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Abstract: In this study, Ni–Co–Te nanocomposites with multi-dimensional hierarchical structure
were successfully prepared using a hydrothermal method. Ni–Co–Te nanocomposites used as
electrode materials afford enhanced electroactive properties for electrochemical acetaminophen
sensing. Field emission scanning electron microscopy (FESEM), field emission transmission electron
microscopy (FETEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were
used to characterize the morphological and structural properties to boost their further promotion
in acetaminophen sensing. The electrochemical performance of Ni–Co–Te nanocomposites was
characterized by electrochemical measurements (cyclic voltammetry (CV) and differential pulse
voltammetry (DPV)). The lower electronegativity of the telluride atom and unique structural features
of Ni–Co–Te nanocomposites endow the materials with promising performance in acetaminophen
sensing (including linear range from 2.5 to 1000 µM, sensitivity of 0.5 µAµM−1cm−2, limit of detection
of 0.92 µM, and excellent selectivity). The results indicated that Ni–Co–Te nanocomposites can serve
as promising electrode materials for practical application in electrochemical acetaminophen sensing.

Keywords: Ni–Co–Te nanocomposites; electrochemical acetaminophen sensing; electronegativity;
structural features

1. Introduction

Acetaminophen (N-acetyl-p-aminophenol, paracetamol) is the most frequently used
over-the-counter (OTC) analgesic and antipyretic medication in the short-term and moder-
ately effective treatment of fever and pain management for patients. The analgesic effect
of acetaminophen is believed to act through a cyclooxygenase (COX) inhibitor in the cen-
tral nervous system (CNS) involved in the transport of endocannabinoid and vanilloid,
promoting its use as a mild sedative and/or general anesthetic [1,2]. However, mounting
evidence (albeit controversial) supports that overdosing of acetaminophen (a dosage of
3~4 g daily is recommended for an adult) leads to the accumulation of toxic intermedi-
ary metabolites linked with increased risk of various dangerous side effects including
asthmatic symptoms [3] and acute liver/kidney damage [4]. In Taiwan, more than approxi-
mately 400 million doses of annual prescriptions for acetaminophen-containing products
were dispensed from 2016 to 2020 to treat acute and chronic pain. According to recent
reports [5–9], the global yearly acetaminophen market, involving a broad range of market
value estimations, was estimated to be approximately USD 100~800 million. For these rea-
sons, acetaminophen was listed by the World Health Organization (WHO) as an essential
medicines [9]. This supports the best evidence that there is a current over-reliance on
acetaminophen for humans to relieve pain. Therefore, there is an urgent need for the
development of accurate and rapid analytical methods to determine acetaminophen levels
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in various pharmaceutical sample analyses and human serum. In recent years, various
analytical methods have commonly been used to determine acetaminophen, including
high-performance liquid chromatography [10], near-infrared spectrometry [11], ultraviolet–
visible (UV–vis) spectrometry [12], and gas chromatography-mass spectrometry [13]. These
analytical methods exhibit excellent sensitivity, selectivity, and reliable results for ac-
etaminophen detection. Previous studies have also indicated that use of an electrochem-
ical method may be a choice procedure for performing acetaminophen sensing due to
its low cost, easy fabrication, excellent sensitivity/selectivity, good reproducibility, and
excellent accuracy/portability of equipment [14–17]. Therefore, integration of these ana-
lytical methods (including the electrochemical method) could open new possibilities in
acetaminophen sensing for rapid screening and confirmatory testing in practical applica-
tion. According to previous reports, the development of electrochemical acetaminophen
sensing largely depends on the optimal match of promising electrode materials, including
noble metals [18,19], carbon materials [20,21], and transition metal compounds [22,23].
Considering sustainable development issues, novel well-defined electrode materials based
on earth-abundant transition metal compounds, owing to their higher exposed electrocat-
alytic active sites, have been considered as ideal electrode materials and strong contenders
for integration into electrochemical sensing [24–26]. Among transition metal compounds,
transition metal tellurides possess a high degree of covalency in the metal–telluride bond
due to the lower electronegativity of telluride (2.1) compared with Se (2.55), S (2.58), and
O (3.44), meaning there is a higher energy and weaker attraction of electrons in the 3d
orbitals of transition metal atoms in transition metal tellurides, than transition metal com-
pounds containing oxides, sulfides, and selenides. Thus, lower energies are required to
charge electrons occurring within electrochemical reactions, which promotes stronger re-
action kinetics between the covalency of metal−ligand bonding, with a greatly improved
electrochemical performance [27,28]. Such unique characteristics render transition metal
tellurides accessible for promising application in the field of electrochemistry, including
water splitting [29], CO2 reduction [30], and rechargeable batteries [31]. To date, only
a few reports can be found regarding transition metal tellurides and their predominantly
electrochemical application, which greatly motivates us to explore their application in the
field of electrochemical sensing.

