diastereomers as exploits of chiral separa-
tions usually needs a primary docking mechanism between the chiral analyte and the
CS, together with a mixture of secondary interactions describing the stereo-specificity
of the interaction [10]. These mechanisms contain a π-acid:π-base, an electrostatic or an
inclusion complexation. However, suchlike instruments often rely on the primary inter-
action between the chiral chemical and the CS in a given experimental setting. However,
the secondary interactions involve hydrogen bonding steric, dispersion, or dipole-dipole
interactions, so they are commonly weaker than the primary docking mechanism [2]. Most
of the chiral selectors provide various possible interaction sites. Chiral compounds may
have non-stereo-specific interactions with the chiral moiety of the CS if the relative orienta-
tions of their stereogenic aspects prevent stereo-specific interactions. Non-stereo-specific
interactions between the CS and the chiral compounds are usually parasitical to the enan-
tioseparation [2]. It is worth noting that alterations in the experimental conditions can
cause changes in the primary docking mechanism. For instance, alterations in pH that
change the ionization of different functionalities within the CS or the chiral compound
affect the primary docking mechanism, thereby converting enantiomer separation [11].

In selecting the most well-suited methods for the discrimination of enantiomers, the
first step is to consider which analytes’ properties should be separated, such as their sol-
ubility and volatility. Numerous analytical methods have been developed for chirality
determination and separation throughout the last many decades. These approaches in-
clude high-performance liquid chromatography (HPLC) [12], capillary electrophoresis [13],
capillary electrochromatography (CEC) [14], fluorescence spectrometry [15], gas chromatog-
raphy (GC) [16], supercritical fluid chromatography [17], high-speed countercurrent chro-
matography [18], chemiluminescence [19], nuclear magnetic resonance spectroscopy [20],
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mass spectrometry [21], immunoassays [22], and electrochemistry [23]. This article reviews
chiral recognition techniques, such as sensors, HPLC, GC, and CEC, to analyze biologi-
cally active compounds (e.g., racemic drugs, amino acids, and biological molecules) using
so-called functional materials.

3. The Attraction of Functional Materials in Chirality

In the 21st century, materials science is one of the most attractive search fields in natural
sciences. A survey of the literature from the past years clearly shows that the application
of functional materials in chiral recognition techniques has also become the center of
researchers’ attention. A variety of functional materials involving nanoparticles (NPs),
MOFs, molecularly imprinted polymers, ionic liquids (ILs), covalent organic frameworks
(COFs), deep-eutectic solvents (DESs), porous organic cages (POCs), and some other porous
organic materials (like metal–organic cages), have been successfully employed in chiral
sensors, CE, and HPLC [24–27]. There are two driving forces behind this: one is the
continuous progress of functional materials and the steady stream of novel capabilities that
are being recognized, and the second is the innate flexibility of the mentioned strategies
(sensors, CE, and HPLC) that guarantees the use of these materials.

Theoretically, there is an infinite variety of advanced materials for screening and
evaluating. More significantly, researchers can adjust the enantio-separation ability of these
functional materials by managing their morphologies or structures. Thus, the growth of
new chiral selectors is based more on a “design-driven” approach than the “screening-
based” method, which is much more appealing and proficient [24]. Moreover, to be used as
CSPs/CSs, these advanced materials can also act as additional additives for modification of
the electroosmotic flow or to enhance peak shapes (such as NPs, DESs, ILs), as background
electrolytes (like ILs), or as support/coating/packing materials for improving the mass
transfer and phase ratio during separations (for instance COFs, MOFs, NPs) [26,28,29].
According to these attributes, the potential of advanced materials in chiral analysis seems
boundless. Therefore, this article offers an overview of the state-of-art MOFs in chiral
science, focusing on sensors, CEC, and chromatographic technologies. The authors will
focus on inventive concepts and highlight important topics in this field, especially in the
preceding decade.

4. Metal–Organic Frameworks in Chiral Analysis

MOFs, also called porous coordination polymers, are a novel category of microporous
crystalline materials employed in chiral separation. MOFs are one-dimensional (1D), two-
dimensional (2D), or 3D inorganic–organic porous hybrid materials assembled from rigid
metal clusters or metal ions (nodes) and flexible organic linkers (such as phosphonates
or carboxylates) [30]. They provide unique chemical characteristics with substantial and
permanent inner porosity. Additionally, MOF structures have exceptional diversity due
to their functionalization and framework architecture [31]. Due to their numerous novel
properties, including having a large surface area, excellent thermal and chemical stability,
high porosity, non-toxic nature, and available cavities and tunnels, MOFs are attractive sub-
stances for chiral separation. Their ultra-high surface areas of up to 10,000 m2 g−1 are one
of the main factors making them superior to other porous materials [32]. MOFs’ structural
differences, crystalline nature, and structural details make them an appropriate candidate
in various areas, such as chemical sensing, separation, drug carrying, biomedicine, proton
conduction process, and catalysis, in the last two decades [33].

Combining MOFs’ porosity with chirality offers platforms that initiate the design of
chiral MOFs (CMOFs) or chiral porous coordination polymers. These types of MOF-based
chiral compounds can be created with numerous constituents that can form distinct frame-
works with different usages, such as enantiomer separation and asymmetric catalysis [34].
CMOFs are a more significant part of chiral inorganic-organic hybrid compounds and a sub-
set of MOFs possessing extreme enantiomer separation functions. CMOFs have attracted
considerable scientific attention, especially in the last decade, for two chief reasons: first,
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the significance of the structure, either in topology or architecture; and second, their appli-
cations in a broad spectrum of fields, such as enantioseparation, chiral sensing, asymmetric
catalysis, and ferroelectric area (Figure 1) [35]. Furthermore, there are other recent advances
in the use of CMOFs in a variety of topics, such as second-order nonlinear optics (NLO),
circularly polarized luminescence (CPL), photoelectrochemical sensing, drug delivery
(DD), green analytical chemistry (GAC), such as analytical sample preparation (as unique
sorbents) and microextraction (micro-solid-phase extraction (µ-SPE)) techniques [36,37].

Chemosensors 2023, 11, x FOR PEER REVIEW 4 of 41 
 

 

and a subset of MOFs possessing extreme enantiomer separation functions. CMOFs have 
attracted considerable scientific attention, especially in the last decade, for two chief rea-
sons: first, the significance of the structure, either in topology or architecture; and second, 
their applications in a broad spectrum of fields, such as enantioseparation, chiral sensing, 
asymmetric catalysis, and ferroelectric area (Figure 1) [35]. Furthermore, there are other 
recent advances in the use of CMOFs in a variety of topics, such as second-order nonlinear 
optics (NLO), circularly polarized luminescence (CPL), photoelectrochemical sensing, 
drug delivery (DD), green analytical chemistry (GAC), such as analytical sample prepa-
ration (as unique sorbents) and microextraction (micro-solid-phase extraction (µ-SPE)) 
techniques [36,37]. 

 
Figure 1. Category of chiral MOFs applications. 

In principle, chirality in CMOFs can emerge because of chiral agents in an asymmet-
ric environment, precursors (sometimes both) and through specific alignments of achiral 
precursors that result in instinctive discrimination [38]. CMOFs can be synthesized 
through three strategies (Figure 2): (I) The spontaneous resolution and chiral induction 
method (SR and CI), the formation of chirality over spontaneous resolution, or crystal 
growth that can be referred to as the physical arrangement and nature of precursors. It 
indicates that the spatial placement of an achiral building block via enantiospecific supra-
molecular interaction causes crystallizing MOFs in a chiral set. (II) The indirect method is 
the post-synthetic modification (PSM) method in which achiral frameworks are formed, 
and external chiral agents (chiral guest, temperature, solvent, and auxiliary pendant) are 
employed to produce stereogenic centers. (III) The most significant, effective, and reliable 
methods for generating CMOFs include applying a chiral node (either metal cluster or 
ion), linker, or combination. This process is the last technique and is named the direct 
method (DM) of chiralization. Research has confirmed that this method results in CMOFs 
with novel characteristics [39]. It is worth noting that crystallographic measurements are 
accurate and crucial proofs for the confirmation of the chirality generated in the structure. 
Hence, the metal’s electronic/geometric configuration at the node position of metal–or-
ganic frameworks might alter their characteristics with asymmetric orientation formed 
throughout crystallization, which is a crucial agent in creating SR-derived CMOFs [40]. 

Figure 1. Category of chiral MOFs applications.

In principle, chirality in CMOFs can emerge because of chiral agents in an asymmetric
environment, precursors (sometimes both) and through specific alignments of achiral pre-
cursors that result in instinctive discrimination [38]. CMOFs can be synthesized through
three strategies (Figure 2): (I) The spontaneous resolution and chiral induction method
(SR and CI), the formation of chirality over spontaneous resolution, or crystal growth that
can be referred to as the physical arrangement and nature of precursors. It indicates that the
spatial placement of an achiral building block via enantiospecific supramolecular interac-
tion causes crystallizing MOFs in a chiral set. (II) The indirect method is the post-synthetic
modification (PSM) method in which achiral frameworks are formed, and external chiral
agents (chiral guest, temperature, solvent, and auxiliary pendant) are employed to produce
stereogenic centers. (III) The most significant, effective, and reliable methods for generating
CMOFs include applying a chiral node (either metal cluster or ion), linker, or combination.
This process is the last technique and is named the direct method (DM) of chiralization.
Research has confirmed that this method results in CMOFs with novel characteristics [39].
It is worth noting that crystallographic measurements are accurate and crucial proofs
for the confirmation of the chirality generated in the structure. Hence, the metal’s elec-
tronic/geometric configuration at the node position of metal–organic frameworks might
alter their characteristics with asymmetric orientation formed throughout crystallization,
which is a crucial agent in creating SR-derived CMOFs [40].

Furthermore, CMOFs can be categorized into two major classes based on chirality
type: heterochiral and homochiral. The outcome of chiral organic moieties with the same
handedness can be homochirality, which additionally possesses optical centers; they can
have conformational rigidity and considerable length [41]. However, in heterochirality, lig-
ands with opposite handedness create a heterochiral complex configuration [42]. Although
the fabrication of homochiral configurations is preferable in the literature, sometimes het-
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erochirality leads to novel and practical attributes that homochirality does not display.
In this compound, heterochiral interactions serve an efficient role in the construction of
crystalline racemates. In racemate configurations, heterochiral interactions demonstrate the
capability of overcoming homochiral interactions [41]. The main factor that makes chiral
materials so popular is their extremely fascinating potential applications. According to the
characteristic attributes of MOFs alongside their chirality performance, CMOFs provide
extraordinary opportunities for novel applications. However, employing CMOFs and
focusing on their specific properties have been under discussion in the past. Nevertheless,
it is a real challenge for researchers to obtain CMOFs with the lowest cost and highest
performance. Fabrication techniques, pore size, type, and functionality, in addition to the
MOF nature, are significant parameters affecting the choice of application [43].
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Regarding the significance of chiral recognition of active compounds, as described in
the previous sections, in the production of pharmaceuticals, especially biological processes,
determining one enantiomer from the racemic composite is paramount in chirotechnology.
More precisely, enantiomers with identical chemical and physical characteristics present
researchers with a significant challenge. To overcome this problem, chiral recognition
and separation methods require efficient compounds with the separating capability of
enantiomers in addition to great enantioselectivity. At first, chiral zeolites were used for
this purpose. Still, since the merits (such as high surface area, diverseness in pore size and
structure, selective adsorption affinity, and special microporosity) of MOFs/CMOFs were
higher than zeolites, researchers have become enthusiastic about employing them [44,45].
The chiral discrimination and separation are related to the two enantiomers’ differing
orientations and binding energies inside the MOF’s microenvironment. However, the
orientation and potential map of the (S)-enantiomer differ significantly from those of the
(R)-enantiomer, and the specific binding energies differ. Consequently, enantioselective
adsorption is predicted due to changes in binding energy and orientation [46]. Based on
the literature in the past few years, MOFs can be used as the perfect candidates for the
enantioseparation of different compounds [47]. Thus, chiral recognition and separation
using CMOFs are within the scope of this review. This property of CMOFs refers to their
ability to interact with guest molecules, such as ion exchange; electrostatic mechanism
forming inclusion complexes; hydrogen bonding; dipole-dipole, steric, and hydrophobic
interactions. Herein, we discussed the application of CMOFs for chiral recognition and the
separation of racemate compounds using sensors, chromatographic techniques, and CEC.



Chemosensors 2023, 11, 29 6 of 41

5. Metal–Organic Frameworks for Designing Enantioselective Sensors

This section reviews the application of CMOFs for the chiral recognition of racemate
compounds using different types of sensors. Generally, the chiral sensing phenomenon
depends on two primary processes: signal transduction and molecular recognition. De-
signing molecular structures providing sites for enantioselective recognition with various
interaction affinity for enantiomers of racemic materials is the fundamental factor in fabri-
cating reliable chiral (bio)sensors [48]. It is essential to have a chiral surface or environment
for differentiating the enantiomers. In the sensors, possessing the signal of enantioselective
identification requires specific interactions of enantiomers with a chiral selector. Therein, it
is worth noting that the “lock-key” rule and phenomenon of the “three points interactions”
are facilitated methods suggested so far for the enantioselective interaction scenario. Hence,
chirality-based (bio)sensors generally relate to host-guest chemistry via non-covalent inter-
actions, such as π-π interactions and hydrogen bonding. Numerous driving forces reinforce
the interactions between guest and host molecules, leading to enantioselective identifica-
tion. To develop selective and efficient enantiomer recognition, the host’s structure needs
to create several driving forces with guest molecules [49].

