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Abstract: Microwave dielectric sensing offers a rapid, label-free, and non-invasive way of characteri-
zation and sensing of biological materials at the microfluidic scale. In this work, a dielectric sensing
is achieved with a microwave interferometric setup that is applied to cytometric applications. A fast
way to analyze and design an interferometric system at microwave frequencies in software tools is
proposed together with a novel manufacturing and assembly process, which enables a short recovery
time and avoids extensive microwave-microfluidic chip fabrication. The simulation and measure-
ment results of the interferometric setup are in agreement with an excellent match at levels below
S21 = −60 dB. The sensitive microwave setup is evaluated on measurements of 3 µm polystyrene
spheres and finally applied for characterization of a widely used laboratory Saccharomyces cerevisiae
strain, the S288C, in a frequency range from 4 to 18 GHz.

Keywords: single cell; interferometer; permittivity; yeast; microfluidics

1. Introduction

Microwave dielectric characterization and heating techniques have drawn great in-
terest in microfluidics scale for rapid heating [1,2], polymerase chain reaction [3], and
detection of biogenic liquids and analysis of biological cells. The dielectric properties of
the cell, determined by the constitutions of the cell including its size and morphology,
the membrane formation, the cytoplasm, and the organelles, are representations of the
cell’s physiological status. Because electromagnetic signals at microwave frequencies go
beyond the cell membrane, microwave dielectric characterization has been studied in
many different scenarios and on numerous biological cells. For example, the interference
technique and a lock-in amplifier were used as a detection system on a resonant struc-
ture for measuring the dielectrophoretic response of the CHO cells [4]. The interference
technique was also used to distinguish the viability of single yeast cells [5]. The bulk
impedances were measured with electrodes to acquire membrane capacitance and cyto-
plasm conductivity for characterization and classification of human non-small cell lung
carcinoma cells [6] and so on. In other words, the dielectric properties of biological cells
and the corresponding sensing is being promoted as ideal for quantitative analysis of single
cell in microfluidics [7–11].

Interferometric dielectric spectroscopy technique is a highly sensitive, broadband,
and label-free method for lab-on-chip platforms [12–16]. It is flexible in terms of sensor
selection [17] and straightforward in permittivity extraction [14,18,19]. The interferomet-
ric technique utilizes the capability of power splitters and combiners, attenuators, and
phase shifters to create two signals from one source having almost identical amplitude
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and opposite phase, through which a negative interference null at a certain frequency is
achieved. The two signals cancel out each other, forming a based line signal close to zero,
which is normally smaller than −60 dB from the source signal value. Thus, a small effective
permittivity change of the MUT caused by a single cell in a suspension medium can be
detected. However, the signal of the single cell and the extracted permittivity are sensitive
to the contrast of the dielectric properties between the cell and the medium, the size of the
cell, the topology of the sensing electrodes, and the flow height of the cell [12].

The state of art low-frequency impedance characterization techniques [4,20,21] mea-
sure the effects of ionic current flow, electrode polarization, and membrane potential of the
cell. However, the measurements using microwave frequency can detect the membrane
dielectric changes and cytoplasm ionic concentration changes [4]. In the meanwhile, the
broadband measurements specify the entire spectral response of the cell.

To tackle the challenge of analyzing the signal profile of a single cell from the system
response, we introduce in this paper a novel system modeling and signal profile simula-
tion technique for interferometric cytometry on single cell measurement. The Scattering-
parameter (S-parameter) measurements of every component are loaded in the Keysight
Advanced Design System (ADS) software tool for system modeling. Electromagnetic simu-
lations of a short length sensing electrode with a particle, cube with 3 um side length, on
top at different locations above the sensing electrodes are generated by means of Computer
Simulation Technology (CST) software tool. This is needed to model the interferometric sys-
tem as the signal varies once the particle is passing by the electrodes in flow. Furthermore,
we propose a new design and fabrication of the microfluidic channel for easy disassembly
and cleaning to solve the clogging issue and reuse of the electrodes. Finally, the 3 µm
polystyrene spheres (PSSs) were detected to validate the system setup. Afterwards, the
setup was applied to measure the yeast strain of S288C with a reported average diameter
of 4 µm to extract the permittivity change of material under test (MUT) caused by yeast
cells flowing over the sensor electrodes in the microfluidic channel.