In this work, Ni–Co–Te nanocomposites were successfully prepared by hydrothermal
method. Further, Nafion was employed as a coating material to obtain well-dispersed
Ni–Co–Te nanocomposites firmly attached to the working electrode surface. The as-prepared
materials were used as electrochemically active materials to detect acetaminophen via
electrochemical methods. Te atoms in the Ni–Co–Te nanocomposites with relatively lower
electronegativity may reflect a higher degree of metal−ligand bonding, to further improve
the electrochemical performance. It is expected that Ni–Co–Te nanocomposites could be
a promising electrode material for electrochemical acetaminophen sensing.

2. Materials and Methods
2.1. Reagents

Cobalt (II) chloride hexahydrate (CoCl2·6H2O) and nickel chloride hexahydrate
(NiCl2·6H2O) were obtained from Alfa Aesar (Ward Hill, MA, USA). Tellurium powder,
Nafion solution (5 wt % in mixture of lower aliphatic alcohols and water), ethylenediamine,
hydrazine, acetaminophen (AC), D-(+)-Glucose (Glu), dopamine hydrochloride (DA), uric
acid (UA), and L-ascorbic acid (AA) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Anhydrous ethanol (C2H5OH, 99.5%) was purchased from J.T. Baker (Phillipsburg,
NJ, USA). The deionized water (DI water) was produced from a Milli-Q water purification
system (Millipore, MA, USA). All chemicals were analytical grade and were used as
received without further purification.
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2.2. Preparation of Ni–Co–Te Nanocomposites

Ni–Co–Te nanocomposites were successfully synthesized by using Ni–Co precursors
through a hydrothermal process. First, 0.411 g NiCl2·6H2O and 0.409 g CoCl2·6H2O were
dissolved in 30 mL DI water under ultrasonic treatment for 30 min to form a homogenous
solution. Second, 0.235 g tellurium powder was dispersed to 8 mL ethylenediamine. Then,
the mixture was gradually added into Ni–Co precursors under ultrasonic treatment for
30 min. Hydrazine, as reducing reagent, was slowly added to the above solution with
continuous stirring, which caused the formation of black-colored precipitation. Then, the
obtained mixture was transferred into a 100 mL Teflon-lined stainless steel autoclave and
heated at 180 ◦C for 24 h. The resulting Ni–Co–Te nanocomposites were separated by
centrifugation, washed with ethanol and DI water (three times), dried in an oven at 60 ◦C,
and collected for subsequent treatment.

2.3. Preparation of Modified Electrode

The preparation procedure of as-prepared samples modified GCE was as follows: first,
bare GCE was carefully polished with alumina powders (0.3 and 0.05 µm) on a polishing
cloth, then was rinsed thoroughly with distilled water, sonicated in ethanol and dis-
tilled water (three times), and dried at ambient temperature. The resulting Ni–Co–Te
nanocomposites were dispersed into a 0.5 wt % Nafion solution by ultrasonication to
form the stabilized and well-dispersed Ni–Co–Te/Nafion solution. Then, the mixture
solution (10 µL) was dropped on the surface of bare GCE and air dried at ambient
temperature. Finally, a Ni–Co–Te/Nafion-modified GCE was obtained for the following
electrochemical measurements.