Recently, a variety of strategies have been employed for developing chiral sensors.
Herein, MOFs have emerged as an exciting material because of their porosity, high sur-
face area, and capability of adsorbing guest molecules to design susceptible platforms
named chirality-based sensors [49]. In general, MOFs possess different chemical and phys-
ical features and topological structures. CMOFs show enormous potential in the chiral
identification field [50]. MOFs’ porous structure can preconcentrate the target to obtain
improved sensitivity. Meanwhile, the channels and pores can render an ideal medium for
accommodating the target molecules, which provokes special recognition. The selectivity
of sensors developed based on MOFs is derived from (i) the chirality of the framework,
(ii) channel size exclusion, (iii) host-guest chemistry in the MOF cavity, (iv) target-specific
signal response, and (v) hydrogen bonding or specific coordination of analytes to the
framework [51]. Principally, any alterations in the properties of MOFs based on the type of
guest molecule should be evaluated as a sensing signal. The sensitivity of MOF detection
mainly relates to the sensing technique employed for signal transduction [31].

In this section, we will summarize developed CMOF-based enantioselective (bio)sensors
and discuss the fundamentals of their performances. For the sake of specificity, this section
is in parts: fluorescence, electrochemical, quartz crystal microbalance (QCM), and circular
dichroism (CD) (bio)sensors based on thenal transduction.

5.1. Fluorescence Enantioselective (Bio)Sensor

Fluorescence (bio)sensors are label-based optical (bio)sensors that have been offered
as an alternative to the electrochemical approaches discussed below. These (bio)sensors
utilize quantum dots (QDs), fluorescence proteins, and dyes as labels. Some characteristics,
such as the real-time and direct detection of various chemical and biological materials,
provide them a distinct edge over traditional analytical procedures [52,53]. Fluorescence
offers several signaling modes for detecting substrate than electronic absorption, including
fluorescence amplification, quenching, exciplexes, excimers, and lifetimes. The sensitivity
of fluorescence methods needs relatively small amounts of sensor molecules. Recently,
there has also been an increase in interest in developing fluorescence sensors for the
enantioselective detection of chiral compounds. These sensors have the potential to pro-
vide a real-time approach for the recognition of the enantiomeric composition of racemic
compounds, which might considerably allow quick analysis of chiral molecules [54,55].
Chiral biphenyl or binaphthyl composites are popular fluorophores commonly applied
as optical (bio)sensors for enantiomer recognition because of their innate particularities,
such as rigid enantiomeric conformation, excellent emission efficiency, C2 axial chiral-
ity, and easily selective functionalization [37]. In 2012, Lin et al. hypothesized that an
outstanding procedure for enantioselective sensing could be supplied by making use of
CMOFs as well as the internment effect of the framework and rigid configuration of sens-
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ing moieties for increasing stereoselectivity [56]. A secondary building unit, a cadmium
carboxylate infinite-chain, and 1,1′-bi-2-naphthol-derived chiral tetracarboxylate bridging
ligand was used for the construction of a fluorescent and highly porous MOF (Figure 3).
Amino alcohols led to the efficient quenching of the fluorescence of the fabricated MOF
through hydrogen binding with the binaphthol moieties decorating it. This resulted in
the fabrication of a binaphthol-based homogeneous platform as a remarkable enantiomer
recognition sensor for amino alcohols with highly improved enantioselectivity and sensi-
tivity. The R and S enantiomers various amino alcohols, including 2-amino-1-propanol,
2-amino-2-phenylethanol, 2-amino-3-phenylpropanol, and 2-amino-3-methyl-1-butanol,
underwent enantioselective recognition by the MOF-based chiral fluorescence sensor. Vari-
ous amounts of amino alcohol quenchers were used to measure the fluorescence signals of
the MOF suspensions. The created MOF was a very sensitive fluorescent sensor with excel-
lent fluorescence quenching thanks to the four chiral amino alcohols. This was followed by
Stern-Volmer (SV) behavior, which provides precious information in the clarification of the
photocatalytic reaction mechanism in the concentration range of 0–4 µM with remarkably
high KSV (SV constants) of 490–31,200 M−1 due to analyte absorption and preconcentration
inside the cavities of the MOF. At the same time, its higher enantioselectivity is assumed to
be a result of increased enantiomer discrimination related to the confinement effect of the
cavity and the rigid configuration of the binaphthol moieties in the framework.
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Approximately four years later, Moorthy and colleagues designed a water-stable and
incredibly luminescent homochiral anionic CMOF termed Zn-MOF. For instance, Zn-PLA
was based on the metal-assisted self-assembly of a fluorescent chiral pyrene-tetralactic acid
(H4PLA), which naturally inspects concave structures for guest inclusion, with Zn(NO3)2
to investigate the chiral sensing of amino acids through fluorescence quenching [57]. Treat-
ment of the organic linker H4PLA with Zn(NO3)2 resulted in the creation of luminescent
and porous crystals of Zn-PLA. Among all amino acids, such as cysteine (Cys), histidine
(His), tryptophan (Trp), and tyrosine (Tyr), His led to the selective fluorescence quenching
of Zn-PLA aqueous dispersion due to the exchange of the cationic species of dimethylam-
monium (DMA) in the MOF crystals through His, which is protonated in water. DMA
was stabilized inside the voids through robust hydrogen binding with the carboxyl groups
of PLA. The cationic imidazolium ring of His is believed to contribute to charge-transfer
interactions with the excited state of protected pyrene fluorophore for observing quenching.
The selective sensing of His is of paramount importance because of its relation to different
biological functions. The chirality of MOF, which is related to lactic acid groups, resulted in
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the enantioselective sensing of the D and L enantiomers of His with an enantioselectivity
ratio of 1.8 from the SV quenching plots.

For the first time, in 2018, for the fluorescent enantioselective sensing of chiral α-
ethylbenzylamine, Bu and colleagues generated a whole new class of stereoisomeric
porous homochiral MOFs, including isoreticular, diastereomeric, and enantiomeric MOFs,
with various metal nodes in the absence or presence of a secondary linker [58]. Isocam-
phorate generates unpredictable framework topologies from regular inorganic building
blocks, and isocamphoric acid enables the achievement of numerous novel homochiral
compounds. Generally, the 3D CMOF constructed of copper dimers and RR-cam supported
by 4,4-bipyridine ligands, named CPM-332-RR or [Cu2(RR-cam)2(bpy)], exhibited enantios-
elective fluorescent quenching for α-ethylbenzylamine enantiomers. Moreover, these easily
accessible chiral ligands, created from converting previously existing chiral ligands, will
pave the way for incrementing MOF-based enantioselective platforms. Recently, Shi and
colleagues reported the integration of chirality and luminescence in MOFs for improving
luminescent sensors [59]. For this purpose, five chiral sites containing N-benzylquininium
chloride were introduced into an anionic luminescent Zn-based MOF through a simple
cation exchange method. A CMOF was fabricated with dual luminescent centers composed
of the Tb3+ ions and ligand (Zn-MOF-C-Tb). Significantly, the designed luminescent and
chiral bifunctional dual luminescent centered-MOF exhibited the enantioselective identi-
fication of amino alcohol enantiomers and cinchonidine and cinchonine epimers. In all
cases, the developed Zn-MOF-C-Tb demonstrated wonderful enantioselectivity. The N-
benzylcinchoninium chloride, S-2-amino-1-propanol, and S-2-amino-1-butanol had faster
fluorescence quenching than their related enantiomers, indicating the broader usage of
the suggested bifunctional MOF platform. The relative standard deviation (RSD) for the
I544/I354 (intensity 544 nm/intensity 354) ratio was considerably lower than that of em-
ploying just the I544 emission. This showed the benefit of reduced system errors in the
ratiometric sensing platform. The quenching capability of Zn-MOF-C-Tb was evaluated
by recycling experiments and stability tests in the presence of cinchonidine and cincho-
nine with 6 cycles at 544 nm. The ratio of quenching was between 97.1% and 98.1%. The
bifunctional Zn-MOF-C-Tb showed a method for the enantioselective recognition of chiral
molecules with reusability and excellent stability.

In 2022, Yan et al. developed a CMOF-His through post-synthetic ligand exchange
using L-His as a chiral center and its immobilization into a zirconium (Zr)-based MOF [60].
For this purpose, water-stable and modifiable MOF-808 as a Zr(IV)-based MOF with high
inherent peroxidase-like catalytic activity under alkaline, neutral, and acidic conditions
was employed as the parent skeleton, and L-His was partially replaced with the formic
acid ligand. Then Eu3+ ions were introduced as a new luminescence center by hybridizing
then with MOF-His to have the final composite Eu@MOF-His (Figure 4). The bifunctional
Eu@MOF-His had both enantioselective luminescence and chiral characteristics among
many amino acids. By decreasing the enantiomer concentration to the range of 0–0.35 mM,
there was a good linear relationship between the fluorescence intensity of the prepared
MOF in the water (I0)/substrate solution (I) at 614 nm (I0/I) and the substrate concentration.
The quenching constants KSV of D-Trp and L-Trp were 12,547 and 19,154 M−1, respectively.
The quenching constants ratio of L-Trp/D-Trp was 1.53, indicating that the two enantiomers
had discrepant quenching rates. The detection limit of Eu@MOF-His for D-Trp and L-Trp
was 4.1 and 2.7 µM, respectively. Therefore, Eu@MOF-His was appropriate for the Trp
enantiomers detection in a low concentration. Based on the obtained results, enantiomers
of Trp can efficiently quench the Eu3+ ion’s red-light emission. Moreover, the quenching
rates were different, stemming from the diversity of the analytes’ interactions with the
chiral recognition sites. Eu@MOF-His restored its fluorescence intensity to 614 nm after
4 cycles, demonstrating that the prepared MOF can be used to detect Trp enantiomers. The
designed Eu@MOF-His displayed the potential of being a tremendous fluorescent sensor
for recognizing Trp enantiomers due to its high sensitivity, rapid response, and reusability.
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Figure 4. Preparation steps and application of Eu@MOF-His for fluorescence enantioselective sens-
ing of tryptophan. Reprinted (adapted) with permission from [60]. Copyright 2022 American
Chemical Society.

In 2022, Zhu et al. synthesized poly (amidoamine) (PAMAM) dendrimers-functionalized
achiral luminescent MOF, termed MIL-53(Al)-NH2, for the fast enantioselective sens-
ing of lysine (Lys). MIL-53(Al)-NH2 was an Al-based MOF that was synthesized with
2-aminoterephtalic acid and AlCl3 (Figure 5) [61]. Then, the modification of the synthesized
MOF with PAMAM, called PLMOF, led to the enhancement of fluorescence intensity, and
by the dispersion of PAMAM-modified MIL-53(Al)-NH2 to water, the achieved solution
showed excellent stability and fluorescence intensity. The fluorescence of the luminescent
MOF solution was quenched for amino acid detection by adding the Cu2+ concentration.
Adding the Lys enantiomers to the PLMOF solution caused the partial restoration of the
quenched fluorescence signal due to the powerful chelation between Cu2+ and Lys. In such
circumstances, the fluorescent signal of the unique fluorescence MIL-53(Al)-NH2-PAMAM-
Cu2+ sensor entered “turn-on” mode due to the various chelation potentials, which led
to the sensitive enantioselective determination of D-Lys and L-Lys by fluorescence inten-
sities. The results exhibited successful enantioselective detection of D/L-Lys with good
linearity and detection limits of 12.2 and 7.52 µM for D-Lys and L-Lys, respectively. The
PAMAM-grafted luminescent MOFs demonstrated good fluorescence intensity stability
under prolonged UV irradiation. The RSDs of interday and intraday fluorescence intensities
were 1.01% and 1.07%, respectively, expressing the excellent repeatability and stability of
PAMAM-grafted luminescent MOFs in the detection process.
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5.2. Circular Dichroism Enantioselective (Bio)Sensor

CD spectroscopy is one of the robust techniques in stereochemical analysis and is
usually for molecular recognition and absolute configuration assignment [62]. It is among
the existing approaches for enantioselective recognition, such as capillary electrophoresis,
chromatography, and fluorescence. Conventional CE and chromatography techniques are
efficient for the racemic resolution of a broad spectrum of chiral analytes. However, these
systems have several limitations, including complex programming, high cost, and time
consumption, which hinder convenience and quick and easy enantioselective recognition.
Although fluorescence (bio)sensors can recognize the enantiomers effectively and quickly,
the downside of this approach is that the only suitable candidates for this type of (bio)sensor
are vigorous luminescent materials. In addition, the visual reflection of stereochemical signs
related to detected chiral molecules cannot be obtained from fluorescence (bio)sensors [63].
CD is the most frequently employed technique for visual chirality with a broad spectrum
of applications in exploring charge-transfer transitions [64], the secondary structure of
proteins [65], and the electronic and geometric structure of compounds [66]. Fluorescence
exhibits attributes such as rapidity and the molecular absolute configuration of probed
chiral substances [66]. In general, the sensing procedure of CD-(bio)sensors is achieved by
forming a coordinative or covalent bond via pesky chemical reactions between originally
UV-active and CD-silent molecules. This can result in an asymmetric induction to generate
a favored chiral structure population with different chiroptical yields. Therefore, it is
significant to advance an appropriate and faster technique to obtain effective sensing in
which weak supramolecular interactions are introduced into the inclusion composites. On
this matter, CMOFs with numerous chiral recognition sites and a limited effect are great
candidates for CD sensors [67].

