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Abstract: Chemokines are a class of cytokine whose special properties, together with their involve-
ment and relevant role in various diseases, make them a restricted group of biomarkers suitable
for diagnosis and monitoring. Despite their importance, biodetection techniques dedicated to the
selective determination of one or more chemokines are very scarce. For some years now, the critical
diagnosis of inflammatory diseases by detecting both cytokine and chemokine biomarkers, has
had a strong impact on the development of multiple detection platforms. However, it would be
desirable to implement methodologies with a higher degree of selectivity for chemokines, in order to
provide more precise information. In addition, better development of biosensor technology applied
to this specific field would make it possible to address the main challenges of detection methods
for several diseases with a high incidence in the population, avoiding high costs and low sensitivity.
Taking this into account, this review aims to present the state of the art of chemokine biodetection
techniques and emphasize the role of these systems in the prevention, monitoring and treatment of
various diseases associated with chemokines as a starting point for future developments that are also
analyzed throughout the article.
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1. Introduction

Chemokines or chemotactic cytokines constitute a large group of low-molecular-
weight proteins (8–12 kDa) with 70–90 amino acids which play decisive roles in angiogen-
esis and viral infection processes by inducing the migration of immune cells in specific
tissues and organs through chemotaxis [1] with cell differentiation and development,
and/or cancer metastasis [2]. These proinflammatory proteins attract leukocytes and other
cell types via binding with their corresponding receptors [3,4]. The first chemokine was
identified in 1977, when platelet factor 4 (PF4/CXCL4) was purified [5]. Later, chemotactic
activity for neutrophils by interleukin-8 (IL-8/CXCL8) was shown [6] and, more recently, it
was discovered certain chemokines contribute to the HIV suppressive effect in vitro [7,8].
Currently, it has become apparent that chemokines are involved in virtually all pathologies
that present an inflammatory component including neurodegenerative diseases [9].

Although they belong to the cytokine family (Figure 1A), chemokines are considered
as a specific group due to their importance. Nowadays, these proteins constitute a separate
category of selective biomarkers for the diagnosis and monitoring of disorders derived
from inflammatory autoimmune and neurological processes. It is known that chemotac-
tic cytokines are produced in inflamed tissue by a wide variety of cell types in response
to exogenous or endogenous factors such as lipopolysaccharides, viruses, autoantigens,
and inflammatory cytokines [10–12]. Once secreted by cells they bind and activate G
protein–coupled receptors; these proteins act as inflammatory mediators and immuno-
logical modulators by creating an extracellular concentration gradient that is specifically
recognized by cells and promotes their movement. Thus, chemokines regulate leukocyte
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migration in response to extracellular gradients of diffusible chemicals through chemokine
receptors [13,14]. This enables the response to inflammation of the immune system by
movement of cells responsible for surveillance and antigen uptake. In a second step, subse-
quent altered expression of chemokine receptors in the cells enables them to exit towards
lymphoid organs where specific antigen immunity is initiated. In this way, chemokines
fulfil functions such as directing the traffic of various cells to mediate the immune response
(i.e., in the case of an infection), as well as promoting homeostasis and development at the
cellular level [15].

Chemosensors 2022, 10, x FOR PEER REVIEW 2 of 24 
 

 

migration in response to extracellular gradients of diffusible chemicals through chemo-
kine receptors [13,14]. This enables the response to inflammation of the immune system 
by movement of cells responsible for surveillance and antigen uptake. In a second step, 
subsequent altered expression of chemokine receptors in the cells enables them to exit 
towards lymphoid organs where specific antigen immunity is initiated. In this way, chem-
okines fulfil functions such as directing the traffic of various cells to mediate the immune 
response (i.e., in the case of an infection), as well as promoting homeostasis and develop-
ment at the cellular level [15].  

 
Figure 1. (A) Cytokines and chemokines. (B) Structures of the chemokine family. Drawn from a 
schematic of [16]. 

The expression and production of chemotactic cytokines are induced by a variety of 
factors in vivo in order to recruit immune cells to inflamed tissue, while the secreted chem-
okines bind to membrane-bound proteoglycans creating chemotactic gradients that guide 
the migration of immune cells [17,18]. Quantification of the levels of chemokine secretion 
by cells, in parallel with the study of their interactions with receptors, are of great interest 
to understand the regulation and function of chemokines. These objectives justify the cre-
ation of new biosensing systems for these proteins in complex samples. 

2. Classification of Chemokines 
 Chemotactic cytokines are characterized by the presence of three or four cysteine 

residues whose relative position in the amino acid backbone may be used for classifying 
them into four families: CC, CXC, C, CX3C, where C is a cysteine and X stands for any 
amino acid residue (Figure 1B) [3,19,20]. More than 50 chemokines and approximately 20 
chemokine receptors have been described, with CC (CCL1 through CCL28) and CXC 
(CXCL1 to CXCL17) forming the two major groups [1,3,10–12,20]. The CXC chemokine 
branch can be further subdivided by structure and function into proteins containing or 
lacking the amino acid motif ELR (Glu-Leu-Arg) terminal to CXC. Particularly, the C–X–
C family is characterized by the separation of the two N-terminal cysteines by one variable 
amino acid residue while in the C–C subfamily the cysteine residues are adjacent to each 

Figure 1. (A) Cytokines and chemokines. (B) Structures of the chemokine family. Drawn from a
schematic of [16].