2.4. Apparatus

The morphology was characterized using field emission scanning electron microscopy
(FESEM, JSM-7410F, JEOL, Akishima, Japan) and field emission transmission electron
microscopy (FETEM, JEM-2100F, JEOL, Akishima, Japan). The chemical structure and
composition were determined by X-ray photoelectron spectroscopy (XPS, PHI-5000 Ver-
saprobe, ULVAC-PHI, Chigasaki, Japan). X-ray diffraction (XRD) patterns were recorded
using a D8 Discover (Bruker) X-ray diffractometer with Cu Kα radiation. Electrochemical
measurements were performed using a three-electrode system comprised of as-prepared
samples of modified glassy-carbon electrode (GCE, 3.0 mm in diameter, Tokai Carbon,
Tokyo, Japan), a platinum wire counter electrode, and an Ag/AgCl (3 M KCl) reference
electrode by an electrochemical analyzer (Autolab, model PGSTAT30, Eco Chemie, Utrecht,
The Netherlands). All electrochemical measurements were conducted in 0.1 M phosphate
buffered saline (PBS, pH = 7.0) as the supporting electrolyte in the absence and presence of
acetaminophen at ambient temperature.

3. Results

The morphologies of Ni–Co–Te nanocomposites were characterized by FESEM and
FETEM. FESEM imaging (Figure 1a) revealed that Ni–Co–Te nanocomposites with a mace-
like structure were successfully synthesized via hydrothermal method. It confirmed that the
Ni–Co–Te nanocomposites were constructed of a multi-dimensional hierarchical structure
consisting of fibers (several micrometers in average length and 100~200 nm in diameter)
and the surface was covered by a densely-packed short needle-like structure; this was
consistent with the FETEM observation (Figure 1b,c). Owing to these unique structural
features, the Ni–Co–Te nanocomposites, through the formation of rough surfaces, were
endowed with a large specific surface area, which could easily be extended to expose more
electrochemically active interface.
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Figure 1. (a) FESEM, and (b,c) FETEM, images of Ni–Co–Te nanocomposites.

The structure and phase composition of Ni–Co–Te nanocomposites were charac-
terized by XRD pattern and compared with the standard patterns of CoNiTe2 (JCPDS
No. 65-8961) [32], as shown in Figure 2. The XRD pattern showed five distinct diffraction
peaks located at 2θ about 31.1◦, 42.8◦, 46.0◦, 56.5◦, and 58.2◦, which conformed to the (101),
(102), (110), (201) and (103) lattice planes of CoNiTe2. The surface elemental composition
and valance states of Ni–Co–Te nanocomposites were characterized by XPS, as shown in
Figure 3. The full scan XPS survey spectrum of the Ni–Co–Te nanocomposites (Figure 3a)
confirmed the existence of Ni 2p, Co 2p, and Te 3d elements in the Ni–Co–Te nanocompos-
ites. In order to further characterize the chemical states of these elements, the nanocom-
posite was characterized in detail by high-resolution XPS spectra. The high-resolution
XPS spectra of Ni 2p, Co 2p, and Te 3d of the Ni–Co–Te nanocomposites are shown in Fig-
ure 3b–d, respectively. The Ni 2p XPS spectrum (Figure 3b) was divided into two spin–orbit
doublets (873.2 eV for Ni 2p1/2 and 855.4 eV for Ni 2p3/2) with a spin–orbit splitting value
of 17.8. To identify the specific Ni species, the Ni 2p1/2 (Ni 2p3/2) doublets were further de-
convoluted into three peaks located at 872.2 eV (852.8 eV), 873.5 eV (855.6 eV), and 879.4 eV
(861.2 eV), attributed to the Ni2+ and Ni3+, and shake-up satellite (Sat.). This implied the
coexistence of Ni2+ and Ni3+ states in the Ni–Co–Te nanocomposites [33]. Figure 3c shows
that the Co 2p XPS spectrum included two spin–orbit-split doublets located at 796.3 eV in
Co 2p1/2 (780.6 eV in Co 2p3/2) with a spin–orbit splitting value of 15.7 eV, accompanied
by two shake-up satellites (Sat.) at 802.5 eV and 786.7 eV. The Co 2p1/2 and Co 2p3/2 peaks
could be further deconvoluted into two overlapping peaks corresponding to Co2+ and
Co3+ located at 797.8 eV (782.6 eV) and 796.2 eV (780.5 eV), revealing that Co2+ and Co3+