The first application of a CMOF for an enantioselective CD-(bio)sensor was reported
by Zhang and colleagues in 2015 [67]. A pair of homochiral zeolitic imidazolate-related
frameworks (HZIrFs) with sodalite topology, including (R)-2-(1-hydroxyethyl) benzimida-
zole [(R)-OH-bim] and (S)-2-(1-hydroxyethyl) benzimidazole [(S)-OH-bim], was achieved
by both chiral benzimidazole and tetrazole ligands. The successful accomplishment of
bulky zeotype and homochirality configurations in HZIrFs was influenced by the assistance
of another ligand, 5-methyltetrazole, and adding a chiral C center into the benzimidazole
ligand. The homochiral zeolitic imidazolate-related framework topological configuration
with abundant H-bonding medium in the ethanol solutions of chiral carvone exhibited
CD-sensitivity. By adding the HZIrFs-R, the CD signals remarkably decreased for both
L- and D-carvone. Nonetheless, L-carvone showed a significant signal decrease compared
to D-carvone, proposing a strong interaction between L-carvone and the CMOF. Based on
the obtained results, the chiral recognition happened on the external surface of HZIrFs-R
because its small window size blocks the entry of carvone. The same research team ex-
panded this procedure for synthesizing a series of more microporous homochiral zeolitic
CMOFs (ZMOFs) [68]. They synthesized four types of homochiral ZMOFs by mixing
5-methyltetrazole ligand and various amino acids, including L-alanine, D-alanine, L-serine,
and L-valine, as linkers named Zn4(5-mtz)6(L-Ala)2·2(DMF), Zn4(5-mtz)6(D-Ala)2·2(DMF),
Zn4(5-mtz)6(L-Ser)2·2(DMF), and Zn4(5-mtz)6(L-Val)2·2(DMF) for the chiral sensing of the
carvone. For the chiral determination of the carvone, the CD signal of a solution of
L-carvone or D-carvone and four as-synthesized samples was recorded. The result indi-
cated that D-carvone and L-amino acid-based samples had stronger interactions than the
interactions of L-carvone and L-amino acid-based samples. At the same time, L-carvone
had stronger interactions with Zn4(5-mtz)6(D-Ala)2·2(DMF). The separation enantiomeric
excess (ee) values of L-amino acid-based samples, including Zn4(5-mtz)6(L-Ser)2·2(DMF),
Zn4(5-mtz)6(L-Ala)2·2(DMF), and Zn4(5-mtz)6(L-Val)2·2(DMF), were 43.2%, 18.6%, and
25.8%, respectively. Zn4(5-mtz)6(L-Ser)2·2(DMF) had the most significant separation capa-
bility due to the −OH groups improving the Zn4(5-mtz)6(L-Ser)2·2(DMF) interaction with
the carvone.
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Two years later, Zhang et al. presented a systematic study of CMOF-based CD sensors
for eight pairs of L/D-amino acids [69]. Self-assembly of (1R,2R)-2-(pyridine-4-ylcarbamoyl)
cyclohexanecarboxylic acid (RR-PCCHC), a rationally created chiral ligand, with Zn(NO3)2
resulting in the fabrication of a 2D water-stable homochiral MOF [Zn(RR-PCCHC)2]
(HMOF-1), which is composed of a DNA-like right-handed double-helix structure. The
synthesized HMOF-1 demonstrated great thermal and solvent stability, as well as stability
in weak basic, weak acidic, and neutral aqueous solutions. Moreover, emulsified HMOF-1
exhibited a strong innate CD signal in an aqueous solution. Adding various amino acids de-
creased the strength of HMOF-1’s CD signals. Notably, the emulsified HMOF-1 determined
aspartic acid (Asp) with a limit of detection (LOD) of 13.31 ppm and 92.1% recognition
efficiency for L-Asp (Figure 6). By doing titration studies using α-hydroxyl carboxylic acids,
D/L-lactic acid, and (R,R)/(S,S)-tartaric acid, the universality of the proposed CD-sensor
application was tested. By adding various volumes of α-hydroxyl carboxylic acids, emulsi-
fied HMOF-1 showed a similar CD signal intensity alteration. The CD signal intensity of
emulsified HMOF-1 significantly decreased as a result of (R, R)/(S, S)-tartaric acid, with
(S, S)-tartaric acid having a more significant impact than (R, R)-tartaric acid. At the same
time, D/L-lactic acid resulted in a minimal effect on the CD signal’s intensity. Recognition
efficiency (η) of (R,R)-tartaric acid was 37.5%, while that of (S,S)-tartaric acid was 53.2%. The
obtained results showed the ability of HMOF-1 in the sensitive recognition of enantiomeric
carboxylic acids. DNA-like HMOF-1 demonstrated an interaction mechanism with probed
amino acids like the groove binding of DNA with a targeting drug.
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After a short time, the same research group focused on the preparation of three new
chiral 3D metal-carboxylate frameworks termed [M2(bptc)(H2O)(MeOH)]·3H2O (M = Ni,
Co, CoNi, bptc4− = 3,3′,5,5′-biphenyltetracarboxylate), which spotlight chiral 4-fold helical
metal chains, such as SBUs (secondary building units), for enantioselective CD-sensors [70].
The reaction of biphenyl-3,3,5,5-tetracarboxylic acid as an achiral ligand with Ni2+, Co2+ and
their mixture created three stable, isostructural porous chirality-enriched MOFs: Ni-MOF,
Co-MOF, and CoNi-MOF. Specifically, Co-MOF exhibited sensitive and fast CD sensing of a
variety of racemic α-hydroxy/amino acids, and 38.59% was the largest relative difference in
the CD signals of L/D-mandelic acid. In 2021, Jiao and co-workers developed an enantiose-
lective CD sensor by designing a homochiral MOF named [Zn(L)(2,2′-bipy)]·H2O (LNNU-1)
in which (H2L = HOOC-C6H4-CH2PO(OH)(OC2H5) and 2,2′-bipy = 2,2′-bipyridine were
used as two organic ligands with aromatic ring and carboxy phosphonic groups. LNNU-1
had several noncovalent interactions with Trp [71]. They did not observe any induced cir-
cular dichroism (ICD) signals for all-natural amino acids, DL-Trp, and D-Trp pure aqueous
solutions, as well as aqueous solutions of LNNU-1 without enantiomers of Trp. However,



Chemosensors 2023, 11, 29 12 of 41

adding LNNU-1 to the mixture of Trp enantiomers and all other natural amino acids aque-
ous solution led to the observation of a strong ICD signal. Blood plasma was used to test
LNNU-1’s selectivity for common compounds that did not exhibit an ICD signal, except
signals of the enantiomers of Trp. Numerous noncovalent interactions between chiral Trp
and LNNU-1 led to the emergence of an intense, induced CD signal. This resulted in the
precise detection of the absolute configuration and enantiomeric ratio of nonracemic Trp
specimens in blood plasma constituents and the mixture of natural amino acids’ aqueous
solution. Moreover, the enantioselectivity mechanism of the sensor was also examined. It
is worth noting that the designed CD sensor resolves the problems related to traditional
determination techniques for amino acids, including non-repeatability, high cost, complex
operation, and time-consumption. The developed system showed high selectivity and
reliability for enantiomers sensing through homochiral MOF-ICD sensors.

5.3. Quartz Crystal Microbalance Enantioselective (Bio)Sensor

The QCM is a portable and ultrasensitive device for chemical sensors with the poten-
tial to sense mass alterations in the range of nanograms. It has been pleasantly employed
for various applications, especially the selective sensing of enantiomers. The chiral recog-
nition layer on the surface of quartz is one of the cardinal parameters for obtaining high
specificity and sensitivity. Various chiral substances, such as synthetic macromolecules,
molecular imprinting polymers, amino acids, and proteins, have been widely used to fabri-
cate chiral QCM sensors. CMOFs with tunable and abundant recognition sites are for such
functions [72,73]. The proliferation of a thin film of CMOFs on a quartz surface is named
surface-mounted MOFs (SURMOFs), which empower the development of CMOF-based
QCM sensors [74].

In 2012, an early report on integrating a QCM-sensor and a CMOF was conducted by
Fischer and Wöll et al. [73]. The layer-by-layer liquid-phase epitaxial (LPE) growth technique
was applied for the growth of enantiopure SURMOF coatings of [{Zn2((−)cam)2(dabco)}n] and
[{Zn2((+)cam)2(dabco)}n] through dipping the QCM substrate with a dabco linker, equimo-
lar chiral camphoric acid, and Zn(Ac)2. The thin film of an enantiopure surface-mounted
MOF [{Zn2((±)cam)2(dabco)}n] on the surface of the QCM enabled the enantioadsorp-
tion of the selected enantiomeric probe molecules S-HDO ((2S,5S)-2,5-hexanediol) and
R-HDO ((2R,5R)-2,5-hexanediol) from the vapor phase in a continuous flow mode using
nitrogen gas as a carrier. Based on the achieved results, [{Zn2((+)cam)2(dabco)}n] had
almost 1.5-fold higher adsorption for R-HDO than S-HDO. Dissimilarity in the rate of
absolute uptake and absorption for the chosen enantiomeric target molecules resulted in
the discovered enantioselectivity. Extending this procedure by Gu and Xu et al. in 2019,
thin films of [Zn2Cam2DAP]n, an azapyrene-based CMOF, were grown on the function-
alized substrate for the development of a QCM-sensor, which was termed SURchirMOF
[Zn2Cam2DAP]n [75]. The designed SURchirMOF [Zn2Cam2DAP]n was based on chiral
camphoric acid layers and 2,7-diazapyrene ligands through an LPE layer-by-layer tech-
nique similar to the structure of [{Zn2((+)cam)2(dabco)}n]. D/L-methyl-lactate enantiomers
were used for evaluation. D-SURchirMOF-4 had the adsorption amount of ∼3.54 (ML) and
∼2.08 (MD) µg/cm2 for L- and D-methyl-lactate, respectively. Additionally, D/L-methyl-
lactate enantiomers were employed for investigating the L-SURchirMOF-4 enantioselective
adsorption, which showed ∼2.02 (ML) and ∼3.62 (MD) µg/cm2, the adsorption amounts
for L- and D-methyl-lactate, respectively. The disparate adsorption amount demonstrated
the significant enantioselective adsorption of SURchirMOF-4 for one enantiomer of methyl-
lactate. The ee of D-SURchirMOF-4 and L-SURchirMOF-4 for methyl-lactate was 26% and
28%, respectively. Based on the results, SURchirMOF-4 exhibited good enantioselective
adsorption toward D/L-methyl-lactate enantiomers.

For the first time, Bräse and colleagues reported a planar-chiral building block em-
ployed for CMOFs in which 4,7-disubistuted paracyclophane, a planar-chiral linker, di-
rectly integrated into a CMOF and exhibited its application in an enantioselective QCM
sensor [76]. A thin film of smooth SURMOF Zn(PcTPDC) was fabricated by a similar
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LPE growth strategy on the QCM substrate for the chiral determination of limonene. An
achiral SURMOF Cu(DMTPDC) was employed as a seeding layer to assist the growth
and improve the crystallinity of chiral Zn(PcTPDC). According to the obtained results,
the combination of the chiral features of the planar linker and the porous structure of the
MOF showed the chiral character and function, as well as a selective enantioadsorption
for racemic nonpolar limonene. To guarantee the reproducibility of the results, the (S)- or
(R)-limonene uptakes were studied three times. The average uptake of (S)-limonene was
0.024 ± 0.003 g per g SURMOF, while it was 0.041 ± 0.004 g R-limonene per g SURMOF.
Therefore, the ee of R vs. S was 26%. In the same period, Yan and co-workers designed a
3D porous CMOF (Zn2(bdc)(L-lac)(dmf)·DMF)-coated QCM sensor for the enantioselective
recognition of three pairs of amine enantiomers and one pair of alcohol enantiomers [72].
Otherwise, an easy drop-coating strategy is used for coating the gold surface of quartz
crystal with a homogeneous and dense chiral thin film of (Zn2(bdc)(L-lac)(dmf)·DMF). The
chiral selectivity factors of the developed QCM sensor for S/R-1-(1-naphthyl)ethylamine
and S/R-1-phenylethylamine were 1.36 and 2.20, respectively. An increment in the analyte
concentration led to an increase in the selectivity factor, while the temperature rise caused
its decrease. The proposed method underlined CMOFs’ potential as unique sorbents for
QCM sensors.

Recently, Xie and colleagues prepared a pair of chiral UiO-MOF-based QCM sensors
to effectively recognize Cys enantiomers [77]. The post-modification of UiO-66-NH2 with
tartaric acid enantiomers resulted in the preparation of the D- and L-UiO-tart (chiral
UiO-MOF enantiomers). Coating chiral UiO-MOF onto the gold surface resulted in the
development of two enantioselective QCM sensors (D- and L-UiO-tart@Au). The UiO-
tart coating layer served the role of a chiral selector for the enantioselective adsorption
of a Cys enantiomer. The reaction between the Au layer and captured Cys enantiomer
led to the significant mass growth of the whole system. Applying the QCM technique
allowed the monitoring of the gravimetric alteration of the system and, consequently,
the enantioselective distinguishing of Cys. The enantioselective factor (ef) refers to the
division of the value of the preferential uptake by the other. Preferential uptakes of L-Cys
by L-UiO-tart@Au had a 5.9a 7± 0.54 efL value, while the enantioselective adsorption
preference of D-UiO-tart@Au became D-Cys and provided a 5.63± 0.73 efD value. On
the contrary, race-UiO-tart@Au showed an efL value of 1.01± 0.08, meaning there was an
equal uptake of D- and L- enantiomers without any obvious enantioselectivity. The results
confirmed the chiral sensing performances of D- and L-UiO-tart@Au. In 2021, Heinke et al.
developed an enantioselective electronic nose (e-nose), an artificial nose based on QCM
sensors coated with six types of nanoporous achiral and homochiral MOF thin films [78].
SURMOFs were fabricated using the layer-by-layer method to prepare MOF thin films
on the QCM sensors directly. The e-nose was used for the examination of five pairs of
chiral odor molecules: (R/S)-1-phenylethanol, (R/S)-limonene, (R/S)-1-phenylethylamine,
(R/S)-2-octanol, and (R/S) methyl lactate, totally 10 volatile organic compounds. Each
chiral film enabled discrimination between the chiral odor molecules enantiomers based
on providing diverse feedback for each enantiomer. The achiral MOF film coated QCM
sensors achieved similar responses for isomers of one chiral odor molecule. In contrast, the
homochiral MOF film coated sensors exhibited disparate responses to various enantiomers.
The developed CMOF e-nose shows the potential of enantioselective discrimination of
chiral odors and is a powerful strategy for improved odor sensing.