2. Materials and Methods
2.1. System Setup and Sensor Design
2.1.1. System Setup and Measurement Principle

The proposed system setup of microwave interferometric cytometry is shown in Figure 1a,
which consists of four parts: (1) the proposed interferometric cytometry together with the
designed microfluidic sensor; (2) the vector network analyzer (VNA, Keysight M9375A,
Keysight, Santa Rosa, CA, USA) that generates high-frequency signals and provides the
readout of the two-port S-parameter measurements; (3) an inverted microscope (Olympus
IX73, Olympus Corporation, Tokyo, Japan, and Hamamatsu ORCA Flash 4 LT+ camera,
Hamamatsu, Hamamatsu, Japan) for recording images of the yeast cells passing through
the sensor to validate and correlate the microwave detection with the optical images; and
(4) a computer for saving the data of electrical detection and the images of the optical system.
Figure 1b shows the system setup during measurements.

During the single cell measurements, the high-frequency signals (4–18 GHz) generated
from VNA are separated at the port 1 by a 90-degree coupler (SigaTek, SQ16506, 4–18 GHz,
SigaTek LLC, Wayne, IN, USA) into two branches, the material-under-test (MUT) branch,
and the reference (REF) branch, with 90 degrees phase difference. The MUT branch
consists of the CPW sensor with a microfluidic channel and one attenuator (Narda 4799,
0–18 GHz, Narda-MITEQ, Hauppauge, NY, USA). While the REF branch contains only a
phase-shifter (Arra 9428a, 0–18 GHz, ARRA INC, Bay Shore, NY, USA). The readout at port
2 of another 90-degree coupler, combining the two signals from both branches, has a base
phase difference of 180 degrees. By respectively tuning the attenuator and phase-shifter to
match the losses of the two branches and make their phases reversed, the interference null
at a certain frequency can be achieved. This means that the base signal from the tuned setup
is small compared to the input signal (the transmission signal is attenuated by generally
−60 to −80 dB). Thus, small signal changes caused by single cells passing over the sensor
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inside the microfluidic channel can be detected with the proposed setup. The S-parameters
of the system are measured and shown in Figure 2a, which is tuned at f0 = 13 GHz to
−67 dB with a quality factor (Q = f0/∆ f3dB) equals to 3.8× 104. Then, the single cell
measurements can be carried out at f0 with high sensitivity.
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Figure 1. The schematic of the measurement system of the proposed microwave interferometric
cytometry and the designed microfluidic sensor. (a) the schematic and (b) the picture of the measure-
ment system setup, including the proposed microwave interferometric cytometry, VNA, microscope,
and computer; (c) The designed co-planar waveguide (CPW) sensor with tapering structure and
microfluidics on top (a straight channel with one inlet and one outlet); (d) The microscope image
of two yeast cells (marked inside the green circles) approaching the CPW sensor (the bright CPW
structure consisting of 3 parallel electrodes) in the microfluidic channel. The orange rectangular
shows the region of interest (ROI) for microscope image intensity calculation.
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Figure 2. The S-parameters of (a) the measurement system of the proposed microwave interferometric
cytometry and (b) the designed microfluidic sensor.

2.1.2. Sensor Design and Fabrication

For single cell measurements, a tapered co-planar waveguide (CPW) sensor is chosen
for its planar structure which is compatible with the integration with a microfluidic channel
and connections to the interferometric system. The dimensions of the electrodes should be
comparable to the dimensions of the cells under test. The width of the sensing signal line
and gap is both 6 µm and the ground is 20 µm wide.
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The tapered CPW structure is fabricated on a 1 mm Quartz wafer using photoresist pat-
terning, sputter coating, and lift-off techniques to form a 400 nm TiO2/Au/TiW conductor
layer [22].

The microfluidic channel (Figure 3) is made by pasting the laser-cut super thin double-
coated adhesive tape (Nitto, No.5601, 10 µm, Nitto Denko, Osaka, Japan) on top of the
sensor, then applying a 4 mm thick polydimethylsiloxane (PDMS) slab for interconnecting
the tubing with the microfluidic channel. The entire sensor and microfluidics structure
is clamped by a polymethacrylate (PMMA) fixture on top and bottom with screws. As
well, this new microfluidic structure can be easily disassembled, cleaned, and replaced
with a new double-coated adhesive tape if the channel is clogged by the cells, making the
electrode chip reusable. The S-parameter of the sensor structure with water filled liquid
channel on top is shown in Figure 2b.
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Figure 3. The topology of the tapered CPW sensor structure with microfluidic channel on top and the
zoomed-in sensing zone. Topology of the gold coated CPW sensor on quartz chip. The parameters of
the sensing CPW lines are S(ignal) = 6 um, G(ap) = 6 um, and Gnd = 20 um, and dimensions of the
PDMS liquid channel are L = 7 mm, W = 0.1 mm, and H = 10 um.