The expression and production of chemotactic cytokines are induced by a variety
of factors in vivo in order to recruit immune cells to inflamed tissue, while the secreted
chemokines bind to membrane-bound proteoglycans creating chemotactic gradients that
guide the migration of immune cells [17,18]. Quantification of the levels of chemokine
secretion by cells, in parallel with the study of their interactions with receptors, are of great
interest to understand the regulation and function of chemokines. These objectives justify
the creation of new biosensing systems for these proteins in complex samples.

2. Classification of Chemokines

Chemotactic cytokines are characterized by the presence of three or four cysteine
residues whose relative position in the amino acid backbone may be used for classify-
ing them into four families: CC, CXC, C, CX3C, where C is a cysteine and X stands for
any amino acid residue (Figure 1B) [3,19,20]. More than 50 chemokines and approxi-
mately 20 chemokine receptors have been described, with CC (CCL1 through CCL28)
and CXC (CXCL1 to CXCL17) forming the two major groups [1,3,10–12,20]. The CXC
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chemokine branch can be further subdivided by structure and function into proteins con-
taining or lacking the amino acid motif ELR (Glu-Leu-Arg) terminal to CXC. Particularly, the
C–X–C family is characterized by the separation of the two N-terminal cysteines by one
variable amino acid residue while in the C–C subfamily the cysteine residues are adja-
cent to each other [21]. More than forty different chemokines have been identified in
humans [22]. Importantly, structural distinctions of the different branches of chemokines
have been shown to parallel differences in their biological activities with some few ex-
ceptions [23]. As examples, the CC group is chemotactic primarily for T lymphocytes,
monocytes and macrophages, natural killer (NK) cells, basophils, and eosinophils, whereas
CXC chemokines are chemotactic mainly for neutrophils, whose adherence to endothelial
cells is also promoted [1,4,10,19,24].

3. Chemokine Biomarkers and Related Diseases

The critical role that chemokine–chemokine receptor interactions play in the develop-
ment, function and homeostasis of the immune system, as well as in the pathogenesis of
numerous diseases including viral infection [25], cancer [26], neurological disorders [27]
and autoimmune diseases [28] has already been discussed. Table 1 summarizes various
chemokines whose expression in biological matrices are useful as biomarkers for detection
and monitoring of respective diseases [29–43].

Table 1. Some chemokines and chemokine receptors associated with various diseases.

Chemokines, Receptors Disease Sample Observations Ref.

CXCL12, CXCL14, CXCR4 HIV-1 Peripheral blood
mononuclear cells (PBMCs)

CXCL14 synergizes with CXCL12 via
allosteric modulation of CXCR4;

CXCL14 bound to CXCR4 with high
affinity, induced redistribution of

cell-surface CXCR4, and enhanced
HIV-1 infection by >3-fold

[29]

CXCL8, CXCL10 (and
pro-inflammatory cytokines)

Oral squamous
cell carcinoma Saliva, plasma

The levels of CXCL8 and CXCL10
were higher in the OSCC patients

than in the controls
[30]

CCL3, MIP-1α Cystic fibrosis (CF) Tears

Patients with severe CF have
significantly increased levels of

MIP-1 α which correlate negatively
with clinical status

[31]

CXCL8 (and IL-6, TNF-α) Dental caries Saliva CXCL8 levels significantly higher in
dental caries patients [32]

CXCL8, CCL5/ RANTES
(IL-1β, IL-6, IL-13,

IL-17A, TNF-α)
Graves’ orbitopathy (GO) Tears Higher release of CCL5 (RANTES)

and cytokines in GO patients [33]

MCP-1, CXCL8 (and IL-6,
IL-1β, TNF-α, γ-INF)

CKD (chronic
kidney disease) Saliva MCP-1 and CXCL8 levels decrease in

patients with CKD [34]

CXCL8 (and
various cytokines)

Thyroid-associated
orbitopathy (TAO) Tears CXCL8 levels increase in patients

of TAO [35]

CCL2, CCL3, CCL8, CXCL10
(and IL-2, IL-6, IL-15,

TNF-α, γ-INF)

Latent tuberculosis
infection (LTBI)

Peripheral blood
mononuclear cells (PBMCs)

Relevant role of CCL2 relevant for
revealing subjects at higher risk of

reactivation LTBI
[36]

CXCL8 Glioblastomas TDECs and UVECs
CXCL8 plays an important role in

the process of glioma stem-like
cell vascularization

[37]

CCL5/RANTES, MDC
(and TGF-β1) HSC expansion Stem cell cultures

CCL5, MDC, TGF-β1: secreted
factors deleterious to HSC expansion.

Significant modulators in stem
cell cultures.

[38]

CXCL13 Sjögren’s syndrome (SS) Serum, saliva
Elevated serum or salivary CXCL13
levels in patients with primary SS

or SS
[39]
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Table 1. Cont.

Chemokines, Receptors Disease Sample Observations Ref.