5.4. Electrochemical Enantioselective (Bio)Sensor

Electrochemical (bio)sensors have attracted researchers’ attention to detect diverse
compounds. Compared with other methods, the cardinal virtues of electrochemical
(bio)sensors to be extolled are their high sensitivity and reliability, capability of a simple
combination with different sensing platforms, low cost, and simple operation [48]. Other
merits of this type of biosensor are low specimen need, portability, and ability to be minia-
turized. Based on the type of transducer used, electrochemical biosensors are classified as
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voltammetric, impedimetric, amperometric, conductometric, or potentiometric. Voltage,
potential, and current in the transducer system are all affected by redox processes [79].
Lately, electrochemical (bio)sensing platforms have been used for the enantioselective sens-
ing of chiral compounds [48]. Most enantioselective electrochemical recognition platforms
depend on supporting electrodes coated with a chiral interface, termed chiral sensors. The
most crucial step in constructing chiral electrochemical (bio)sensors is to fabricate a chiral
surface possessing recognition sites; therefore, the conformation of chiral selectors serves a
determinant role in the preparation of chiral interfaces [80]. Various chiral interfaces have
been generated to fabricate chiral (bio)sensors for enantioselective recognition. In general,
in the light of interactions between chiral enantiomers and selectors, electrochemical enan-
tiomer sensing can be chiefly categorized into chiral ligand exchange recognition, host-guest
recognition, chiral biological macromolecule adsorption recognition, molecularly imprinted
recognition, and MOFs that exhibit excellent performance in electrochemical sensing [80].

In recent years, MOFs have drawn much attention for their exploitation in electro-
chemical (bio)sensors. MOFs with ultrahigh porosity, surface area, unparalleled tunability,
and simple modification offer a novel opportunity to generate 3D cavities as host matrices
that can catalyze targets or load guest molecules for sensitive electrochemical detection [81].
Thus, MOFs introduce redox and catalytically active sites from ligands or metal ions,
which are beneficial for electrochemical (bio)sensors. However, since most MOFs do not
have chemical stability in water and most electrochemical sensing platforms need aque-
ous electrolytes, the water-stable MOFs become a primary concern for their application
in electroanalysis. MOF structures are generally vulnerable to water molecule attacks,
resulting in phase shifts, ligand displacement, and structural disintegration. A water-
stable MOF structure must be robust enough to prevent water molecules from entering
the framework and causing crystallinity and overall porosity losses. MOF structures with
high stability often include vigorous coordination bonds (thermodynamic stability) or
considerable steric hindrance (kinetic stability) to avoid the harmful hydrolysis process
that destroys the metal-ligand interactions [82]. Furthermore, MOFs have conventionally
been believed to be poor electrical conductors because of their ligand-insulating properties.
Consequently, several studies have introduced other mechanically durable and highly
conductive substances in MOFs to overcome drawbacks, such as low electronic conduc-
tivity, poor water stability, and inadequate electrocatalytic potential. Meanwhile, some
MOFs demonstrate good electrochemical activity for designing unique electrochemical
(bio)sensors if organic linkers and metal ions are included [83,84]. With a better knowl-
edge of the structural stability of MOFs in water systems and ongoing efforts, the number
of research papers on water-stable MOFs is increasing, and many more are published
yearly [82]. An early report on integrating MOFs into electrochemical sensors was done by
Shi et al. in 2017, in which they synthesized a new guest-free homochiral MOF (Cu4L4)n,
where l-H2L (N-(2-hydroxybenzyl)-L-leucine]) was used as a starting material [85]. The
synthesized CMOF showed excellent stability in water and air. Then, an enantioselec-
tive electrochemical sensor was fabricated by the direct modification of a glass carbon
electrode (GCE) with (Cu4L4)n nanocrystals without further post-modification and desol-
vation for the recognition of α-methylbenzylamine (MBA) enantiomers. The developed
CMOF-modified electrochemical chiral sensor exhibited great electro-conducting properties
and specific oxidation signals for S(−)/R(+)-α-MBA enantiomers with a detection limit of
1.3 µM and a 0.002 to 0.1 mM concentration range. The (Cu4L4)n nanocrystals-based elec-
trochemical sensor showed the capability of enantioselective discrimination and enabled
the fast quantitative recognition of ee in the mixture of chiral amine.

In the same period, Li and colleagues employed a combination of β-cyclodextrin
(β-CD) and MOF for developing a molecularly imprinted electrochemical sensor for the
enantioselective determination of L-phenylalanine (L-Phe) for the first time [86]. Gold-thiol
chemistry was employed for functionalizing gold nanoparticles (Au NPs) by L-Cys and
thiolated β-cyclodextrin to serve as a basis for the microporous MOF formation. Preparation
of the molecularly imprinted-MOF (MI-MOF) was done by depositing the functionalized
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Au NPs through electropolymerization in the existence of L-Phe and 4-aminothiophenol
as a template molecule and functional monomer, respectively (Figure 7). During the
enantiomeric recognition procedure, the phenyl ring of L-Phe integrated into cyclodextrin’s
hydrophobic cavity, while L-Cys captured the other end of L-Phe through electrostatic
interaction. The imprinted electrochemical sensor indicated great enantiomeric selectivity
and high precision with a 0.33 pM LOD for recognition to L-Phe.
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sensor for recognizing L-phenylalanine enantiomers [78]. Redrawn by PowerPoint 365 software.

In 2021, Liu et al. designed a highly selective and efficient electrochemical sensor
based on the integration of CMOFs with a multi-walled carbon nanotube (MWCNT) for
the sensitive chiral sensing of D/L-Trp [87]. Several MOFs were synthesized in various
conditions to achieve electrochemical chiral determination. For the enantio-specificity,
different amino acids were introduced into the MOFs’ skeletons using the hydrothermal
technique. Figure 8 shows an experimental process of grain-like L-Phe-MOF (grain-CMOF)
synthesis by adding L-Phe to inorganic metals (CuSO4.3H2O) and organic ligands. Inte-
grating the CMOF with MWCNT resulted in a functional electrosensing interface with
enhanced conductivity. The enantioselective determination of D/L-Trp with a linear range
between 0.4–19 µM and a detection limit of 0.16 µM for D-Trp and 0.11 µM for L-Trp
was obtained by an MCNT/CMOF-based electrochemical sensor. The prepared sensor
exhibited remarkable selectivity and reproducibility for recognizing Trp enantiomers.

Kuang and co-workers recently developed an enantioselective electrochemical sensor
with two chiral sites, including a chiral skeleton for self-assembled CMOF (Ca-sacc/MeOH)
and a chiral cavity for β-CD based on the electrochemical oxidation of β-CD onto Ca-
sacc/MeOH [88]. The designed multi-chiral β-CD@Ca-sacc/MeOH-modified GCE was
employed for the simultaneous enantiomeric recognition of penicillamine (Pen) and Trp.
According to the achieved results, the linear range for D/L-Trp and D/L-Pen was 0.01 to
0.5 mM, and the low limits of detection were 0.23 µM for D-Trp, 0.098 µM for L-Trp, 0.79 µM
for D-Pen, and 0.18 µM for L-Pen, respectively. The prepared β-CD@Ca-sacc/MeOH-based
chiral sensor demonstrated excellent chiral recognition capability of the isomers D/L-Pen
and D/L-Trp, as well as high stability and repeatability. Combining multi-chiral sources
is essential for constructing unique platforms for the simultaneous chiral recognition of
two distinct compounds. In 2022, Wang et al. reported a new MOF (Phe-Cu-PTA) structure
that was fabricated by the organic ligands (1.10-Phe [pheanthroline], PTA [terephthalic
acid]) and metal ion Cu2+, which were applied to differentiate D/L-Trp enantiomers [89].
The excellent chiral recognition selectivity and sensitivity realization were made possible
by successfully combining the two organic monomers with Cu2+. Phe-Cu-PTA is securely
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anchored on GCE as an electrosensing interface to overcome the instability of MOF material
in high humidity or aqueous environments. Due to the various steric configuration of the
D/L-Trp enantiomers, MOFs (host)-Trp enantiomers (guest) interactions are different for D-
and L-Trp. Peak currents steadily rose with increasing concentrations of D-Trp or L-Trp, as
the concentration of Trp increased from 1 mM to 6 mM. Trp-enantiomers D-Trp and L-Trp
had detection limits of 0.34 M and 0.12 M, respectively. Therefore, based on the results of
the proposed MOF, Phe-Cu-PTA exhibited a considerably greater binding force toward
D-Trp than L-Trp and achieved significant enantioselectivity efficacy.
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In the same year, Wang and colleagues synthesized a CMOF (D-His-ZIF-8) by a one-
pot method through the in situ exchange of 2-methylimidazole on ZIF-8 with D-His for
the development of a chiral electrochemical sensor [90]. Introducing Ketjen Black (KB)
to the D-His-ZIF-8 electrosensing interface as a conductive substrate substance enhanced
the conductivity of the CMOF (Figure 9). The chiral electrochemical sensor indicated
that KB/D-His-ZIF-8 had the potential for the enantioselective recognition of amino acids.
Trp enantiomers exhibited the highest recognition efficiency. Trp’s higher recognition
effectiveness (5.78) compared to other amino acids can be attributed to its relatively larger
size. Based on the mechanism of enantiomeric recognition, the binding of D-His-ZIF-8 with
an L-amino acid resulted in the determination of chiral molecules of various configurations.
According to the results, the enantiomer recognition ability of the KB/D-His-ZIF-8/GCE
for D/L-Trp showed a linear range between 0.01 and 5.0 mM with detection limits of
0.23 µM for D-Trp and 0.51 µM for L-Trp. This study paves the way for developing chiral
electrochemical sensing platforms based on D-His-ZIF-8.



Chemosensors 2023, 11, 29 17 of 41

Chemosensors 2023, 11, x FOR PEER REVIEW 17 of 41 
 

 

KB/D-His-ZIF-8 had the potential for the enantioselective recognition of amino acids. Trp 
enantiomers exhibited the highest recognition efficiency. Trp’s higher recognition effec-
tiveness (5.78) compared to other amino acids can be attributed to its relatively larger size. 
Based on the mechanism of enantiomeric recognition, the binding of D-His-ZIF-8 with an 
L-amino acid resulted in the determination of chiral molecules of various configurations. 
According to the results, the enantiomer recognition ability of the KB/D-His-ZIF-8/GCE 
for D/L-Trp showed a linear range between 0.01 and 5.0 mM with detection limits of 0.23 
µM for D-Trp and 0.51 µM for L-Trp. This study paves the way for developing chiral 
electrochemical sensing platforms based on D-His-ZIF-8. 

 
Figure 9. Scheme of the fabrication of D-His-ZIF-8-based enantioselective electrochemical sensing 
platform. Reprinted (adapted) with permission from [90]. 

In another study, Cai et al. reported the successful preparation of the L-His-ZIF-8 
CMOF for the enantiodiscrimination of Tyr and Trp isomers via a two-step electrodepo-
sition technique by utilizing L-His as a chiral selector [91]. The L-His-ZIF-8-based electro-
chemical chiral sensor recognized the Trp and Tyr isomers. Still, interestingly, they exhib-
ited contrasted voltammetric behavior on the differential pulse voltammograms (ID-Tyr 
> IL-Tyr, whereas ID-Trp < IL-Trp), which was described by the density functional theory 
(Figure 10). Subsequently, to achieve the highest determination efficacy of the L-His-ZIF-
8-modified GCE toward the Tyr and Trp isomers, both the electrodeposition time and the 
pH were optimized. However, the isomers of both amino acids were successfully differ-
entiated with the designed electrochemical chiral sensor. Still, the sensor could only be 
recognized at the mM level because of the insufficient conductivity of synthesized CMOF 
ZIF-8. Table 1 shows a summary of MOF-based enantioselective sensors. Table 1 shows a 
summary of MOF-based enantioselective sensors. 
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In another study, Cai et al. reported the successful preparation of the L-His-ZIF-
8 CMOF for the enantiodiscrimination of Tyr and Trp isomers via a two-step electrode-
position technique by utilizing L-His as a chiral selector [91]. The L-His-ZIF-8-based
electrochemical chiral sensor recognized the Trp and Tyr isomers. Still, interestingly, they
exhibited contrasted voltammetric behavior on the differential pulse voltammograms (ID-
Tyr > IL-Tyr, whereas ID-Trp < IL-Trp), which was described by the density functional
theory (Figure 10). Subsequently, to achieve the highest determination efficacy of the
L-His-ZIF-8-modified GCE toward the Tyr and Trp isomers, both the electrodeposition time
and the pH were optimized. However, the isomers of both amino acids were successfully
differentiated with the designed electrochemical chiral sensor. Still, the sensor could only be
recognized at the mM level because of the insufficient conductivity of synthesized CMOF
ZIF-8. Table 1 shows a summary of MOF-based enantioselective sensors. Table 1 shows a
summary of MOF-based enantioselective sensors.
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Table 1. Analytical performances of MOF-based enantioselective sensors.

MOF Formula Analytes Transduction Type LOD Linear Range Ref.