oxidation states coexisted in the Ni–Co–Te nanocomposites [34]. The Te 3d XPS spectrum
in Figure 3d exhibited two spin–orbit peaks of Te 3d3/2 and Te 3d5/2 at 583.2 eV and
572.8 eV, and the spectra were accompanied by two strong shake-up satellites (Sat.) located
at 586.4 eV and 576.0 eV. The obvious characteristic peaks of shake-up satellites implied
Te4+ in the Ni–Co–Te nanocomposites [35]. Therefore, the results of the above analyses
demonstrate that Ni–Co–Te nanocomposites were successfully prepared and presented the
best morphological and structural characteristics, which boosts their further promotion in
practical applications for electrochemical sensing.



Chemosensors 2022, 10, 336 5 of 13

Chemosensors 2022, 10, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. XRD patterns of Ni–Co–Te nanocomposites. 

 
Figure 3. XPS paterns of Ni–Co–Te nanocomposites: (a) full scan, (b) Ni 2p, (c) Co 2p, and (d) Te 
3d. 

The electrochemical characteristics of Ni–Co–Te nanocomposites were performed by 
cyclic voltammetry (CV). Figure 4 shows the CV curves of bare GCE, Nafion-modified 
GCE, and Ni–Co–Te/Nafion-modified GCE in 0.1 M PBS (pH = 7.0) in the absence (dashed 
lines) and presence (solid lines) of 1 mM acetaminophen at a scan rate of 50 mV s−1. In the 
absence of acetaminophen, no noteworthy redox peak was detected in the CV curves of 
these electrodes. In contrast, after adding 1 mM acetaminophen into the electrolyte, a pair 
of non-reversible redox peak appeared in the CV curves (expressed by the larger peak-to-

Figure 2. XRD patterns of Ni–Co–Te nanocomposites.

Chemosensors 2022, 10, x FOR PEER REVIEW 5 of 13 
 

 

 
Figure 2. XRD patterns of Ni–Co–Te nanocomposites. 

 
Figure 3. XPS paterns of Ni–Co–Te nanocomposites: (a) full scan, (b) Ni 2p, (c) Co 2p, and (d) Te 
3d. 