CXCL8 (and IL1α, IL 1β) MERS-CoV Sputum, tracheal aspirate
High expression of CXCL8 in the

lower respiratory tract of MERS-CoV
infected patients

[40]

CXCL8 (and IL-6, IL-10,
TNF-α)

infection/
inflammation Eccrine sweat CXCL8 levels in sweat can be

correlated to that in serum [41]

CXCL13, CXCL10, CCL2,
CCL3, CXCL12, CCL5 Sjögren’s syndrome (SS) Saliva Higher levels of CXCL10 and CCL2

in primary SS [42]

28 cytokines, eight
chemokines, and nine

growth factors
Sepsis Serum

Increased levels of CCL2, CCL3,
CCL4, CCL5/RANTES, CCL11,

CXCL10, CXCL12 in sepsis patients
[43]

In the following, the two most important groups of diseases in which these proteins
are involved, cancer and autoimmune diseases, and the role of several chemokines for
diagnosis and monitoring of related disorders, are discussed.

3.1. Cancer

Chemokines, which play a crucial role in inflammation and immunity, are also key
cancer mediators. They are present at the tumor site in pre-existing chronic inflammatory
conditions and are also targeted by oncogenic pathways. Their altered expression in
malignant neoplasms drives leukocyte recruitment and activation, as well as angiogenesis,
cancer cell proliferation and metastasis at all stages of disease [44]. The amount of evidence
and research in this field describing pro-cancer properties of chemokines and their receptors,
as well as the possibilities for their use in anti-cancer therapies is enormous, and has been
reviewed in various articles [45–47]. Therefore, in this section, representative examples
have been selected to illustrate the role of chemokines in cancer, with the criterion of
choosing the most recent articles in which methods dedicated to the determination of
specific chemokines involving different techniques were developed.

Due to its tumorigenic and proangiogenic properties, interleukin-8 (IL-8, CXCL8) is
one of the most investigated chemokines in relation to cancer [37,48]. It plays an important
role in the process of glioma stem-like cell vascularization, being expressed and secreted in
human gliomas at levels associated with their histological grade [49]. Upregulated CXCL8
is also found in breast cancer and its involvement is reported in progression and metastases
in HER2-positive cancers [50]. This chemokine has also been used as a biomarker of bladder
cancer (BCa) where urothelial carcinomas constitute the majority of all cases [51]. It has been
seen that the determination of CXCL8 (and several cytokines) in urine can provide adequate
tools for the diagnosis and therapeutic planning of patients with BCa, since this body fluid
maintains close contact with tumor cells and the adjacent inflamed urothelium. [52]. Indeed,
urinary concentrations of this chemokine appear significantly elevated in BCa patients
with both muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer
(NMIBC), compared to healthy individuals and those with hematuria.

Secreted chemokines act as mediators of cell communication by binding to membrane-
bound receptors and triggering intracellular signaling. Among them, CXCL12 is a prototype
chemokine. Also known as a stromal-derived factor, it binds to the CXCR4 receptor,
resulting in a very useful biomarker for monitoring various types of cancer [53]. The role
of the CXCL12–CXCR4 axis in tumour growth and metastasis, and in cancer cell-tumour
microenvironment interaction and angiogenesis was reviewed [54]. The tumor promoting
activity of CXCL12–CXCR4 in various cancers affecting organs such as kidney, lung or
pancreas was established [55]. Increased hepatocyte CXCL12 expression is also associated
with melanoma [56] and with the process of tumorigenesis and metastasis in colorectal
cancer (CRC) [57].

Specifically taking into account chemokine receptors, the recent studies demonstrating
their role in processes of metastasis, including those related to squamous cell carcinoma
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of the head and neck (HNSCC), should be highlighted [58]. Particular expressions of
the paired chemokine–receptor are developed by metastatic tumor cells from cancers
affecting breast, liver, prostate or stomach, which significantly correlate with the produced
chemokines within distant organs and lymphatic sites to which such cells metastasize. It is
known that a wide variety of cell types, mainly leukocytes, express chemokines binding
to transmembrane G protein–coupled receptors (GPCRs). This provokes conformational
changes in trimeric G proteins that trigger the intracellular signaling pathways required for
cell movement and activation. Furthermore, it has been observed that chemokine GPCRs
are involved in the initiation and progression of cancers affecting multiple organs [59],
suggesting that expression of chemokine GPCRs detecting ligands as growth signals may
be the driving force that allows invasion and metastasis in many cancer cells. Among them,
one of the most frequently identified chemokine GPCRs in cancer is CXCR4, which has
been implicated in more than 23 human cancers.

One of the most common malignancies worldwide is lung cancer, with non-small cell
lung cancer (NSCLC) being the most frequent [60]. Importantly, levels of the CXCL10/IP10
chemokine detected in NSCLC tumors are significantly higher than those in adjacent
normal lung tissue, which evidences the role of this chemokine in the regulation of NSCLC-
induced angiogenesis, as well as in tumor growth and metastasis. In addition to CXCL10,
the CXCR4/CXCR7/CXCL12 chemokine axis actively participates in the migration of
tumor cells during cancer development by modulating metastasis to specific distant sites
including lymph nodes. In this context, it is important to note that high expression of
CXCR4 in primary sites and CXCL12 in metastatic lymph nodes have been associated with
poor overall survival [61]. Moreover, another chemokine, CCL17/TARC, has been also
considered as a highly promising blood biomarker for classic Hodgkin lymphoma (cHL),
for its use in early diagnosis, monitoring of treatment response, and relapse detection [62].