MPA 1-capped CdTe QD 2 @MOF
D/L-tartaric acids,

D/L-dimethyl tartrates,
D/L-mandelic acids

Fluorescence - 30–500 µg/mL [92]

{[Cd(L)(4,4′-bipy)]·DMA·5H2O}n D/L-penicillamine Fluorescence 0.9 µM (D-Pen)
2.1 µM (L-Pen) 20–167 µM [93]

IRMOF 3-74-I/II-Mg-C-Tb

Phenylethanol,
phenethylamine,
cinchonine and

cinchonidine, and N-
benzylcinchoninium

chloride and N-
benzylcinchonidinium

chloride

Fluorescence - 0.01–17 mM [94]

Single-crystalline 2D MONs 4
α-pinene, limonene,
β-pinene, valencene,
and isolongifolene

Fluorescence - 0–175 µM [95]

3D layered porous MOF
Alaninol, leucinol,

phenylalaminol, and
phenylglycinol

Fluorescence - 30–150 µL [96]

S-1 (L-AP@UiO-66-(COOH)2) and R-1
(D-AP@UiO-66-(COOH)2) L/D-amino propanol Fluorescence - 10−4–10−2 M [97]

Helical-Ag NPs @ MOF D/L-cysteine and
D/L-asparagine Fluorescence - 1.0 µM [98]

2D HMOF-3 nanosheets
(HMOF-3-NS)

R/S-mandelic acid,
D/L-tartaric acid,

D/L-lactic acid,
D/L-alanine, and
D/L-tryptophan

Fluorescence - 0–50 µM [99]

nanorod-shaped homochiral Cd-MOF D/L-aspartic acid Fluorescence - 1 nM [100]

Zr-MOF D/L-glutamine (Gln) Fluorescence
D-Gln 6.6 × 10−4

M and L-Gln
3.3 × 10−4 M

10–100 µM [101]

[Zn(L)(2,2′-bipy)]·H2O (LNNU-1) Tryptophan Fluorescence
1.94 µM (L-Trp),
2.59 µM (D-Trp),

1.91 µM (DL-Trp)
0–0.125 mM [71]

Ru (ruthenium)-MOF Tryptophan Electrochemical 0.33 nM 1.0 nM–1.0 mM [102]

CD (cyclodextrin)-MOF α/β-Pinene Electrochemical - 0.5–5.0 mM [103]

MOF@CCQDs/NiF 5 D/L-Tyrosine Electrochemical 6.12 × 10−6 M (D-Tyr)
9.85 × 10−7 M (L-Tyr)

0.2–1.2 mM [104]

h-HDGA@ZIF-67 Penicillamine (Pen) Electrochemical 0.022 µM (L-Pen)
0.015 µM (D-Pen) 3.25–19.50 mM [105]

TiO2/MIL-125-NH2 NTs

3,4-
dihydroxyphenylalanine

(L/D-DOPA)
enantiomers

Electrochemical 0.24 µM 1.0–10.0 µM [106]

AChE 6/L-Ni-BPY/DpAu/GCE
Galantamine

hydrobromide Electrochemical 0.31 pM 1 × 10−12~1 ×
10−6 M

[107]

C-dots@MOF/CuF Penicillamine Electrochemical - 100–600 µM [108]

L-His-ZIF D/L-Glutamate Electrochemical 0.06 nM 0.1–50 nM [109]

Cu-MOF:
{[Cu(fdc)(bpe)(H2O)(DMF)]·0.5H2O}n L-Tryptophan Electrochemical 5.822 µM 0.01 to 0.09 mM [110]

1 Mercaptopropionic acid. 2 Quantom dot. 3 Isoreticular MOFs. 4 MOF nanosheets. 5 Chiral carbon quantum dots
on Ni foil. 6 Acetylcholinesterase.
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6. Metal–Organic Frameworks as Chiral Stationary Phases for
Chromatographic Enantioseparation

By considering the significance of enantioseparation, scientists have devoted much
time and energy into developing CMOF-based separation techniques. Among all the
enantioseparation methods, chromatographic separation on CSPs has been widespread
because of its high effectiveness in the enantiomeric purity measurement and racemates
separation [111]. During the last few years, MOFs have been investigated as new CSPs for
chromatographic separations, but more recently, CMOFs’ utmost potential for the enan-
tioseparation of racemic mixtures using chromatographic techniques has been inspired
due to their enantioselective adsorptive separation abilities [112]. Therefore, MOFs with
overall stability, intrinsic chiral activity, structural diversity, ease of fabrication, and selec-
tive adsorption capability based on physical coating or chemical bonding are ideal CSP
candidates in HPLC, GC, and CEC [113].

6.1. High-Performance Liquid Chromatography Chiral Separation

High-performance LC is well-known as the most effective and fastest chromato-
graphical technique. With the expansion of CMOFs for enantioseparation, there are more
researchers who prefer using HPLC for enantioselective separations compared to GC be-
cause the chiral recognition mechanism is mainly related to the liquid phase [114]. The
significant dissimilarity between GC and HPLC is that GC utilizes a gaseous mobile phase
and liquid stationary phase, whereas HPLC employs a liquid mobile phase and solid
stationary phase. Moreover, high-performance LC can deal with most soluble materials
despite their volatility while also analyzing volatile compounds. This feature immensely
broadens the operational capacities of HPLC compared to those of GC [114]. CMOFs
have become one of the most stunning chiral separation materials for HPLC due to their
homogeneous structural cavities, superior thermal and chemical stabilities, large surface
area, and selective enantioseparation of racemic mixtures. Direct packing of MOFs with
broad size distributions, sub-micrometer sizes, and irregular forms results in unfavorable
peak morphologies, inefficient separations, and excessive column backpressures. As a
solution, a layer-by-layer deposition technique can be used to regulate the growth of thin
films of MOF onto core-shell silica particles [115].

The first analytical approaches based on applying MOFs as CSPs for chromatographic
separation or as sample preparation materials usually depend on the direct packing of
MOFs into the HPLC column. MOFs’ unique pore structure paves the way for separating
structurally similar substances like positional isomers. This novel selectivity is assigned
to the combination of adsorption and molecular sieves effects [116]. Nonetheless, the
critical limitations of these packaging include the requirement for high mobile phase
pressure and low column efficiency due to the irregular forms of packing crystals. To
solve these problems and reduce limitations, core-shell MOF-based compounds have
emerged as alternative materials for chromatographic separation. The core-shell MOF-
based compounds as HPLC stationary phase hydrophilic and mixed modes have superior
attributes compared to single MOF materials with low column efficiency and high column
pressure dilemmas. The advantages and disadvantages of each HPLC column are shown
in Figure 11 [116].
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In 2007, Fedin and colleagues reported the first successful liquid chromatographic de-
termination of enantiomers by utilizing a homochiral Zn-organic framework as a CSP [117].
They managed to package a pre-established CMOF into a chromatographic column for the
enantiomeric separation of many sulfoxides. Only methyl phenyl sulfoxide (PhSOMe), one
of the sulfoxides, had baseline separation. In contrast, the addition of any substituents in
the aromatic ring caused a reduction in both enantioselectivity and the sorption constant.
This pioneering research verified the possibility of CMOFs as a chiral stationary phase for
enantioselective HPLC separation.

It was not until five years later, in 2012, that another example of employing a CMOF as
a CPS for enantioselective high-performance liquid chromatographic separation emerged.
Tanaka et al. synthetized a homochiral (R)-MOF-silica composite to use as a CSP for
the selective enantiomeric resolution of different sulfoxides (phenyl methyl sulfoxide, o-
MePhSOMe, p-MePhSOMe, p-MeOPhSOMe, m-ClPhSOMe, p-ClPhSOMe, p-NO2PhSOMe,
o-MeOPhSOMe, o-ClPhSOMe, phenyl vinyl sulfoxide, benzyl methyl sulfoxide, benzyl
phenyl sulfoxide, naphthyl methyl sulfoxide, and dialkyl sulfoxides) [118]. The enan-
tiomeric separation was examined using two eluents. Fortunately, 9 out of 16 types of
sulfoxides showed complete enantioseparation by utilizing Eluent I (hexane-EtOH (50/50))
as the mobile phase. However, the other two were efficiently separated by the less polar
Eluent II (hexane-EtOH (50/50)), and the rest of the sulfoxides demonstrated the poor
separation of their enantiomers in both solvent systems. This result may be a promising fu-
ture for CMOF compounds in the enantioselective separation of different chiral substances.
Considering CMOFs’ outstanding performance, Cui et al. employed two isostructural
1,1′-biphenol-based CMOFs decorated with chiral dimethoxy or dihydroxyl groups, in-
cluding 1D-nanosized channels [46]. The chiral dihydroxyl-group-decorated framework
serves the role of the chiral stationary phase of HPLC for the enantiomeric resolution of
racemic amines with high enantioselectivity and as a solid-state host, which can adsorb
and resolve racemic aromatic and aliphatic amines. The present adsorption separation
technique was employed for the enantioseparation of racemic 1-phenylethylamine. Experi-
mental results and molecular simulations reveal that the inherent chiral identification and
separation referred to the various orientations of enantiomers and their binding energies in
the microenvironment of the CMOF.

In 2014, Tang and co-workers developed a 3D-molecular sieve-like homochiral CMOF,
[(ZnLBr)·H2O]n [119]. The synthesized 3D-CMOF was employed as a CSP for HPLC to
the enantiomeric resolution of racemic drugs, including ibuprofen, phenylethylamine,
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phenyl-1-propanol, and benzoin, with molecular sieving performances based on the rel-
ative sizes of the resolved molecules and the chiral channels. The molecular sieve-like
CMOF-packed column showed excellent efficiency in the enantioseparation of the racemic
mixtures with a minimum kinetic diameter (MKD) and gave baseline separation (Figure 12).
Racemic naproxen and ketoprofen did not exhibit enantioseparation despite having close
minimum kinetic diameters (9.7 and 9.4 Å, respectively) to chiral channels (~9.8 Å). This
suggests that they could not penetrate the interior of the chiral pores to exhibit a molecular
sieve-like manner.
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In 2016, Stoddart and colleagues reported a novel, renewable, and green CMOF consist-
ing of γ-cyclodextrin (γ-CD) and alkali metal salts, termed CD-MOF, that accomplishes the
efficient HPLC separation of a broad range of mixtures, such as ethylbenzene from styrene,
haloaromatics, terpinenes, pinenes, four isomers, and other chiral compounds [120]. It
should be noted that each γ-CD torus has 40 stereogenic centers, which can lead to the
enantioselective recognition of each pinene regioisomer. The capability of CD-MOF to
operate as a separation phase for a broad spectrum of materials, such as vinyl-, alkyl-,
haloaromatics, unsaturated and saturated alicyclic substances, and chiral composites, dif-
ferentiated it from most other frameworks utilized as CSPs in separations. Considering
that the CD-MOF is a homochiral MOF, it can enhance the enantiomeric resolution of
chiral analytes involving those of 1-phenylethanol and limonene. These CD-MOFs-based
stationary phases could be low-cost and simple for preparation in comparison to other
CSPs, including CD-bonded silica particles. In addition to the great properties of CMOFs
in chiral separation, the non-uniformity and irregular morphology of synthesized MOFs
lead to increased column backpressure and decreased column efficacy for MOF-packed
columns, which considerably influences their performance for separation.

In later years, Zhang and co-workers demonstrated the effective one-pot technique for
immobilizing CMOF [Cu2((+)-Cam)2Dabco] (Cu2C2D) onto silica microspheres or, in other
words, the layer-by-layer growth coating method of Cu2C2D on microspheric SiO2 [121].
Finally, a uniform SiO2@CMOF@CMOF core-shell-microsphere was generated as a chiral
stationary phase for HPLC (Figure 13). Controlling the [Cu2((+)-Cam)2Dabco] growth
cycles led to the reasonable regulation of column efficiency and shell thickness. The separa-
tion performance improved with the increment of the CMOF’s growth cycles. Based on the
mechanism of chromatographic separation, such as hydrogen and hydrophobic bonding,
the developed CSP successfully separated various racemic substances, including labetalol
hydrochloride, malic acid, and indole derivatives, under normal phase LC conditions. The
RSD of retention time was less than 1.1%, demonstrating the good stability and repeata-
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bility of the chiral SiO2@Cu2C2D-2 column for chiral separation by HPLC. Moreover, the
SiO2@Cu2C2D-2-packed column exhibited high column efficacy and low back pressure.
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In 2020, Yuan et al. synthesized homochiral CMOF@SiO2 core-shell microspheres,
named D-His-ZIF-8@SiO2, as a CSP of HPLC for the enantioseparation of 18 racemates
with different structures (phenol, alcohol, organic acid, ketone, and amine) [122]. As a
chiral ligand, D-His was embedded in the ZIF-8 framework. The D-His-ZIF-8 was a suit-
able silica-based core-shell compound because of its excellent features, including a simple
synthesis process, nano-scale size of crystal particles, ease of surface modification, and sta-
bility of the framework structure. Although the L-his-ZIF-8@SiO2-packed column showed
results for the chiral separation of the racemates, the D-his-ZIF-8@SiO2-packed column
demonstrated high enantioselectivity, great resolution for racemates, and complemen-
tary to the commercial Chiralpak AD column. Therefore, the D-His-ZIF-8@SiO2-packed
column exhibited good stability, reproducibility, and great resolution potential for the
efficient and fast HPLC chiral separation of a variety of racemates. The D-his-ZIF-8@SiO2
column showed 0.89% RSD of the retention times through repetitive analyte separation
(50th, 100th, 150th, 200th, and 250th injections). Thus, fabricating CMOF@SiO2 core-shell
microspheres is an efficient method for improving homochiral CMOFs application as CSPs
in the chromatographic techniques.