2.2. Modeling of the System

The microwave interferometric cytometry system is modeled in ADS (Figure 4). For
system modeling, the different components of the interferometric cytometry are presented
as independent units in ADS (Figure 4a), which are represented by the measured S-
parameters of the corresponding components. The loaded S-parameters are measured
with VNA, which is calibrated up to the ports of each component. The comparison of the
modeled (blue dots) and measured (orange line) system response S-parameters is shown
in Figure 5a, in which the system was tuned to 11 GHz to have the S21 be around −60 dB.
The modeled system in ADS is in good match with the measured system response. The
discrepancy in the S11 and S22 is mainly due to the reflections between different components
caused by the mismatches. The S12 and S21 differences in the interference nulls are mostly
coming from the inadequate sampling of the system model (frequency step is 5 MHz),
in other words, the frequency step needs to be smaller to acquire the deep interference
nulls. Thus, in Figure 5b, the system was modeled with a frequency step of 50 kHz in
the frequency range of 12–14 GHz. The measured interference null at 13 GHz is −65 dB,
while the modeled interference null is −62 dB, proving that the system model is in good
comparison with the real laboratory-grade measurements.
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Figure 4. The modeling of the interferometric cytometry system in ADS (a) without sensor simulation
in CST; and (b) with sensor simulation in CST. QH stands for quadrature hybrid, the 90-degree
coupler; TL stands for transmission line, which is the tapered CPW sensor; A1 is the 6 dB attenuator;
A2 and PS are the tunable attenuator and phase shifter respectively.

Chemosensors 2022, 10, x FOR PEER REVIEW 5 of 12 
 

 

parameters of the sensing CPW lines are S(ignal) = 6 um, G(ap) = 6 um, and Gnd = 20 um, and 

dimensions of the PDMS liquid channel are L = 7 mm, W = 0.1 mm, and H = 10 um. 

2.2. Modeling of the System 

The microwave interferometric cytometry system is modeled in ADS (Figure 4). For 

system modeling, the different components of the interferometric cytometry are presented 

as independent units in ADS (Figure 4a), which are represented by the measured S-pa-

rameters of the corresponding components. The loaded S-parameters are measured with 

VNA, which is calibrated up to the ports of each component. The comparison of the mod-

eled (blue dots) and measured (orange line) system response S-parameters is shown in 

Figure 5a, in which the system was tuned to 11 GHz to have the S21 be around −60 dB. The 

modeled system in ADS is in good match with the measured system response. The dis-

crepancy in the S11 and S22 is mainly due to the reflections between different components 

caused by the mismatches. The S12 and S21 differences in the interference nulls are mostly 

coming from the inadequate sampling of the system model (frequency step is 5 MHz), in 

other words, the frequency step needs to be smaller to acquire the deep interference nulls. 

Thus, in Figure 5b, the system was modeled with a frequency step of 50 kHz in the fre-

quency range of 12–14 GHz. The measured interference null at 13 GHz is −65 dB, while 

the modeled interference null is −62 dB, proving that the system model is in good com-

parison with the real laboratory-grade measurements. 

 

Figure 4. The modeling of the interferometric cytometry system in ADS (a) without sensor simula-

tion in CST; and (b) with sensor simulation in CST. QH stands for quadrature hybrid, the 90-degree 

coupler; TL stands for transmission line, which is the tapered CPW sensor; A1 is the 6 dB attenuator; 

A2 and PS are the tunable attenuator and phase shifter respectively. 

 

Figure 5. The S−parameter comparisons between the modeled system in ADS with measurement
results for (a) the whole frequency range of 4−18 GHz, tuned at 11 GHz, in the frequency step of
5 MHz; and (b) the frequency range of 12−14 GHz, tuned at 13 GHz, in the frequency step of 50 kHz.