3.2. Autoimmune Diseases

Frequently, autoimmune diseases manifest clinically as the consequence of a strong im-
mune response to a particular self-antigen, which leads to significant activation/
accumulation of leukocytes in the tissue of the target organ and the subsequent pathol-
ogy [28]. Chemokines are involved in these processes, since they provide the population
of leukocytes necessary to participate in the inflammatory response. Particularly, several
chemokines and chemokine receptors, whose role in rheumatoid arthritis (RA) has been
recently reviewed [63], are abundant in the peripheral blood and in the local inflamed
joints of RA. Expression of CXCL4 and CXCL7 chemokines in patients with early RA may
be used to predict progression of early-stage synovitis [64]. Indeed, increased levels of
both chemokines were observed in the synovium of these patients compared to those
with a resolving disease course. In RA, cells of the immune system including neutrophils,
macrophages, B cells, natural killer (NK) cells and T cells migrate to the synovial mem-
brane and, after accumulation in the synovial fluid, they lead to the release of chemokines.
Among them, CCL2 (monocyte chemoattractant protein-1, MCP-1) plays an important
role in various events related to RA pathogenesis, including migration of effector T cells
to the RA synovium tissue and angiogenesis [65]. A significant increase in CCL2 in the
synovium of patients with RA is observed, the disease activity score being associated
with CCL2 levels, which suggest this chemokine be considered a suitable biomarker of
RA [66]. CX3C Ligand 1 chemokine (CX3CL1), also named fractalkine, also participates
in monocyte chemotaxis and angiogenesis in RA disease. Increased MMP-2 production
from synovial fibroblasts upon CX3CL1 stimulation in vitro was observed, which suggests
a pro-inflammatory activity [67].

Multiple sclerosis (MS) is a chronic autoimmune and demyelinating neurodegenerative
disorder of the central nervous system (CNS) [68]. This disease is characterized by the
attack of abnormally infiltrated immune cells, mainly T-cells, B-cells, and macrophages,
that provoke damage to the myelin sheath and oligodendrocytes of the CNS. This action
results in demyelination and axonal degeneration to varying degrees, that give rise to
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dense scar-like tissue, a hallmark of MS. The clinical manifestations of MS can range from
relatively mild neurological symptoms to highly debilitating disease. CXCL13 is a validated
biomarker for MS [69], playing a role in B-cell recruitment to the CNS during inflammation.
It is also considered as a disease activity biomarker present at increased concentrations
in patients with active disease which suffer relapsing–remitting and progressive disease
courses. Cui et al. recently reviewed the role of chemokine and chemokine receptors in
MS [70]. Several CCL-type chemokines are involved in MS disease. For example, CCL5
(RANTES, regulated on activation of normal T cell expressed and secreted) induce the
recruitment of immune cells to the CNS via interaction with its receptor CCR5. Thus, it
could in principle also regulate synaptic transmission and brain plasticity, [71] in addition
to acting in inflammatory regulation. Indeed, an increase in the central levels of CCL5 is
associated with the inflammatory process typical of MS which in turn causes significant
changes in synaptic excitability of central neurons. Other chemokines proposed as MS
biomarkers are CCL11, associated with disease duration and progression, and CCL20
which is related to disease severity. Immunoassay proteomic research has also allowed
identification of up-regulated CCL3 (MIP-1a) and CXCL10 in cerebrospinal fluid (CSF) of
patients with MS, and a higher expression of both chemokines in active lesions [72].

The correlation existing between chemokines and thyroid autoimmunity has been
demonstrated in various studies. This is evidenced by the results obtained in the investi-
gation of patients with Graves’ disease (GD), where the presence of CXCL10 in thyroid
follicular cells [73] or the high level of CCL2 (MCP-1) in cultured human thyrocytes [74],
and the increased expression of CXCL12 (SDF-1) and CXCL1 (Gro1) in thyroid tissues [75]
were reported. Circulating levels of these chemokines are associated with the active
phase of GD [76], autoimmune thyroiditis, and other diseases. For example, patients
with Hashimoto’s thyroiditis exhibited increased expression of CXCR3 and of CCR2 and
CCR5 receptors for CCL5 and CCL2, respectively [77]. Importantly, the wide variability in
chemokine expression was related to disease duration. Thus, increased CXCL10 expression
was found in the thyroid of recent-onset patients compared with long-standing patients [78].
These results agree with those of Armengol et al., showing increased expression of CXCL12,
CXCL13, CCL21, and CCL22 in HT thyroid glands [79,80]. Furthermore, Kemp et al. de-
tected CXCL10, as well as CCL2, CCL3, CCL4, and CCL5 in thyroid tissue from patients
with HT [81].

4. Biodetection Methods for Determination of Chemokines

Methods to determine chemokine levels are mostly based on immunoassays such as
ELISA. At present, commercially available ELISA kits make it possible to measure several
cytokines and chemokines in biological samples and cell culture supernatants [82]. Western
blotting analysis has also been used to investigate the expression of various chemokines in
biological fluids [83]. However, methods involving such techniques have limited sensitivity
for detecting very small amounts of the target compounds such as concentrations below
pg/mL that appear as cut-off levels for individuals suspected of suffering from some
diseases, or to determine mis-expressed proteins [84]. In the case of immunoassays, most
require long assay times, taking up to five hours, and do not allow investigation of the
secretion of chemokines in real time [85], also relying on the availability of specific and
sensitive immuno-reagents. Nevertheless, there are a lot of kits for the determination of
individual chemokines which are commonly used as reference methods for validation of
results obtained in sample analysis using other methodologies, mainly biosensors.