The electrochemical characteristics of Ni–Co–Te nanocomposites were performed by 
cyclic voltammetry (CV). Figure 4 shows the CV curves of bare GCE, Nafion-modified 
GCE, and Ni–Co–Te/Nafion-modified GCE in 0.1 M PBS (pH = 7.0) in the absence (dashed 
lines) and presence (solid lines) of 1 mM acetaminophen at a scan rate of 50 mV s−1. In the 
absence of acetaminophen, no noteworthy redox peak was detected in the CV curves of 
these electrodes. In contrast, after adding 1 mM acetaminophen into the electrolyte, a pair 
of non-reversible redox peak appeared in the CV curves (expressed by the larger peak-to-
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The electrochemical characteristics of Ni–Co–Te nanocomposites were performed by
cyclic voltammetry (CV). Figure 4 shows the CV curves of bare GCE, Nafion-modified
GCE, and Ni–Co–Te/Nafion-modified GCE in 0.1 M PBS (pH = 7.0) in the absence (dashed
lines) and presence (solid lines) of 1 mM acetaminophen at a scan rate of 50 mV s−1.
In the absence of acetaminophen, no noteworthy redox peak was detected in the CV
curves of these electrodes. In contrast, after adding 1 mM acetaminophen into the
electrolyte, a pair of non-reversible redox peak appeared in the CV curves (expressed
by the larger peak-to-peak separation and the larger difference of the anodic and ca-
thodic peak current), indicating the non-reversible two-proton and two-electron trans-
fer reaction mechanism of the acetaminophen/N-acetyl-p-quinoneimine redox couple
(acetaminophen↔ N-acetyl-p-quinoneimine + 2e− + 2H+) [36]. By comparing the CV
curves, Ni–Co–Te/Nafion-modified GCE exhibited obviously improved peak current and
a relatively reduced peak-to-peak potential separation of redox pair, compared with bare
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GCE and Nafion-modified GCE, indicating remarkable electrocatalytic activity towards the
redox reaction of acetaminophen. Furthermore, as mentioned in the CV curves (Figure 4), it
was also noted that Nafion-modified GCE exhibited a relatively higher electrocatalytic activ-
ity than bare GCE. Pre-concentration of the target analyte in the Nafion-modified GCE was
the main reason for its good electrocatalytic performance. Nafion, as a cation exchange poly-
mer, is deprotonated (pH > pKa = −6), and acetaminophen is protonated (pH < pKa = 9.7)
in pH 7.0 PBS (in this case). Hence, it provided evidence that the electrically negatively-
charged Nafion, serving as a cation exchanger, could promote the pre-concentration of
acetaminophen on the surface of Nafion-modified GCE, which further improved the per-
formance in the detection of acetaminophen [37]. Details for the anodic/cathodic peak
potentials (Epa and Epc) and peak-to-peak separation values (∆Ep) of the three electrodes in
the presence of 1 mM acetaminophen are included in Table 1. Cyclic voltammetric study
of the electrochemical redox reaction can provide a qualitative account of the degree of
reversibility by comparison of the peak-to-peak separation values (∆Ep) of the electrodes.
The smallest ∆Ep values (0.34 V) of Ni–Co–Te/Nafion-modified GCE demonstrated that
Ni–Co–Te nanocomposites possess relatively good reversibility. The anodic peak current
observed with Ni–Co–Te/Nafion-modified GCE was approximately 27.17 µA, that is, 3.03
and 1.74 times higher than bare GCE (8.96 µA) and Nafion-modified GCE (15.59 µA). The
excellent electrochemical performance of the Ni–Co–Te nanocomposites could be explained
by two reasons: First, the lower electronegativity of the telluride atom in the Ni–Co–Te
nanocomposites created a high degree of covalency in the metal–telluride bond. It meant
that relatively lower energy was required for preceding electrochemical reactions and
significantly accelerating the redox electrochemical kinetics. Second, the unique structural
features of Ni–Co–Te nanocomposites also played another indispensable role in deliver-
ing a large specific surface area to expose more electrochemically active interface, thus,
endowing excellent electrochemical sensing performance.
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Table 1. The anodic/cathodic peak potentials (Epa and Epc) and peak-to-peak separation values (∆Ep)
of the electrodes in the presence of 1 mM acetaminophen.

Electrodes Epa (V) Epc (V) ∆Ep (V)

Bare GCE 0.68 0.04 0.64

Nafion-modified GCE 0.55 0.16 0.39

Ni–Co–Te/Nafion-modified GCE 0.52 0.18 0.34
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In order to achieve optimal electrochemical sensing performance for the redox reaction
of acetaminophen, the amounts of Ni–Co–Te nanocomposites and pH were investigated
to gain better insight into the optimization of the operating parameters affecting electro-
chemical sensing performance. Ni–Co–Te/Nafion-modified GCE, with different amounts
of Ni–Co–Te nanocomposites and pH, were characterized by CV in 0.1 M PBS (pH = 7.0) in
the presence of 1 mM acetaminophen at a scan rate of 50 mV s−1. The impact of the loading
amount of nanocomposite was performed by adding different loading amounts of Ni–Co–
Te nanocomposites (from 0.5 to 4.0 mg) into 0.5 wt % Nafion solution to form a homogenous
dispersion, which was then drop cast onto the bare GCE. Figure 5a shows that the anodic
peak current gradually increased with an increasing loading amount of Ni–Co–Te nanocom-
posites. When the loading amount of Ni–Co–Te nanocomposites exceeded 2 mg, a slight
decrease in the anodic peak current was observed (see inset of Figure 5a). This decrease
in peak current was due to the mass-transfer limitation of excess catalyst loading [38].
Therefore, 2 mg was selected as the best loading amount of Ni–Co–Te nanocomposites for
electrochemical acetaminophen sensing. To interpret the impact of pH on electrocatalytic
activity with the redox reaction of acetaminophen, CV was conducted by adjusting pH
values of 0.1 M PBS (in the range of 5~9) in the presence of 1 mM acetaminophen at a scan
rate of 50 mV s−1. In Figure 5b, it can clearly be observed that both anodic and cathodic
potentials shifted negatively with increasing pH, illustrating that the electrochemical re-
actions of acetaminophen involve proton transfer. A linear relationship between anodic
peak potential (Epa) and the pH values of PBS was also observed. The linear regression
equation can be expressed as Epa (V) = 0.910 − 0.053 pH (R2 = 0.984) (see inset of Figure 5b).
The slope of −0.053 pH/V is very close to the theoretical value of −0.059 pH/V, revealing
that the proposed reaction mechanism of acetaminophen involved two electron/proton
transfer steps, as governed by the Nernst equation [39,40]. Furthermore, the anodic peak
current started to increase from pH 4.0 to 7.0 and then the anodic peak current conversely
decreased (see inset of Figure 5b). Therefore, a pH value of 7.0 was considered optimum to
ensure excellent catalytic activity in enhancing electrochemical acetaminophen sensing.