For the sensor simulation, a small sensing CPW section of the length T equals 10 µm
has been modeled in CST (Figure 6). To obtain fast and accurate simulation results of the
particle passing through the sensing CPW, the cubic particle with a side length R = 3 µm is
used in the model. The simulations are carried out for the particle at different positions
relative to the cross-section of the sensing CPW at a center height of 2.5 µm above the
substrate. The simulation results depicted in Figure 7 are the magnitude and the phase of
transmission signal S21. The blue solid line and the orange ribbons around it are simulation
results and their error range, respectively. While the yellow solid line and blue ribbon
around it are respectively the mirrored simulation results and their error range of the left
half to demonstrate their symmetry with the right half of the simulation results. The particle
introduces signal variations when it passes through the region with high electromagnetic
(EM) fields. As well, in correspondence with the EM field intensity, which is highest at the
two gaps and relatively low at the center of the signal line, the variation signal caused by
the particle shows a profile of “M” shape for both the magnitude and phase of S21.
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Figure 6. The CST simulation model of the sensing CPW structure (Au) on quartz substrate with
microfluidic channel (DI water) on top and covered with PDMS slab. The cubic particle (polystyrene)
with a side length R of 3 µm is placed at a different position relative to the sensing CPW, with its
center height of 2.5 µm. The liquid channel Hcst is 5 µm here in the model and the length T is 10 µm.
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Figure 7. The CST simulation results in the particle at different positions relative to the cross-section
of the sensing CPW structure to mimic the process of particle passing through the sensor. (a) the
magnitude and (b) the phase of transmission signal S21. The blue solid line and the orange ribbon
around it are simulation results and their error range respectively. While the yellow solid line and
blue ribbon around it are respectively the mirrored simulation results and their error range of the left
half to demonstrate their symmetry with the right half of the simulation results.

To have a particle signal profile of the modeled system response, the simulation results
of the sensor in CST are combined with the system modeling in ADS, as given in Figure 4b.
The TL_CST unit is introduced in both the two branches for a better match of the signals and
highlights the signal variation caused by the particle. The TL_CST_GND unit in the REF
branch is loaded with simulation results of the particle above the ground signal, while the
one in the MUT branch is loaded with simulation results of the particle at different positions
relative to the sensing CPW. The overall simulation results are provided in Figure 8 for a
3 µm cubic particle passing through the CPW sensor with signal and gap widths equal to
6 µm. The interferometric cytometry system tuned to −62 dB at 13 GHz and a magnitude
change of ~0.1 dB and a phase change of ~3 degrees can be detected.
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2.3. Selection and Cultivation of the Yeast Strains

As a widely used laboratory Saccharomyces cerevisiae strain, the S288C is selected for the
system validation experiments. The S288C is designed by Robert Mortimer for biochemical
studies, and it is non-flocculent with a minimal set of nutritional requirements. Also, since
it is a haploid strain, the diameter of it is around 4 µm, which has a closer volume to the
cubic particle in our simulation compared to other diploid strains like MDS130.

During the preparation process of the experiments, the yeast cells were inoculated in
glass tubes containing YPDE medium (10 g/L yeast extract, 20 g/L bacteriological peptone,
20 g/L glucose and 5 g/L ethanol) at 30 ◦C with 200 rpm in a rotary shaker for 24 h. After
which the medium was diluted to reach OD600 = 2 for measuring the signals of stationary
phase cells.

2.4. Experiment Workflow and Image Acquisition

After the yeast cells were cultivated, the diluted medium with yeast cell samples were
extracted into syringes and kept in room temperature (~20 ◦C) for 20 min. During which,
the interferometric cytometry system was tuned normally to a S21 of below −60 dB at the
desired frequency when the microfluidic channel was filled with deionized (DI) water. As
well, since the permittivity extraction algorithm requires two calibration measurements,
the system was measured when the channel is filled with DI water as calibration 1 (Cal1)
and when the channel is empty (or filled with air) as calibration 2 (Cal2). Then, the yeast
cell samples were pushed through microfluidic channel with the syringe, recording the
data readout from VNA and capturing the images from inverted microscope with software
(HCImageLive) on the computer.