As will be seen in what follows, the development of biosensors for the determination
of chemokines is still scarce. However, it should be emphasized that these devices have
ideal analytical characteristics for the diagnosis, prognosis and monitoring of diseases
such as cancer or autoimmune disorders, since they allow real-time measurements and
can detect minimal amounts of biomarkers (in some cases at the fg/mL level) in very
small volumes—below microliter units—of physiological samples, based on antibodies,
peptides, nucleic acids, receptors or other types of biomolecules capable of interacting with
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the chemokine of interest. Table 2 summarizes the methods and analytical characteristics of
some recent biosensors using different detection techniques, which have been applied to
clinical samples [37,38,62,85–109]. In the following sections we discuss the relevant aspects
of some selected designs. For better understanding, several sub-sections for the different
instrumental techniques used were also considered.

Table 2. Some recent biosensors for chemokines and chemokine receptors.

Type of Biosensor Technique Target(s) Biodetection Principle Dynamic Range LOD Sample Ref.

Chemokine tagging
with nanoluciferase

fragment HiBiT and to
Alexa-Fluor488-
tagged CXCR4

Luminescence
(BRET) CXCL12

CRISPR/Cas9 genome
editing used to tag

the chemokine.
CXCL12 secretion

monitored in live cells

1 fM–1 nM - live cells [85]

Lentiviral particles with
CXCR4 immobilized on

MUA SAM onto
Au chip

SPR CXCL12
Specific CXCL12 binding
to LVPX4-coated chip in

the biosensor
5–50 nM - urine of

RA patients [86]

CXCR2-
AuNPs/2,2′ :5′ ,2”-tert-

thiophene-3′(p-
benzoic acid)

Amperometry CXCL5 Selection of the ligand for
CXCR2 receptor by EIS 0.1–10 ng/mL 0.078 ng/mL human serum

CRC cells [87]

Chip-based gold
nanostructured

micro-electrode with
immobilized

thiolated DNA

SWV CCL5/RANTES
CCL22/MDC

Amplified steric
hindrance hybridization

combining DNA and
antibodies signaled by

methylene blue

10 pg/mL–
10 ng/mL 10 pg/mL stem cell culture [38]

Electrochemical
sandwich-type

immunosensor with
immobilized

anti-CXCL7 on
IgG-MWCNTs/SPCE

Amperometry CXCL7 Electrode modification by
click chemistry 0.5–600 pg/mL 0.1 pg/mL

human serum
form patients

with RA
[88]

Sandwich-type
electrochemical dual im-
munosensing platform

Amperometry CXCL7

Simultaneous
determination of CXCL7

and MMP3 with
COOH-MBs on SPdCE

1–75 ng/mL
CXCL7

2.0–2000 ng/mL
MMP3

0.3 ng/mL
0.8 pg/mL

+/− RA
human serum [89]

Sandwich-type with
cAb immobilized on

diatom biosil-
ica/AuNPs/DTNB

SERS CXCL8/IL-8 cAb/AuNPs-DTNB as the
Raman reporter up to 30 ng/mL 6.2 pg/mL plasma [90]

Dual-function
microfluidic chip.

Sandwich-type with
Abs and aptamers

Fluorescence CXCL8/IL-8 Rolling circle
amplification 7.5–120 pg/mL 0.84 pg/mL TDEC and

HUVEC [37]

Label-free
immunosensor with

anti-CXCL8
immobilized on

6-phospho-hexanoic
acid/ITO

EIS (charge transfer
resistance, ∆Rct) CXCL8/IL-8

Phosphonic acid
covalently bound to
hydroxylated ITO.

EDC/NHS activation of
carboxyl groups for
Ab immobilization

0.02–3 pg/mL 6 fg/mL human serum
and saliva [91]

Label-free
immunosensor with

anti-CXCL8
immobilized on
SuperP© carbon

black/Star
polymer/ITO

EIS (charge
transfer

resistance, ∆Rct)
CXCL8/IL-8

The high conductivity of
carbonaceous material

enhances electron transfer
0.01–3 pg/mL 3.3 fg/mL human serum

and saliva [92]

Sandwich-type
fluorometric

immunoassay with
fluorophore-Avidin-

Biotin-CXCL8-cAb-MBs

Fluorescence CXCL8/IL-8 Laser excitation of
sample fluorophores up to 5000 ng/L 0.19 ng/mL spiked human

plasma [93]

SiNMW FET biosensor
with Abs immobilized
onto APTES and GA

modified surface

∆R in I/V curves CXCL8/IL-8

Multiplexed determina-
tion of CXCL8 and TNF-α.

Current/Resistance
increase or decrease

depending on pI
of proteins

10 fg/mL–
1 ng/mL 10 fg/mL saliva [94]
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Table 2. Cont.

Type of Biosensor Technique Target(s) Biodetection Principle Dynamic Range LOD Sample Ref.

Optical modulation
biosensing (OMB) Fluorescence CXCL8/IL-8 SA-PE-Biotin-Ab2-CXCL8-

Ab1-MBs
0.05–

10,000 ng/mL 0.02 ng/L - [95]

Fluorometric
immunosensor with

H2O2 generating
Au/TiO2 photocatalytic

film and
Cy5/cAb/GNR

MEF probes

Fluorescence CXCL8/IL-8

One-pot, wash-free
immunoassay. H2O2

induced chloro-
1-naphthol precipitation
quench Cy5 fluorescence

via FRET

1–1000 pg/mL 0.612 pg/mL serum [96]

Label-free
electrochemical
immunosensor

EIS (Rct) CXCL8/IL-8
Anti-CXCL8

immobilized onto
FTO-OH/IPTES platform.