By extension of the valuable methods for the fabrication of CMOFs for improved chiral
HPLC separation, Cui and co-workers were the first to demonstrate the highly stable and
robust Zr(IV)-based CMOFs as an efficient CSP for reversed-phase HPLC (RP-HPLC) [123].
These Zr(IV)-based CMOFs could obtain exceptional enantioseparation of a wide range of
N-containing drugs and amino acids under acidic aqueous eluent conditions. Crown ether-
modified bisphenol scaffolds were used for the reticular synthesis of a series of these MOFs
(Figure 14). The performance of Zr(IV)-based CMOF-packed columns were evaluated after
1 year of shelf life and more than 4000 injections, which shows its good durability. The
separation performance decreased with reduced α/Rs from 5.25/6.31→ 4.23/3.93. The
RSDs of peak area, selectivity factor, theoretical plate number, and peak height were <2.0%,
confirming the stability of the Zr-CMOF-packed column. The Zr-CMOF-packed HPLC
columns rendered high selectivity, resolution, and durability for the enantioseparation of
various racemates. The density functional theory calculations propose that Zr-based CMOF
offers a confined space for combination with chiral crown ether moieties devoted to the
selectivity of separation. This research draws attention to the distinctive potential of robust
MOF decoration with chiral crown ether functional groups to ease the RP-HPLC separation
of effective racemic pharmaceuticals and chemicals.
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In 2021, Yuan and colleagues were the first to employ a post-modification strategy
for the modification of an achiral MOF (MIL-101) surface by utilizing chiral polyaniline
(c-PANI) for the synthesis of a chiral MIL-101@c-PANI core-shell material, which was
employed as an HPLC stationary phase for enantiomeric resolution (Figure 15) [124].
The MIL-101@c-PANI column provided good resolution with baseline separation for
1,2-diphenyl-1,2-ethanediol, 3-(benzyloxy)-1,2-propanediol, ketoprofen, and amlodipine.
3-(Benzyloxy)-1,2-propanediol had the highest resolution value of 3.35. The MIL-101@c-
PANI-packed column separated a broad range of chiral compounds, such as ketones,
alcohols, aldehydes, esters, amines, and organic acids, with good enantiomer resolution
potential. The separation factors of most of the racemates on the MIL-101@c-PANI-packed
column were higher than the commercial tris(3,5-dimethylphenylcarbamoyl) amylose-
packed column. In addition, the commercial tris(3,5-dimethylphenylcarbamoyl) amylose-
packed column was unable to separate 2-phenylpropanal, ofloxacin, and 1-(1-naphthyl)
ethanol, while the MIL-101@c-PANI-packed column could. Additionally, the designed
stationary phase exhibited great selectivity for the positional isomers’ separation, such as
dinitrobenzene and toluidine. The MIL-101@c-PANI compound increased the synergistic
effect by integrating the benefits of MIL-101 and c-PANI, which is suitable for improving the
enantiomer resolution performance. The RSDs of the retention times for praziquantel and
1,2-diphenyl-1,2-ethanediol after the 50th, 100th, 150th, 200th, and 250th injections were
0.28 and 0.59%, respectively. Their retention times did not significantly alter after hundreds
of separations on the MIL-101@c-PANI-packed column, revealing that the MIL-101@c-PANI
column had good reproducibility for HPLC separations.
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For the first time in 2022, Ouyang and colleagues developed a rapid strategy to achieve
the unusually spherical crystal morphology of Co-MOF-74 with a size of around 5 µm
by adjusting the ratio of reactants, synthetic pathway, temperature, and the amount of
2-methylimidazole (2-MI) [125]. Then, they integrated L-Tyr into the Co-MOF-74 parent
framework through an easy, green PSM method for functionalizing the Co-MOF-74 with
L-Tyr, termed Co-MOF-74-L-Tyr crystal, in water to make a chiral microenvironment. The
Co-MOF-74-L-Tyr-packed column exhibited increased column efficacy and declined back-
pressure. The developed homochiral Co-MOF-74-L-Tyr CSP showed excellent enantiomeric
resolution for eight drug racemates and drug intermediates, including benzoin, nimodipine,
nitrendipine, bi-2-naphthol, and 2,2′-furoin, under normal phase condition (Figure 16). The
remarkable stability and repeatability of the Co-MOF-74-L-Tyr were evaluated by replicat-
ing the chiral separation of flavanone and nimodipine. There was no significant change in
the retention times and resolutions of the 50th, 100th, 150th, 200th, and 250th injections.
The resolutions and retention times’ RSD values were 1.12% and 0.85%, respectively. The
morphology/size-controlled method paired with the green PSM opens new avenues for
fabricating target CMOFs with predesigned functional groups as an efficient complement
for the CSPs preparation in chiral chromatographic techniques. Table 2 demonstrates a
summary of MOF-based composites as CSPs for racemates resolution by HPLC.
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Table 2. MOF-based composites used as chiral stationary phases for HPLC.

Type of MOF Analyte Mobile Phase Form Repeatability
(RSD%) Ref.

(R)-CuMOF-1 and (R)-ZnMOF-1 Sulfoxides, sec-alcohols, β-lactams,
benzoins, flavanones, and epoxides Hexane/EtOH (50/50)

Packing (10 cm
length × 4.6 mm

i.d.)
- [126]

[Cd2(d-cam)3]·2Hdma·4dma
(Cd-MOF) (±)-1-(1-naphthyl)ethanol Hexane/dichloromethane

(1/1)
Packing (25 cm long
× 2.0 mm i.d.) 2.1% [127]

MOF [Co2(D-cam)2(TMDPy)]@SiO2
core-shell composites

Positional isomers (trans-stilbene
oxide and phenylenediamine)

n-Hexane/isopropanol
(9/1)

Packing (25 cm
length × 2.1 mm

i.d.)

0.86% and
0.78% [128]

[(CH3)2NH2][Cd(bpdc)1.5]·2DMA

1,1′-Bi-2-naphthol,
1,2-diphenyl-1,2-ethanediol,

1-(4-chlorophenyl)ethanol, furoin,
benzoin, flavanone, Troger’s base,

3-benzyloxy-1,2-propanediol,
3,5-dinitro-N-(1-

phenylethyl)benzamide, and
warfarin sodium

Hexane/dichloromethane
(2/1)

Packing (25 cm long
× 2.0 mm i.d.) - [129]
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Table 2. Cont.

Type of MOF Analyte Mobile Phase Form Repeatability
(RSD%) Ref.

(R)-MOF-4-silica and
(R)-MOF-5-silica composites

Sulfoxides, sec-alcohols, and
flavanones Hexane/2-PrOH (90/10) Packing (10 cm long

× 4.6 mm i.d.) - [130]

Helical MOF
[Zn2(D-Cam)2(4,4′-bpy)]n (1)

(±)-1-(1-Naphthyl)ethanol,
Tröger’s base

Hexane and hex-
ane/dichloromethane

(95/5)

Packing (25 cm long
× 4.6 mm i.d.) - [131]

(Me2NH2)2[Mn4O(D-
cam)4]·(H2O)5

(±)-ibuprofen and
(±)-1-phenyl-1,2-ethadiol

Hexane/isopropyl
alcohol (96/4)

Packing (10 cm
length × 4.6 mm

i.d.)
- [132]

Homochiral MOF
[Cu(S-mal)(bpe)]n

Benzion, propranolol
hydrochloride, ketoprofen,
DNB-leucine, amlodipine,

hydrobenzoin, chlorpheniramine
maleate, p-hydroxyphenylglycine,
naproxen, furoin, mandelic acid,

1-(9-anthryl)-2,2,2-trifluoroethanol,
1,1′-bi-2-naphthol, praziquantel,

ibuprofen, and
1-(1-naphthyl)ethanol

Different ratios of
hexane/isopropanol

(v/v)

Packing (25 cm long
× 2.0 mm i.d.) 1.1% [133]

γ-CD (cyclodextrin) MOF Aromatic alcohols
Different ratios of
dichloromethane:

MeOH and hexane:
Dichloromethane (v/v)

Packing (25 cm long
× 4.6 mm i.d.)

0.3–0.4%,
1.5–2.1%, and

1.1–1.9%
[134]

[Zn(L-tyr)]n(L-tyrZn),
[Zn4(btc)2(Hbtc)(L-

His)2(H2O)4]·1.5H2O,
{[Zn2(L-

trp)2(bpe)2(H2O)2]·2H2O·2NO3}n,
[Co2(L-Trp)(INT)2(H2O)2(ClO4)],

[Co2(sdba)((L-Trp)2] and
[Co(L-Glu)(H2O)·H2O]∞

Alcohols, amines, ketones, ethers,
organic acids

Different ratios of
hexane/isopropanol or

hex-
ane/dichloromethane

(v/v)

Packing (25 cm long
× 2.0 mm i.d.) - [135]

[Cu2(D-Cam)2(4,4′-bpy)]n

Positional isomers and
1-(9-anthryl)-2,2,2-trifluoroethanol,

1,1′-bi-2-naphthol, flavanone,
2-phenyl-1-propanol,

1-(1-naphthyl)ethanol, and
3-benzyloxy-1,2-propanediol

Hexane/isopropanol
(98/2) and different

ratios of hex-
ane/dichloromethane

(v/v)

Packing (25 cm long
× 4.6 mm i.d.) - [136]

[Nd3(D-cam)8(H2O)4Cl]n

Ofloxacin, warfarin, naproxen,
furoin, benzoin, phenylalanine,

glutamic acid, threonine, tyrosine,
alanine, cysteine, aspartic acid,

valine, histidine, lencine, serine,
isoleucine

n-Hexane/isopropanol
(9/1), MeCN/H2O
(6/4), MeOH/H2O

(6/4), ethanol absolute

Packing (25 cm long
× 2.0 mm i.d.) - [137]

[Co(L)(bpe)2(H2O)2]·H2O

1,1′-Bi-2-naphthol, mandelic acid,
atenolol, 1,2-diphenylethylene
glycol, 1,2-diphenylethanone,
3,5-dinitro-N-(1-phenylethyl)

benzamide, DNB-leucine,
chlorphenamine maleate, and

ibuprofen

n-Hexane/isopropanol
(99/1)

Packing (25 cm long
× 4.6 mm i.d.) 0.69% [138]

[Cu2(D-Cam)2(4,4′-bpy)]n@SiO2

1-(9-Anthryl)-2,2,2-trifluoroethanol,
salbutamol, 1-phenylethanol,

1-(4-chlorophenyl)ethanol,
3-benzyloxy-1,2-propanediol,

alprenolol, praziquantel, flavanone,
zopiclone, benzoin, furoin,

trans-stilbene oxide, and Tröger’s
base

Different ratios of
hexane/isopropanol

with (v/v)

Packing (25 cm long
× 2.1 mm i.d.)

1.0, 1.5, 3.0,
and 2.0% [139]

Homochiral MOF
[Ni(S-mal)(bpy)]n

Amlodipine, ibuprofen,
flurbiprofen, propranolol, maleate

chlorphenamine maleate and
1-p-chlorophenyl-ethanol

n-Hexane-isopropanol
(8/2, 9/1, 95/5, 99/1)

Packing (25 cm long
× 2.1 mm i.d.) - [140]

ZIF-8-PEI-CA Tröger’s base MeOH/2-propanol
(10/1)

Packing (6 cm
length × 4.6 mm

i.d.)
- [141]

Chiral ionic liquid@MOF Atenolol, propranolol, metoprolol,
racecadotril, and raceanisodamine MeOH/water (20/80)

Packing (25 cm
length × 4.6 mm

i.d.)
5% [142]

TAMOF-1 (triazole acid MOF) (±)-Ibuprofen and (±)-thalidomide Acetonitrile Packing (100 mm ×
4.6 mm i.d.) - [114]
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Table 2. Cont.

Type of MOF Analyte Mobile Phase Form Repeatability
(RSD%) Ref.

CMOF D-His-ZIF-L (DHZL) S-1,1′-Bi-2-naphthol (S-BINOL) n-Hexane/isopropanol
(55/45)

Packing (25 cm
length × 4.6 mm

i.d.)
- [143]

Magnetic graphene oxide- MOF
[Zn2(d-Cam)2(4,4′-bpy)]n

(MGO-ZnCB)

1, 1′-Bi-2-naphthol (BN) and 2,
2′-furoin (Furoin)

Hexane/isopropanol
(55/45)

Packing (25 cm
length × 4.6 mm

i.d.)
- [144]

L-His-ZIF-8/Torlon® 1-Phenylethanol
0.1% Trifluoro acetic acid

in n-hexane/EtOH
(95/5)

Packing (25 cm
length × 4.6 mm

i.d.)
- [145]

6.2. Gas Chromatography Enantioseparation

The use of GC enantiomer resolution with chiral MOFs is relatively new, and few
studies currently exist. However, this is a beneficial method for separating molecules that
can simply vaporize without decomposition [37]. In general, chiral capillary GC provides
several advantages, including excellent resolution, sensitivity, efficiency, and the lack of
liquid mobile phases. In practice, chiral capillary GC is mostly utilized to examine volatile
and thermally stable racemic mixtures. Furthermore, because chiral capillary GC may
be linked with mass spectrometry (MS) and solid-phase microextraction (SPME), it is an
optimal method for the enantioseparation of enantiomers in complicated real samples.
MOFs as stationary phases in GC show outstanding performance. The direct utilization
of most of the “as-synthesized” MOFs, powders with heterogeneous particle sizes, in
packed column GC as stationary-phase materials leads to displeasing gas resistance. The
tight packing of tiny, irregularly sized particles of MOF results in a significant pressure
decrease, especially in particles with a wide range of particle sizes. MOF-thin-coated
capillary columns as a solution can help enhance separation efficiency [115,146]. MOFs as
stationary phases in GC show outstanding performance. MOF-coated GC columns lead to a
reduction in cost because of their low consumption for GC separation. Gas chromatographic
separation is a simple and accessible platform for evaluating the interactions of MOF
stationary phases with analytes compared to HPLC, because no liquid mobile phases in
GC omit the interactions from solvents [147].