Figure 6 displays the CV curves of Ni–Co–Te/Nafion-modified GCE in 0.1 M
PBS (pH = 7.0) in the presence of 1 mM acetaminophen at different scan rates from
50 to 300 mV s−1. It can be seen that the peak current increases with the increasing
scan rate, in which both anodic and cathodic peak current (Ipa and Ipc) vary linearly
with the square root of the scan rate (υ1/2) (Figure 6b). Both linear regression equa-
tions can be expressed as Ipa (µA) = 15.333 + 1.621υ1/2 ((mV s−1)1/2) (R2 = 0.999) and
Ipc (µA) = 1.605 − 1.608υ1/2((mV s−1)1/2) (R2 = 0.999), respectively, indicating a diffusion-
controlled process of electrochemical acetaminophen reaction on Ni–Co–Te/Nafion-
modified GCE [41].

Under the optimized experimental conditions, the electrochemical performance of the
Ni–Co–Te/Nafion-modified GCE for acetaminophen was measured by differential pulse
voltammetry (DPV) in 0.1 M PBS (pH = 7.0) with the successive addition of various ac-
etaminophen concentrations (0~1000 µM) to estimate the applicability of the fabricated elec-
trochemical sensing. The optimal parameters for DPV-based experiments were: potential
window = 0.2~0.8 V; scan rate = 20 mVs−1; modulation time = 0.05 s; interval time = 0.2 s;
and step potential = 0.004 V. Figure 7a shows that Ni–Co–Te/Nafion-modified GCE ex-
hibited a better differential pulse voltammetric response towards acetaminophen sens-
ing. Differential pulse voltammetric response increased with respect to acetaminophen
concentration up to 1000 µM. The differential pulse voltammetric response in the con-
centration range between 0 and 1000 µM collected to plot the corresponding calibration
plot is illustrated in Figure 7b. The linear regression equation between anodic peak cur-
rent (Ipa) and the concentration values of acetaminophen (Conc.) can be expressed as
Ipa (µA) = 0.386 + 0.035 Conc. (µM). The calibration plot was linear from 2.5 to 1000 µM
(R2 = 0.996). The sensitivity, limit of detection (LOD) based on 3 Sb/m, and limit of quantifi-
cation (LOQ) based on 10 Sb/m (Sb is the standard deviation of the blank signals for n = 3,
and m is the slope of the calibration plot) can be calculated from the calibration plot and
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were estimated to be 0.50 µAµM−1cm−2, 0.92 µM, and 3.07 µM, respectively, which were
comparable to other previously reported values using transition metal compounds based
materials [42–45] (Table 2).
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Figure 5. CV curves of Ni–Co–Te/Nafion-modified GCE with: (a) different amounts of Ni–Co–Te
nanocomposites, and (b) pH in 0.1 M PBS in the presence of 1 mM acetaminophen at a scan rate
of 50 mV s−1. Inset of Figure 5 (a): plot of different amounts of Ni–Co–Te nanocomposites vs. the
anodic peak current (Ipa). Insets of Figure 5 (b): plot of pH vs. the anodic peak potential (Epa) (upper
left inset) and plot of pH vs. the anodic peak current (Ipa) (bottom right inset).
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Table 2. Comparison of the performance of electrochemical acetaminophen sensing using transition
metal compounds based materials.