0.04–2 pg/mL 11.9 fg/mL human serum,
saliva [97]

Label-free synthetic
Ab-mimetic protein-

monothiol-alkane-PEG
SAM-AuE

EIS
(change in

phase, ∆θ(f))
CXCL8/IL-8

Ab-mimetic protein
selected via phage display.

Capture protein coding
region subcloned in

top ET11

900 fg/mL–
900 ng/mL 90 fg/mL spiked serum [98]

Label-free
immunosensor with

cAb immobilized onto
pCBMA/AuE

EIS (Rct) CXCL8/IL-8

AuE modified by
cysteamine adsorption,

covalent linking of CB and
photo-polymerization.

55 fM–55 nM 10 fM
nasal

epithelial
lining fluid

[99]

Electrochemical dual
biosensing platform

with anti-CXCL8
antibody and specific

hairpin DNA sequence

Amperometry CXCL8/IL-8
CXCL8 mRNA

Simultaneous
determination of CXCL8

and CXCL8 mRNA
involving COOH-MBs,

Strept-MBs and
dual SPCEs

87.9–5000 pg/mL
CXCL8;

0.32–7.5 nM
CXCL8 mRNA

72.4 pg/mL
0.21 nM

spiked human
saliva [100]

Array of nanofilm
ZnO/metal electrodes

functionalized with
specific Abs

EIS CXCL8/IL-8
CXCL10/IP-10

Simultaneous
determination of CXCL8

CXCL10, IL-6, IL-10
and TRAIL

0.1–5000 pg/mL
CXCL8

1–2000 pg/mL
CXCL10

~1 pg/mL sepsis patients’
serum [101]

Electrochemical DNA
biosensor. Immobilized

DNA strand with a
distal methylene blue

reporter on SAM-AuE.

Amperometry CXCL10
/IP-10

Hybridization to
recognition strand with
target binding peptide.

Current decrease as
increase target
concentration

1–2000 nM ~60 pM serum [102]

DTSSP/Abs solutions
immobilized onto

ZnO electrodes
EIS CXCL10/IP-10

Simultaneous
determination of CXCL10,

TRAIL and CRP
up to 500 pg/mL <2 pg/mL human sweat [103]

Sulfo-LC-SPDP/Ab
solution immobilized

onto AuE.
Sandwich-type
electrochemical
immunoassay.

Amperometry CCL17/TARC
HRP-Strept-Biotin-Ab2

conjugates for
TMB/H2O2 detection

387–
50,000 pg/mL 194 pg/mL

serum from
patients with

cHL
[62]

Sandwich-type
electrochemical

immunosensor with
cAb immobilized on
rGO-(rGO-TEPAThi-

Au)/GCE

Amperometry CCL2/MCP1 Signal amplification with
Ab2-RuPdPt

20 fg/mL–
1000 pg/mL 8.9 fg/mL spiked serum [104]

Label-free
electrochemical

immuno-sensor with
cAb immobilized on Au

@Pt-CA-AuE

DPV CCL2/MCP1

Decrease in peak current
of Fe(CN)6

3−/4− as
increased CCL2
concentration

0.09–360 pg/mL 0.03 pg/mL spiked serum [105]

Sandwich-type
immunosensor with

cAb immobilized onto a
silicon photonic micro

ring resonator.

Res λ shift CCL2/MCP1
Shifts in resonance

wavelength are related to
the target concentration

84.3–
1582.1 pg/mL 0.5 pg/mL spiked serum [106]

Label-free
electrochemical

immunosensor with
cAb immobilized on

PtNPs/SWCNHs

Amperometry CCL2/MCP1

Reduction current of
H2O2 decrease as
increased CCL2
concentration

0.06–450 pg/mL 0.02 pg/mL serum [107]
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Table 2. Cont.

Type of Biosensor Technique Target(s) Biodetection Principle Dynamic Range LOD Sample Ref.

Label-free anti-CCR4-
PPyr-CSsg-ITO
immunosensor

EIS CCR4

Amino groups of
anti-CCR4 antibodies
bound covalently to

succinimide groups of
PPyr-CSsg polymer

0.024–12 pg/mL 7.3 fg/mL human serum [108]

Label-free anti-CCR4-
P(Pyr-Pac)-ITO EIS CCR4

Amino groups of
anti-CCR4 antibodies
bound covalently to
carboxyl groups of
P(Pyr-Pac) polymer

0.02–8 pg/mL 6.4 fg/mL human serum [109]