In recent years, different CMOFs have been employed in GC for enantiomer resolution
because of their high thermal and chemical stability and great chiral framework structure.
The standard processes of enantioseparation by GC possess four sections: (i) coating the
internal GC column wall with CMOFs; (ii) applying a noble gas (e.g., helium (He), neon
(Ne), argon (Ar), krypton (Kr), xenon (Xe), etc.) for the vaporization and infusion of
racemates; (iii) the flow of racemates in the CMOF-coated column and their interaction with
a CMOF for effective enantiomer resolution; and (iv) signal identification by a computer
terminal [37]. Yuan and colleagues have made numerous contributions to this field. By
applying the dynamic coating method, they coated four varieties of 3D-helical CMOFs, such
as [(CH3)2NH2][Cd(bpdc)1.5]·2DMA, MOF [Cd(LTP)2]n, Co(D-Cam)1/2(bdc)1/2(tmdpy),
and Ni(D-cam)(H2O)2, on fused silica columns with success [148–151]. In brief, there was an
introduction step of an ethanol suspension of each MOF into the column under gas pressure.
After this, a wet coating layer on the inner wall of the column was obtained by pushing
it through the column. As a restrictor, a long buffer tube was connected to the end of the
capillary column to prevent the expedited solution from plugging near the column end.
Last, nitrogen was used for flushing the MOF-coated fused silica column. These CMOFs
exhibited great performance in the enantiomer resolution of a broad spectrum of racemates,
such as camphor, citronellal, alanine, isoleucine, leucine, 2-methyl-1-butanol, 1-phenyl-
1,2-ethanediol, phenylsuccinic acid isopropyl ester, proline trifluoroacetyl isopropyl ester
derivatives, and 1-phenylethanol trifluoroacetyl derivatives, which mostly showed baseline
separation. It is worth noting that the outcomes of some chromatographic separations were
much better than those obtained with the commercial Chirasil-L-Val column. This strongly
indicated the potential of CMOFs in racemate separation by GC.
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In another study by Yuan and co-workers, a porous CMOF InH(D-C10H14O4)2 (D-
C10H14O4 = D-(+)-camphoric acid (D-H2Cam)) was developed to coat the open tubular
(OT) GC column for the enantioselective separation of racemates with high resolution be-
cause of its large surface area, great thermal stability, and remarkable chiral attributes [152].
InH(D-C10H14O4)2 has a left-handed helical channel with an anion-typed diamond net-
work. The dynamic coating approach was used for coating OT columns with various
lengths or inner diameters by InH(D-C10H14O4)2 for the gas chromatographic separation
of various organic substances, such as alcohols, alkanes, isomers, and Grob’s test com-
pound. The separation factors (α) of citronellal, 1-phenyl-1,2-ethandiol, 1-phenyl-ethanol,
2-amino-1-butanol, limonene, methionine, and proline with the InH(D-C10H14O4)2 CSP
were in the range of 1.10 to 1.44. A comparison between the chiral recognition capability
of InH(D-C10H14O4)2 and the Chirasil-L-Val CSP indicated that proline and methionine
had higher separation factors on prepared InH(D-C10H14O4)2 than on the Chirasil-L-Val
CSP. Limonene and 1-phenylethanol did not show any separation on the Chirasil-L-Val
CSP, whereas the InH(D-C10H14O4)2 CSP had good separation. All chiral separations on
the developed CSP had short retention times of about 1.5 min and baseline separation
for 2-amino-1-butanol, 1-phenylethanol, and 1-phenyl-1,2-ethandiol. The results revealed
that the developed CSP possesses high selectivity and great recognition potential for these
organic materials, especially for chiral substances. Moreover, Yuan et al. also reported the
application of Zn(ISN)2·2H2O with a huge left-handed channel (~8.6 Å), a simple CMOF as
a CSP for high-resolution gas chromatographic enantioseparation [153]. The dynamic coat-
ing strategy was employed for coating a fused-silica capillary column with Zn(ISN)2·2H2O.
Then, the Zn(ISN)2·2H2O-coated capillary column was applied for the enantiomer reso-
lution of racemates (such as 1-phenyl-1,2-ethanediol, 1-phenylethanol, phenyl-succinic
acid, citronellal, proline, and alanine), positional isomers, alcohols, and alkanes. The RSDs
for five repeated alanine separations were 2.6% and 0.32% for peak area and retention
time, respectively. The separation factors (α) of citronellal, phenyl-succinic acid, alanine,
1-phenyl-1,2-ethanediol, 1-phenylethanol, and proline with the Zn(ISN)2·2H2O CSP were in
the range of 1.18 to 1.46. The chiral separation ability of the Zn(ISN)2·2H2O CSP was better
than the Chirasil-L-Val CSP due to a higher separation factor of proline and alanine and
great separation of 1-phenylethanol in the Zn(ISN)2·2H2O-modified column. All analytes,
except phenyl-succinic acid, had baseline separation. The developed novel chiral stationary
phase demonstrated excellent selectivity, reproducibility, excessive column efficiency, and
excellent chiral separation potential based on the obtained results.

In another study, Yuan and co-workers combined the excellent characteristics of CMOF
InH(D-C10H14O4)2 with the novel features of peramylated β-CD to make a unique CSP
for improved gas chromatographic enantioseparation [154]. Three capillary GC columns,
including InH(D-C10H14O4)2, peramylated β-CD, and combined InH(D-C10H14O4)2 with
peramylated β-CD, were employed for evaluating their racemate separation potentials.
Seven racemates, including citronellal, dihydrocarvyl acetate, limonene, methyl L-β-
hydroxyisobutyrate, menthol, DL-leucine, and 1-phenylethanol, were used for enantiosep-
aration with the prepared columns. All the racemates had poor separation in column
InH(D-C10H14O4)2, which showed the displayed separation of only three enantiomers.
The second column contained peramylated β-CD and NaCl and separated five racemates,
while the third column with InH(D-C10H14O4)2 and peramylated β-CD separated all
seven compounds. For instance, 1-phenylethanol did not separate in columns InH(D-
C10H14O4)2 or peramylated β-CD but separated in column InH(D-C10H14O4)2 incorporated
with peramylated β-CD. In addition, the InH(D-C10H14O4)2 incorporated with peramy-
lated β-CD column provided higher resolution for the separations of DL-leucine and
dihydrocarvyl acetate in comparison to the peramylated β-CD column. Moreover, cit-
ronellal separated columns InH(D-C10H14O4)2 and InH(D-C10H14O4)2 incorporated with
peramylated β-CD but did not separate in the peramylated β-CD column. Therefore,
applying InH(D-C10H14O4)2 in cooperation with peramylated β-CD as a unique mixed
chiral stationary phase enhanced the GC chiral separation and increased column efficiency.
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The chromatograms of column InH(D-C10H14O4)2 incorporated with peramylated β-CD
demonstrated good peaks with a minimum of 50% valley separation. This suggested that
InH(D-C10H14O4)2 with a left-handed helical structure and diamond network exhibited the
capacity for increasing the enantioselectivity and chiral recognition capability of peramy-
lated β-CD. The RSDs of the column-to-column and run-to-run for the InH(D-C10H14O4)2
incorporated with peramylated β-CD column were 2.50% and 0.50%, respectively, which
proved the good reproducibility of the prepared column. Moreover, Yuan et al. also
combined another one of their developed CMOFs, Co(D-Cam)1/2(bdc)1/2(tmdpy), with
peramylated β-CD for the GC enantioseparation of 10 chiral compounds: (RS)-linalool,
(RS)-2-hexanol, (RS)-menthol, (RS)-citronellal, (RS)-limonene, (RS)-rose oxide, DL-leucin,
DL-valine, (RS)-methyl L-β-hydroxyisobutyrate, and (RS)-dihydrocarvyl acetate [155]. The
separation factor of the Co(D-Cam)1/2(bdc)1/2(tmdpy) incorporated with peramylated
β-CD column was between 1.00 and 1.10. The separation of all enantiomers was poor
in column Co(D-Cam)1/2(bdc)1/2(tmdpy), except for the citronellal separation that had
a higher separation factor (column Co(D-Cam)1/2(bdc)1/2(tmdpy) (1.11)>column Co(D-
Cam)1/2(bdc)1/2(tmdpy) incorporated with peramylated β-CD (1.08)>column peramylated
β-CD (1.00)). Columns Co(D-Cam)1/2(bdc)1/2(tmdpy) and peramylated β-CD had the abil-
ity of four and six racemates separation, respectively. The Co(D-Cam)1/2(bdc)1/2(tmdpy)
incorporated with peramylated β-CD column separated nine enantiomers with good peaks,
baseline or minimum of 60% valley separation, enhanced resolution, and good column effi-
cacy. For repeatability, the RSDs of the CMOF-combined peramylated β-CD column were
obtained from five successive linalool separations of 2.2% and 0.31% for the peak area and
retention time, respectively. Additionally, the RDS for the column-column reproducibility
was 6.2%. Based on these results, the developed method was reproducible and reliable.
Thus, the use of Co(D-Cam)1/2(bdc)1/2(tmdpy) served an important role in the increased
separation of chiral compounds. The intrinsic properties of Co(D-Cam)1/2(bdc)1/2(tmdpy),
including a 3D-chiral network, perfect helicity, remarkable integration of molecular chi-
rality, and high surface area, enable the cooperation of Co(D-Cam)1/2(bdc)1/2(tmdpy)
with peramylated β-cyclodextrin to fabricate an attractive column for improved GC race-
mate separation.

Finally, in 2018, Yan et al. developed a PSM strategy for synthesizing CMOFs with
various chiral sites for racemate resolution [156]. The parent MOF, MOF (MIL-101(Al)-NH2),
was employed due to its highly active amino groups and great structure. Then, based on
the PSM of MIL-101(Al)-NH2 and immobilization of various chiral ligands to the identical
parent MOF, five different CMOFs were designed (Figure 17). The synthesized CMOFs
were used for the fabrication of capillary columns for enantiomer resolution and analysis of
several kinds of racemates with various chiral recognition sites. The CMOF-coated capillary
GC columns showed superior enantioselective separation capability for different racemates
compared to the commercial Cyclosil B and β-dex 225 chiral capillary columns. The CMOF-
coated column showed good reproducibility for the chiral separation of citronellal with
RSDs of 4.4%, 5.1%, and 0.2% for the peak area, peak height, and retention time, respectively.
The RSDs of column-to-column and day-to-day for the citronellal separation CMOF-coated
column were 5.0–7.1% and 2.0–2.6%, respectively. The results indicated that the PSM
method is helpful for creating pre-designed functional CMOFs, as novel CSPs provide a
broad spectrum of chromatographic racemates separation.
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6.3. Capillary Electrochromatography Racemate Resolution

Capillary electrophoresis (CE) has various separation modes offering multiple options
for separating analytes. In CEC, a stationary phase is applied to enhance separation
performance. CEC is an analytical method combining the excellent separation efficacy
of CE with the selectivity provided by LC [157]. The application of MOFs as CSPs in
CEC has been confirmed to be useful for racemate resolution analysis. However, an
efficient strategy is deficient for capillary column modification with MOFs. Mainly, MOF-
based capillary columns are classified into three types: packed columns, OT columns, or
monolithic columns.

In 2014, Yuan and co-workers employed a homochiral-helical MOF [Zn2(D-(+)-camphoric
acid)2(4,4′- bipyridine)]n as a CSP in OT-CEC (a homochiral MOF-coated OT-CEC) for the
resolution of positional isomers (e.g., nitrophenol and ionone) and two chiral compounds,
flavanone and praziquantel [158]. The reported homochiral-helical MOF was composed
of homochiral layers with pillars of bipyridine ligands for creating two kinds of 3D six-
connected self-permeable structures. The inner wall of the OT-column was pretreated with a
sodium silicate solution to have a stable layer of stationary phase, which was an MOFs’ post-
coated process for the fabrication of the [Zn2(D-(+)-camphoric acid)2(4,4′-bipyridine)]n-
coated OT column. The baseline separation of praziquantel and flavanone with [Zn2(D-
(+)-camphoric acid)2(4,4′-bipyridine)]n-coated OT-CEC showed great column efficacy and
enhanced resolution. Different chromatographic parameters, including pH, the concen-
tration of buffer, and the addition of organic modifiers, were evaluated to achieve the
best separation. The RSDs for the column-to-column, day-to-day, and retention time of
run-to-run were 3.07%, 2.16%, and 1.04%, respectively. The results showed that CMOFs are
useful for enantiomer resolution in CEC.