Electrode Materials Linear Range
(µM)

Sensitivity
(µAµM−1cm−2)

Limit of
Detection (µM) References

Co–Ni/Copper foam 10–100 7.96 2.70 [42]

CuCo2O4 5–5000 0.32 2.75 [43]

NiO–CuO/graphene 4–100
100–400

0.62
0.38 1.33 [44]

NiO 7.5–3000 0.09 0.23 [45]

Ni–Co–Te 2.5–1000 0.50 0.92 This work

Interfering molecules represent a challenging and significant problem related to se-
lectivity issues in a wide variety of electrochemical sensing mechanisms. Interference
from the oxidation of common interfering species present in samples (including dopamine
hydrochloride (DA), uric acid (UA), D-(+)-Glucose (Glu), and L-ascorbic acid (AA), etc.)
will interfere with detection and quantitative analysis of the substance. Hence, interference
testing is conducted to reflect the sensing ability to discriminate the interfering species
for determining the target molecule. In this study, interference testing was performed
to evaluate the selectivity of Ni–Co–Te nanocomposites by differential pulse voltamme-
try (DPV) in 0.1 M PBS (pH = 7.0) with the presence of 5 µM DA, 5 µM UA, 5 µM Glu,
5 µM AA, and 5 µM acetaminophen (AC), respectively. As observed (Figure 8a), Ni–Co–
Te/Nafion-modified GCE had the ability to discriminate the interfering species through
well-separated oxidation peaks between these interfering species. It can be expected that
Ni–Co–Te nanocomposites have excellent selectivity for determining the target molecule in
the presence of the other interfering species. To further prove the feasibility of Ni–Co–Te
nanocomposites with the interference of coexisting substances in the determination of ac-
etaminophen, Figure 8b displays the differential pulse voltammetric response in 0.1 M PBS
(pH = 7.0) with successive addition of various acetaminophen concentrations (from 5 µM
to 30 µM) coexisting with 5 µM DA, 5 µM UA, 5 µM Glu, and 5 µM AA. The differential
pulse voltammetric response of acetaminophen increased with respect to acetaminophen
concentrations up to 30 µM, suggesting no significant effects on interfering species. It
showed that Ni–Co–Te/Nafion-modified GCE exhibited a high selectivity for determining
acetaminophen with negligible interfering species. The excellent selectivity was attributed
to the unique structural and chemical features of Ni–Co–Te nanocomposites, which expose
more electrochemically active sites to facilitate its electrocatalytic performance.

Chemosensors 2022, 10, x FOR PEER REVIEW 10 of 13 
 

 

 
Figure 8. (a) Interference tests of Ni–Co–Te/Nafion-modified GCE using DPV in 0.1 M PBS (pH = 
7.0) with the presence of 5 μM DA, 5 μM UA, 5 μM Glu, 5 μM AA, and 5 μM acetaminophen (AC), 
respectively. (b) Interference tests of Ni–Co–Te/Nafion-modified GCE using DPV in 0.1 M PBS (pH 
= 7.0) with the successive addition of various acetaminophen concentrations (from 5 μM to 30 μM) 
coexisting with 5 μM DA, 5 μM UA, 5 μM Glu, and 5 μM AA. 

For real sample analysis, the Ni–Co–Te/Nafion-modified GCE was applied to the de-
termination of acetaminophen concentration in commercial Panadol tablets obtained from 
the market (label claim: Acetaminophen 500 mg/tablet). Figure 9 displays the differential 
pulse voltammetric response in 0.1 M PBS (pH = 7.0) with the addition of various aceta-
minophen concentrations (50, 100, and 200 μM) from real samples (Panadol tablets). The 
preparation procedure of the tablet sample solution was as follows: each tablet containing 
500 mg paracetamol was weighed and finely powdered in a mortar. The adequate amount 
of ground powder was transferred into a 10 mL volumetric flask and dissolved in 0.1 M 
PBS (pH = 7.0) to obtain final acetaminophen concentrations of 50, 100, and 200 μM. The 
results for real sample analyses are given in Table 3, which shows that good recovery 
(98.46~99.85%), precision (calculated by the relative standard deviation, RSD) 
(0.79~1.86%), and accuracy (calculated by relative error, RE) (0.25~1.54%) were obtained 
through measurements repeated three times. Therefore, Ni–Co–Te nanocomposites have 
accurate and reliable detection results for electrochemical acetaminophen sensing of a 
commercial acetaminophen tablet, illustrating that Ni–Co–Te nanocomposites have po-
tential usefulness for practical application. 