4.1. Electrochemical Techniques

A variety of electrochemical biosensors have been proposed for the determination of
CXCL8 (IL-8) alone or together with various cytokines. This is probably due to the implica-
tion of this chemokine in important inflammatory diseases and cancer [20].
Torrente et al. [100] prepared a dual biosensing platform for the simultaneous determina-
tion of CXCL8 and its associated messenger RNA oligonucleotide, which involved the use
of carboxyl- and streptavidin-functionalized magnetic microparticles (MBs), respectively, as
supports for immobilization of the capture anti-CXCL8 antibody to implement a sandwich-
type immunoassay, as well as binding of BHCpCXCL8 for subsequent hybridization with
the biotinylated target DNA, which were finally labelled with Strept-HRP. The resulting
method, involving amperometric detection at disposable SPCEs, allowed limits of detection
of 0.21 nM and 72.4 pg/mL for the respective targets, and it was successfully applied
to the determination of CXCL8 in undiluted human saliva. More recently, a label-free
impedimetric immunosensor for CXCL8 was also prepared using anti-fouling zwitterionic
hydrogel polycarboxybetaine methacrylate (pCBMA) to immobilize polyclonal anti-CXCL8
antibody. The charge transfer resistance (Rct) changes were used as the analytical signal
to determine CXCL8 in a wide range of detection, from 55 fM to 55 nM, with a limit of
detection (LOD) value of 10 fM. Interestingly, the immunosensor was successfully applied
to determine CXCL8 in samples of nasal epithelial lining fluid (NELF) of asthma patients
and healthy individuals [99].

Because of the low levels of chemokines existing in biological fluids, ranging between
pg/mL to low ng/mL, one of the main objectives in the construction of an electrochemical
biosensor for these biomarkers is obtaining high sensitivity. To achieve this, widely used
strategies are those involving the employment of nanomaterials capable of amplifying the
response due to their high conductivity while enabling stable immobilization of bioreagents.
In this context, an interesting article of Aydin et al. [92] reported the preparation of a com-
posite consisting of Super P© carbon black, polyvinylidene fluoride (PVDF) and star shaped
poly(glycidylmethacrylate) (PGMA) as a useful modifier of a disposable ITO electrode for
the construction of a label-free impedimetric CXCL8/IL-8 biosensor. Figure 2 illustrates the
steps of composite preparation and fabrication of the electrode by a spin coating process.
As can also be seen, specific anti-CXCL8/IL-8 capture antibodies were bound covalently to
epoxy groups of the star polymer. Under optimum conditions, measurements of the charge
transfer resistance (∆Rct) provided a wide linear 0.01–3 pg/mL range and a low detection
limit of 3.3 fg/mL. The applicability of the proposed immunosensor to determine CXCL8
in saliva and serum samples was also investigated.
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of the label-free CXCL8/IL-8 immunosensor. Adapted from Ref. [92] with permission.

Another label-free biosensor for CXCL8/IL-8 using electrochemical impedance spec-
troscopy (EIS) with a detection limit of 90 fg/mL in full serum, was developed by
Sharma et al. [98]. A self-assembled monolayer (SAM) was prepared using monothiol-
alkane-PEG-acid which has anti-fouling properties and also prevents non-specific adsorp-
tion onto gold electrodes. Synthetic antibody mimetic proteins with high affinity to the
human chemokine were selected via phage display and covalently immobilized on the
carboxyl groups. On the resulting electrode surface, binding of biomarkers to the capture
reagents resulted in a variation in the local environment of the SAM leading to changes
in monolayer defects and in the electrochemical impedance, which can be measured as a
change in the phase ∆θ(f). Hence, such electrodes are sensitive to the variation of CXCL8
concentrations in the range of 9 fg/mL to 900 ng/mL.

It has been found that CXCL5 also plays important roles in tumorigenesis and cancer
progression; studies suggest that this chemokine promotes cell metastasis through tumor
angiogenesis in colorectal cancer (CRC). Therefore, the detection of this chemokine could
serve as a potential prognostic biomarker for cancer patients [110] However, despite its im-
portance, the number of methods developed for biodetection of CXCL5 are very scarce [111].
As an example, a biosensor for detection of CXCL5 in the CRC cell line was developed
by Chung et al. [87]. It was based on the immobilization of CXCR2 onto a glassy car-
bon electrode modified with gold nanoparticles (AuNPs) and an electro-polymerized
2,2′:5′,2”-terthiophene-3′ (p-benzoic acid) (TBA) nanocomposite film. Interestingly, a
chemokine receptor, CXCR2, for which the target has natural affinity, was used for biosen-
sor development. Amperometric detection provided a method with a calibration range
between 0.1 and 10 ng/mL CXCL5. The LOD value was 0.078 ± 0.004 ng/mL. The pro-
posed biosensor was successfully applied to determine clinically relevant concentrations
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of this chemokine in human serum and CRC cells, with high sensitivity and selectivity.
Regarding the latter samples, HT-29 cells which are known to secrete CXCL5 extracellularly,
were analyzed for recovery studies after spiking with the chemokine in autoclaved PBS
solution containing 105 cells/mL.

Also related to cancer detection, it is worth highlighting the development of an
electrochemical affinity biosensor for CCL17/TARC (thymus- and activation-regulated
chemokine) as a tool for rapid triage and monitoring of classical Hodgkin lymphoma
(cHL) [62]. Indeed, this chemokine is secreted by cHL tumor cells and has recently emerged
as blood biomarker for this disease [112]. The amperometric immunosensor proposed by
Rinaldi et al., involved a thiolated heterobifunctional cross-linker, sulfo-LC-SPDP,
chemisorbed onto gold electrodes for immobilization of the specific capture antibody and
preparation of a sandwich design with biotinylated CCL17 secondary antibody conjugated
with streptavidin-HRP. The resulting bioelectrode showed excellent analytical performance
using 3,3′,5,5′-tetramethylbenzidine (TMB) and hydrogen peroxide for the electrochemical
measurements, covering a linear range of 387 to 50,000 pg/mL CCL17 with a LOD value
of 194 pg/mL. An important achievement in this work was to demonstrate the ability of
the immunosensor to differentiate healthy individuals from 42 diagnosed cHL patients by
analyzing blood serum, and to discriminate between samples of patients collected prior to
treatment and during chemotherapy on the basis of the decrease in chemokine level.