In 2016, Zong et al. synthesized a homochiral MOF [Zn2(D-Cam)2(4,4′-bpy)]n with
a large particle size covalently linked to the capillary inner walls [159]. The [Zn2(D-
Cam)2(4,4′-bpy)]n-modified capillary column showed successful enantioseparation per-
formance for DL-Tyr and DL-Phe. The MOF [Zn2(D-Cam)2(4,4′-bpy)]n-coated capillary
column demonstrated a broad linear range and excellent thermal stability. The intra-
day, interday, and column-to-column stability of the MOF-coated capillary column for
DL-Phe and DL-Tyr were 0.57–12.13% and 0.45–9.93%, respectively. A recent study by
Chen and colleagues used a pepsin-ZIF-8-modified poly(GMA-co-EDMA) monolithic
column [160]. Poly(glycidyl methacrylate)-co-ethylene dimethacrylate monoliths were em-
ployed as support for the growth of MOF ZIF-8 (zeolitic imidazolate framework-8) through
layer-by-layer self-assembly (Figure 18). The Schiff base method was employed for the
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covalent linkage of pepsin, which served as a chiral selector on the amino-functionalized
ZIF-8 surface. The amino groups for the functionalization of ZIF-8 were provided by
N-(3-aminopropyl)imidazole. Zeolitic imidazolate framework-8 supplied stable conditions
for enantioseparation and improved the chiral resolution. The pepsin-ZIF8-poly(GMA-co-
EDMA) column showed the capability for the enantiomer separation of six racemic drugs,
chloroquine, nefopam, hydroxychloroquine, clenbuterol, amlodipine, and hydroxyzine,
within 15 min. The pepsin-ZIF8-poly(GMA-co-EDMA) column demonstrated great im-
provement of resolution compared to the pepsin-poly(GMA-co-EDMA) column (without
ZIF-8). Compared to the pepsin-poly(GMA-co-EDMA) column (without ZIF-8), there
was considerable resolution enhancement (hydroxychloroquine: 0.34→ 2.50; chloroquine:
0.45→ 1.97; hydroxyzine: 0.39→ 1.43; nefopam: 0.27→ 0.81; clenbuterol: 0→ 0.81; am-
lodipine: 0.16→ 0.72). The day-to-day and run-to-run reproducibility of RSDs and Rs
were both <4.50%. Five batches of pepsin-ZIF-8@GMA columns with the same procedure
were run to evaluate column-to-column reproducibility. The RSDs values of Rs and the
retention time of four columns were less than 7.63% and 7.12%. These results exhibit the
good reproducibility of the pepsin-ZIF-8@GMA columns.
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In 2021, Chen et al. developed a homochiral MOF L-His-NH-MIL-53-based capillary
column for racemate separation by CEC [161]. Achiral nanocrystalline MIL-53 was syn-
thesized through a PSM procedure, and it resulted in the fabrication of a homochiral MOF
termed L-His-NH-MIL-53. L-His-NH-MIL-53 was used as a chiral coating of OT-CEC for
the enantioselective separation of D-/L-Trp; D-/L-Phe; and four basic drugs: metoprolol,
amlodipine, esmolol, and bisoprolol. The porous structure of the fabricated homochiral
MOF L-His-NH-MIL-53 served as a crucial feature in advancing the enantiorecognition
potential of L-His because it can render adequate sites for interactions of L-His with enan-
tiomers. This research not only employed a new homochiral MOF for the coating of the
OT-capillary column but also demonstrated that the enantioselectivity of L-His as a weak
chiral recognition reagent can be considerably improved through integration with MOFs.
In 2022, Bingbing et al. synthesized a novel type of chiral zirconium-based homogeneous
CMOF, L-Cys-PCN-222, in which PCN-222 and L-Cys were employed as a framework
and chiral modifier, respectively, through the solvent-assisted ligand incorporation ap-
proach [162]. L-Cys-PCN-222 was used as the CSP through bonding to the inner wall of the
OT-column in CEC for the enantioseparation of amino acids (such as serine, methionine,
threonine, Asp, Lys, glutamic acid, His, and arginine); herbicide pesticides (like imazameth,
imazethapyr, imazamox, quizalofop-p-ethyl, and diclofop); and fluoroquinolone drugs,
including lomefloxacin hydrochloride, ofloxacin, flumequine, and gatifloxacin. Based on
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the results, L-Cys-PCN-222 showed advantages, including thermal stability, high specific
surface area, good crystallinity, and chiral separation performance. The separation factor
(α) and degree of separation (Rs) of the analytes differed in the ranges of 1.07 to 3.27 and
0.61 to 26.0, respectively. The maximum degree of separation (26.0) pointed to the outstand-
ing enantioseparation performance of the L-Cys-PCN-222-bonded OT column. The RSDs
of the column efficiencies for runs, column-to-column, day-to-day, and run-to-run were
2.73%, 6.62%, 2.37%, and 1.39%, respectively. In addition, there was no obvious alteration
after 200 runs. The results demonstrated higher column efficacy and prolonged lifetime of
the innovative zirconium-based stationary phase for enantiomer resolution.

Du and colleagues synthesized a homochiral Fe-CD-MOF (iron-based γ-CD MOF)
with mesoporous as a CSP of OT-CEC for the enantioseparation of 1 chiral alcohol and
14 racemic drugs, including anisodamine, ephedrine, pseudoephedrine, ritodrine, promet-
hazine, sotalol, galantamine, laudance, synephrine, quinine/quinidine, oxybutynin, cin-
chonine/cinchonidine, (RS)-pseudotropine, nefopam, terbutaline, and octopamine [163].
The 3D-cubic homochiral Fe-CD-MOF was covalently attached to the isocyanate propyl
triethoxy silane (IPTS)-modified capillary inner wall (Fe-CD-MOF@IPTS-coated capillary
column). For the first time, γ-cyclodextrin-based MOF containing Fe (III) ions were em-
ployed for stereoisomer separation. The designed Fe-CD-MOF@IPTS-coated OT-column
demonstrated excellent stability and repeatability with RSDs of <1.7%, <3.5%, and <6.5%
for run-to-run, day-to-day, and column-to-column, respectively. The Fe-CD-MOF@IPTS-
modified column showed great separation performance for chiral alcohol and 14 racemic
drugs. The best Rs of anisodamine, ephedrine/pseudoephedrine, and ritodrine were 17.07,
6.93, and 7.65. The retention time was less than seven minutes, demonstrating the high effi-
ciency of the Fe-CD-MOF@IPTS-modified column. Furthermore, the enantiomer resolution
mechanism of the homochiral Fe-CD-MOF-coated column was studied using adsorption
kinetic experiments. According to the results, renewable and homochiral Fe-CD-MOF
showed outstanding potential in the chiral stationary-phase racemate separation with CEC.
Another study by Du et al. showed a water-stable achiral zeolite-imidazole MOF-like metal
salt (4, 5-IMD-Zn) in cooperation with a natural chiral selector carboxymethyl (CM)-β-CD,
creating a great synergistic system for OT-CEC [164]. For preparing the coated columns,
the growth of MOF NPs was provoked on the inner wall of the imidazolyl functional
column. The synergistic separation system resulted in the baseline resolutions of atenolol,
ofloxacin, and hydroxychloroquine. Based on the results, the separation resolution of three
basic drugs improved compared to the bare capillary. The RSDs were 2.1, 2.6, and 5.2%
for the run-to-run, day-to-day, and column-to-column retention time, respectively. The
stability of the 4, 5-IMD-Zn-modified OT-column was evaluated by keeping the prepared
column at 4 ◦C for more than four months and then employed to test the Rs of atenolol.
Compared to the data from four months ago, the RSD of the Rs was <5.1%, demonstrating
the good stability of the prepared column up to four months at 4 ◦C. This study expanded
achiral MOFs performance in CEC for enantiomer resolution and supplied an affordable
synergistic separation system for commercial application.

Du and co-workers also designed a novel capillary monolith column with a combina-
tion of properties of MOF-5 and pepsin as a chiral selector for racemate resolution [165].
The layer-by-layer self-assembly approach was employed for inducing the growth of
MOF-5 on the original monolith of poly(GMA-co-EDMA) (poly (glycidyl methacrylate-co-
ethylene dimethacrylate)). Then, pepsin was covalently attached to the MOF-5 carboxyl
group by an amidation reaction under the catalysis of N-(3-dimethylaminopropyl)-N’-
ethylcarbodiimide and N-hydroxysuccinimide (Figure 19). Ultimately, the developed
pepsin@MOF-5@poly(GMA-co-EDMA) column was employed for the enantiomer separa-
tion of six basic racemic drugs: chloroquine, hydroxychloroquine, clenbuterol, nefopam,
hydroxyzine, and chlorpheniramine. The RSDs of Rs and migration time for interday
and intraday were <4.0%, whereas the RSDs of column-to-column were <6.6%, demon-
strating the good repeatability of the developed column. The pepsin-MOF-5-modified
column obtained great chromatographic resolutions (Rs = 1.74 and 2.41) for chloroquine
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and hydroxychloroquine under optimal conditions, respectively. Moreover, the prepared
column showed rapid enantioseparation within 15 min. This reveals that the modification
of capillary monolithic columns with MOFs causes good racemates separation by CEC.
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Figure 19. A layer-by-layer self-assembly of MOF-5 and pepsin as a chiral selector to prepare new
monolithic capillary columns. Because of the synergistic effect of MOF and pepsin, the developed
capillary column could complete the racemate resolution of 6 chiral drugs within 15 min with good
repeatability and stability. Layered MOF-5 is the key to enhancing the performance of capillary
columns, and its application in CEC is also one of the advanced trends in the future. Reprinted
(adapted) with permission from [165].

Wang and colleagues fabricated a new chiral stationary phase of a zirconium (Zr)-
based MOF named L-Cys-PCN-224 using the one-pot procedure for enantiomer resolution
by CEC [166]. The L-Cys-PCN-224 was attached to the OT-column and used for the
enantiomer separation of nine types of natural amino acids, including neutral leucine,
glutamine, methionine, Trp, proline, phenylalanine, valine, basic His, and acidic Asp
(Figure 20). Based on the achieved results, the prepared chiral stationary phase possessed
a high specific surface area, excellent crystallinity, and thermal stability. Meanwhile, the
scanning electron microscope confirmed the successful linkage of the L-Cys-PCN-224 to the
inner walls of the OT column. The RSDs for the average column efficiency and the migration
time of column-to-column, day-to-day, and run-to-run were 0.62–9.14%. The lifetime of
the l-Cys-PCN-224-modified column was evaluated by the RSDs of migration time, and
the column efficiency for 200 successive injections was <4.38% and <7.81%, respectively.
According to the obtained results, the L-Cys-PCN-224-linked OT column demonstrated
a longer lifetime, good reproducibility, and stability. Chiral resolution performance was
proved for the neutral, acidic, and basic amino acids with a resolution of 1.38–13.9. These
results demonstrated that the CSP had excellent potential in the chiral separation field. The
results show the essential roles of hydrogen bonding, steric fit, electrostatic interaction,
and π-π interaction between the analytes and the CSP crystal structure. Table 3 provides a
summary of CMOFs as CSPs for CEC.
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Table 3. Chiral MOFs as chiral stationary phases for CEC.

Separation
Mode Type of MOF Chiral Selector Analyte

Column
Preparation

Strategy

RSD% (Run-to-Run,
Day-to-Day, and

Column-to-Column)
Ref.

Packed CEC [In3O(obb)3(HCO2)
(H2O)]·solvents -

(±)-hydrobenzoin,
(±)-1-phenyl-1,2-ethanediol,

and clenbuterol

Pressurized
packing

1.51–3.63, 1.83–3.98, and
3.42–5.66% [167]

OT-CEC
HKUST-1 of type

Cu3(BTC)2 (or
MOF-199)

carboxymethyl-
β-cyclodextrin
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synthesis
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OT-CEC PDA-γ-CD-
MOF(Cu-SD) γ-cyclodextrin

dansyl (Dns)-DL-phenylalanine,
Dns-DL-leucine, Dns-DL-valine,

Dns-DL-threonine, and
Dns-DL-serine

Static coating 0.27, 1.45 and 4.88% [173]

OT-CEC BSA@ZIF-8 -

methylparaben, ethylparaben,
propylparaben, butylparaben,

position isomers, Ephedrine and
pseudoephedrine

Dynamic
coating

4.1–5.3, 5.5–6.7, and
7.4–8.7% [174]

7. Conclusions and Future Perspectives

This thoroughly summarized review discussed MOFs and their applications, especially
in chiral analysis. Although the research application of MOFs is only from the last two
decades, no comprehensive review has been presented on MOFs in the sub-branches of
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chiral recognition and separation techniques. MOFs are emerging as the latest class of
crystalline nanoporous materials and a very efficient substance for diverse chiral recognition
and separation applications. The high modularity, inherent chirality, and simplicity of
CMOFs’ functionalization allow the improvement of many unique chiral materials for
advanced applications. In comparison to conventional chiral solid substances, including
chiral carbons, chiral zeolites, and chiral amorphous polymers, CMOFs are prominent and
outstanding because of their capacity for the perfect combination of tunability, excessive
enantiopurity, single crystallinity, excellent designability, and limitless pore/structural
diversity. These characteristics enable the superb tuning of material features and the
accurate knowledge of relationships between property and structure at the molecular level.
We compressively summarized chirality, the principles of chiral analysis, and the state-of-
the-art accomplishments of MOFs in an extensive scope of enantioselective performances,
with the primary space allotted to chiral recognition and separation.

The growing demand for enantiopure composites has provoked rapid progress in
applying functional materials for enantioseparation strategies. Using chromatographic
methods, natural and synthetic polymers have long had the capacity for enantioselec-
tive resolution by roughly 90%. Even though chiral polymer-based racemic resolutions
have made outstanding accomplishments, there are still difficulties regarding the separa-
tion mechanism. Considering this, CMOFs with manageable chiral cavities and specific
crystalline configurations are the most appropriate candidates for preparative and ana-
lytical separations of racemates. It is hoped that a thorough examination of the racemic
separation mechanism at the molecular level would remarkably expedite and extend
CMOF-based enantioseparation.

In modern chemical analysis, the enantioselective sensing field has emerged because
of the highest level of chirality complexity, and enantiospecific determination between
racemic materials is incorporated in approximately every chiral process. Subsequently,
the enantiorecognition of racemic molecules through the application of suitable analytical
approaches, including fluorescence, electrochemical, QCM, and CD methods, has received
substantial attention from researchers. It seems that CMOFs are intrinsically sensitive to
chiral guests because of their concentration capacity of various targets at higher levels.
However, the virtuous potential of CMOFs as enantioselective sensors has not completely
manifested due to insufficient principles of design as well as inadequate chiral systems.

Nevertheless, integrating MOFs with chiral recognition and separation technologies is
progressively assumed to be a promising avenue toward high-performance enantioselective
determination and separations. In the following decades, it is optimistic that CMOFs will
become one of the pivotal substances in chirotechnology. In this respect, close cooperation
between engineers and scientists from various disciplines is exceedingly needed to solve
challenges and evaluate the actual performance of MOFs in related areas.
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