 
Figure 9. Real sample analysis (commercial Panadol (500 mg/tablet)) of Ni–Co–Te/Nafion-modified 
GCE using DPV in 0.1 M PBS (pH = 7.0) with the addition of various acetaminophen concentrations 
(50, 100, and 200 μM). 

Figure 8. (a) Interference tests of Ni–Co–Te/Nafion-modified GCE using DPV in 0.1 M PBS (pH = 7.0)
with the presence of 5 µM DA, 5 µM UA, 5 µM Glu, 5 µM AA, and 5 µM acetaminophen (AC),
respectively. (b) Interference tests of Ni–Co–Te/Nafion-modified GCE using DPV in 0.1 M PBS
(pH = 7.0) with the successive addition of various acetaminophen concentrations (from 5 µM to
30 µM) coexisting with 5 µM DA, 5 µM UA, 5 µM Glu, and 5 µM AA.
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For real sample analysis, the Ni–Co–Te/Nafion-modified GCE was applied to the
determination of acetaminophen concentration in commercial Panadol tablets obtained
from the market (label claim: Acetaminophen 500 mg/tablet). Figure 9 displays the differ-
ential pulse voltammetric response in 0.1 M PBS (pH = 7.0) with the addition of various
acetaminophen concentrations (50, 100, and 200 µM) from real samples (Panadol tablets).
The preparation procedure of the tablet sample solution was as follows: each tablet con-
taining 500 mg paracetamol was weighed and finely powdered in a mortar. The adequate
amount of ground powder was transferred into a 10 mL volumetric flask and dissolved in
0.1 M PBS (pH = 7.0) to obtain final acetaminophen concentrations of 50, 100, and 200 µM.
The results for real sample analyses are given in Table 3, which shows that good recovery
(98.46~99.85%), precision (calculated by the relative standard deviation, RSD) (0.79~1.86%),
and accuracy (calculated by relative error, RE) (0.25~1.54%) were obtained through mea-
surements repeated three times. Therefore, Ni–Co–Te nanocomposites have accurate and
reliable detection results for electrochemical acetaminophen sensing of a commercial ac-
etaminophen tablet, illustrating that Ni–Co–Te nanocomposites have potential usefulness
for practical application.
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Figure 9. Real sample analysis (commercial Panadol (500 mg/tablet)) of Ni–Co–Te/Nafion-modified
GCE using DPV in 0.1 M PBS (pH = 7.0) with the addition of various acetaminophen concentrations
(50, 100, and 200 µM).

Table 3. Real sample analysis of Ni–Co–Te nanocomposites.

Real
Sample

Added
(µM)

Found by
Electrochemical Sensing

(µM)

Recovery 1

(%)
Precision 2

(%)
Accuracy 3

(%)

Panadol

50 49.23 98.46 1.18 1.54

100 99.85 99.85 1.86 0.25

200 199.33 99.67 0.79 0.34
1 Recovery%: [Found/Added] × 100%. 2 Precision%: [Standard Deviation/Mean] × 100%. 3 Accuracy%:
[(Found-Added)/Added] × 100%.

4. Conclusions

In this study, Ni–Co–Te nanocomposites were successfully prepared using a hydrother-
mal method. This method was also employed to prepare the best morphological and
structural characteristics of Ni–Co–Te nanocomposites. The lower electronegativity of
the telluride atom in Ni–Co–Te nanocomposites creates a high degree of covalency in the
metal–telluride bond to significantly accelerate the redox electrochemical kinetics. The
unique structural features of Ni–Co–Te nanocomposites deliver a large specific surface area
to expose more electrochemically active interface, resulting in significantly improved elec-
trochemical sensing performance (including linear range from 2.5 to 1000 µM, sensitivity
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of 0.5 µAµM−1cm−2, limit of detection of 0.92 µM, and excellent selectivity). The remark-
able performance of Ni–Co–Te nanocomposites provides opportunities in electrochemical
acetaminophen sensing and reliability in practical electrochemical sensing application.
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