3. Results
3.1. MUT Permittivity Extraction Algorithm

Similar to the permittivity extraction algorithm in [23], the measured S-parameters of
MUT, Cal1, and Cal2, namely S11(MUT/Cal1/Cal2) and S21(MUT/Cal1/Cal2) are presented here

S11(MUT) − S11(Cal1)

S11(Cal2) − S11(Cal1)
=

S11(CPW, MUT) − S11(CPW, Cal1)

S11(CPW, Cal2) − S11(CPW, Cal1)
(1)

S21(MUT) − S21(Cal1)

S21(Cal2) − S21(Cal1)
=

S21(CPW, MUT) − S21(CPW, Cal1)

S21(CPW, Cal2) − S21(CPW, Cal1)
(2)



Chemosensors 2022, 10, 318 8 of 12

in which, S11(CPW, MUT/Cal1/Cal2) and S21(CPW, MUT/Cal1/Cal2) are conformal mapping results
of the CPW in the sensing zone, taking the reflection effects caused by mismatch into
consideration.

S11(CPW,MUT/Cal1/Cal2) =

(
Z2
(CPW) − Z2

0

)
sinhγl

2Z(CPW)Z0 cosh γl +
(

Z2
(CPW)

+ Z2
0

)
sinhγl

(3)

S21(CPW,MUT/Cal1/Cal2) =
2Z(CPW)Z0

2Z(CPW)Z0 cosh γl +
(

Z2
(CPW)

+ Z2
0

)
sinhγl

(4)

And Z0 is 50 Ω, l is the length of sensing CPW, while the characteristic impedance of
the sensing CPW

Z (CPW, MUT/Cal1/Cal2) =

√
εe f f (MUT/Cal1/Cal2)

Ctotc
(5)

where Ctot is the superposition of all four partial capacitance from the conformal mapping,
and εe f f (MUT/Cal1/Cal2) is the effective permittivity of the sensing CPW with MUT, Cal1 or
Cal2 filling the microfluidic channel.

Together with the propagation constant γ(MUT/Cal1/Cal2) = (αc + αd) + jβ, which
consists of the conductive (αc) and dielectric (αd) loss, and phase constant (β) of the sensing
CPW, the complex permittivity of unknown MUT can be extracted based on their relation
with the effective permittivity and the propagation constant for better interpretation of the
detected single cell signals.

3.2. System Validation and Its Application of Yeast Strain—S288C Measurements

The validation of the microwave interferometric cytometry system is firstly carried out
by detecting 3 µm polystyrene particles (PSS), verifying the system modeling and single-
cell signal profiling. Then, the system is used to quantitatively measure the broadband
permittivity changes of MUT caused by single yeast cells of S288C flowing through the
CPW sensor in the microfluidic channel.

For system validation, the detection of the 3 µm PSSs, diluted in the DI water, was
performed by pumping the PSSs solution through the microfluidic channel with a syringe
when the system was tuned to around −69 dB at 11 GHz. The raw data of the system S21
in Figure 9a shows two particle detection signals with zoomed in views in the inset figures.
The maximum S21 changes of the two detection signal peaks are around 2 and 1.5 dB in
magnitudes, which is mainly due to the different heights of the PSSs above the sensor. As
well, the detection signals have the profile of the “W” shape, which is the inversion of the
“M” shape simulated in Section 2.1. Whether the decreasing of MUT effective permittivity
caused by PSSs will result in the “M” shape or the “W” shape depends on the different
tuning status of the system. It is the reason why the extraction of MUT permittivity is
necessary for analyzing single-cell signals.

To further demonstrate the proposed system, a quantitative analysis of MUT permit-
tivity is carried out with S288C yeast strain measurements. As described in Section 2.4, the
system was firstly tuned to around −67 dB at 4 GHz with DI water filling the microfluidic
channel, the system S21 was recorded as Cal1 at room temperature of 20 ◦C. Secondly, the
diluted S288C solution with OD600 = 2 was pumped into the channel with a syringe, the
detected signals were saved as MUT (Figure 9b). The concentration of the yeast cell solution
is prepared as ~8 × 107 cells/mL, which makes most of the detected signals represent a
single cell passing through the sensor. As well, the flow rate of the cells is 1.5 mm/s on
average. At last, the channel was emptied by pumping air into it, and the system S21 was
noted as Cal2.
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Figure 9. The raw data of system S21 when (a) the solution of 3 um PSSs and (b) the single yeast cell
of S288C passing through the sensor in the microfluidic channel.

The detected signal of a single yeast cell is compared to that of 3 µm PSS and the
simulated cubic particle in Figure 10a. Despite the inverted detection signals from the
simulated results, the signal of S288C has a larger variation at the center signal line of
the CPW sensor compared with the signal of 3 µm PSS. Because S288C in general has
an average diameter of 4 µm, which is larger in volume than the PSS of 3 µm diameter.
The volume of S288C is large enough to influence the electromagnetic fields on top of the
signal line of the CPW sensor. Figure 10b illustrates the correspondence between the single
cell detection of microwave interferometric cytometry and the optical microscope. Within
the three seconds of detection, there are three cells passing through the sensor. They are
captured by the microscope images as changes of overall intensity and recorded by the
proposed system, which verifies the successful detection. The magnitude changes of the
first two cells are larger compared to the third one, meaning that the third cell is most
probably smaller than the first two. It is validated from the captured images during the
experiment, since the third cell has a smaller intensity change as a result of fewer pixels on
the images, meaning that it has a smaller size. In one measurement set of 14 s, there are
28 signal profiles detected by the proposed system, while 31 peaks were counted in the
image intensity figure, resulting in a successful detection rate of around 90%.
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Figure 10. (a) The comparison of system S21 signals between the single yeast cell of S288C, the
solution of 3 um PSSs, and the simulated cubic particle in CST. (b) the optical correspondence with
electrical detection using the intensity changes of the microscope images.

The measurements of single yeast cells were conducted at different frequencies over
the entire frequency range of the system. As well, their complex permittivities of MUT
with the single yeast cells present at the gap, which causes the signal peaks, are extracted
with the algorithm mentioned in Section 3.1. The examples of extracted data points at 4, 8,
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and 12 GHz are drawn in Figure 11a in comparison to the complex permittivity of DI water
at 20 ◦C. The differences in the extracted complex permittivity at a certain frequency are
mainly caused by the size variation of the S288C and the height difference when the cells
pass through the sensor.
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Figure 11. (a) The extracted data points at 4, 8, and 12 GHz in comparison to the complex permittivity
of DI water at 20 ◦C [24]. (b) real (ε′) and (c) imaginary (ε′′) permittivity of the single S288C yeast cells
in the frequency range of 4–18 GHz at the room temperature of 20 ◦C. The blue error bars with mean
values show the variations of the detection signals. The orange lines are the third-order polynomial
fitting of the mean values. The black solid lines are complex permittivity of DI water at 20 ◦C.

The extracted broadband complex permittivities from the measured signals, in the fre-
quency range of 4–18 GHz and at the room temperature of 20 ◦C, are plotted in Figure 11b,c.
The blue error bars with mean values show the variations of the detection signals. The
orange lines are the third-order polynomial fitting of the mean values, and the black solid
lines are the complex permittivity of DI water at 20 ◦C. The overall look of the extracted
complex permittivity shows that the effective permittivity of MUT reduced when the cells
pass through the sensor, since the heavily diluted medium of S288C has similar permit-
tivity values compared to DI water. As well, the permittivity change in absolute value is
larger in lower frequency for the real part, however, it is larger in higher frequency for the
imaginary part.

4. Discussion

The detection of 3 µm PSSs has validated the functionality of system setup and appli-
cability of the signal profiling technique based on system modeling and sensor simulation.
The measurement and permittivity extraction of S288C yeast cells has demonstrated the
system’s capability of quantitative analysis of single-cell signals. The extracted complex
permittivity of S288C cells illustrated in Figure 11 shows an average decrease of 0.8–2 for the
real part permittivity and 0.9–2.1 for the imaginary part permittivity, which are 3–4 times
the permittivity change measured in [12]. The main reason is that despite the heights of
the channel being the same, the width of the electrode in [12] is 10 µm, while it is 6 µm in
this work. The smaller the electrode, the larger the volume ratio of the cell to the effective
volume of the channel, causing larger permittivity changes. The comparison between the
S21 signals of S288C cells, 3 µm PSSs, and the simulated cubic particle in Figure 10a shows
the sensitivity of the detection signal to the size of the cells, which can possibly be analyzed
in the future for size and height determination. Also, the toxicity of the adhesive material
from the double-coated adhesive tape needs to be further tested. As well, more importantly,
the sensitivities of the signal profile to the contrast of the dielectric properties between the
cell and the medium, the size of the cell, the topology of the sensing electrodes, and the
flow height of the cell should be analyzed in the next step.
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