Multiplexed biosensors for the simultaneous determination of chemokines have also
been described. These configurations are of great interest for the diagnosis and monitoring
of diseases in which quantification of chemokines, often present in biological samples
together with various other cytokines, are essential for a better understanding of the dis-
order’s evolution. As an example, Tanak et al. [101], prepared a multiplexed biosensor
involving host immune response for rapid sepsis stratification and endotyping. Sepsis
is an intricate condition characterized by a dysfunctional immune response which often
is misdiagnosed with serious health consequences [113]. For the purpose of being used
as a near-patient point-of-care sensor to detect sepsis, the same team [114] developed the
first multi-biosensing platform consisting of five functionalized working electrodes to
measure individual biomarkers, with only one chemokine, CXCL10/IP-10, among them. It
should be noted that the detection of this chemokine has high importance since it allows
identification of the source of the pathogen-triggered immune response. Indeed, viral
infection seems to be reflected by an increase in this chemokine [103]. More recently, in
this new configuration, CXCL8/IL-8 and CXCL10/IP-10 chemokines were determined,
together with three cytokines (IL-6, IL-10 and TRAIL) and two well-established inflamma-
tory biomarkers (PCT and CRP). The multi-assay device, named Direct Electrochemical
Technique Targeting (DETecT), consisted of an array of seven electrodes for simultaneous
detection of the biomarkers by EIS using a palm-sized, form-factor electronic reader. The
sensor surface was modified with dithiobis (succinimidyl propionate) (DSP) to immobilize
the specific capture antibodies. It detected all biomarkers in a small plasma sample volume
(<40 µL) and the results correlated well with the reference standard method, Luminex,
during clinical evaluation of 124 sepsis patient samples. Among other advantages, the
method allows stratification of patient samples by measuring a panel of seven host immune
response biomarkers on a single platform, providing results in less than 5 min.

Related to the multiplexed electrochemical device described above, fabrication of a
wearable biosensor for noninvasive tracking of host immune response biomarkers in sweat
was also reported by Jagannah et al. [41,103]. The developed design, named Sweatsenser,
allowed the simultaneous and continuous detection of CXCL10/IP-10 and/or CXCL8/IL-8
chemokines together with inflammatory cytokines and C-reactive protein (CRP) for infec-
tion monitoring, with limits of detection of 1 pg/mL (IP-10 and TRAIL), and 0.2 ng/mL
(CRP) with wide dynamic ranges. The platform (Figure 3) is based on an electrochemical
biosensor strip functionalized with capture antibodies via a cross-linker on zinc oxide
nanofilm. It allows measurements to be performed with real-time transduction and con-
tinuous reporting of targets in sweat. As can also be seen, the sensor strip is comprised of
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multiple fluid transport sites that have been carefully designed by means of an absorbent
layer interfacing with the skin, to ensure effective capture of sweat, and sweat diffusion
through the porous sieve.
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Elevated expression of the CXCL7/NAP-2 chemokine has been shown in synovial
fluid and serum of patients with rheumatoid arthritis (RA) during the first weeks of the
disease but appearing at lower levels in RA with a longer duration. This difference in
chemokine concentration is very useful to reflect local pathological changes in the clinical
status of patients [115]. Two electrochemical immunosensors were developed by our group
for application in the determination of CXCL7 in serum of healthy individuals and patients
diagnosed with RA. In a first approach, an original method for immobilization of anti-
CXCL7 capture antibodies was developed. It involved a copper (I) catalyzed azide–alkyne
cycloaddition reaction (click chemistry) to prepare an integrated disposable immune-
platform involving screen printed carbon electrodes modified with azide-modified-multi-
walled carbon nanotubes which react with alkynylated IgG by the Cu(I)-catalyzed click
reaction followed by the efficient conjugation with antibodies (Figure 4A). A sandwich-type
immunoassay was then implemented for the electrochemical detection by differential pulse
voltammetry (DPV) using alkaline phosphatase (AP) and 1-naphthyl phosphate (1-NPP) as
the enzyme substrate. The immunosensor was successfully employed to determine CXCL7
in human sera with no need for sample treatment except dilution [88].

The second approach [89] (Figure 4B), was designed with the goal of achieving a
better assessment of the disease state and treatment success by the simultaneous deter-
mination of the CXCL7 chemokine and matrix metalloproteinase-3 (MMP3), an enzyme
involved in the degradation of various extracellular matrix components and in the de-
struction of cartilage and bone in RA [116]. In this configuration, an immunoplatform was
prepared using carboxylated magnetic microbeads as substrates for the preparation of the
immunoconjugates. The resulting methods, involving amperometric detection with the
HRP/H2O2/hydroquinone (HQ) system, provided good results in the determination of
biomarkers when applied to serum samples of RA patients and healthy individuals. When
comparing the methodologies implemented for CXCL7 (Table 2), it can be seen that the one
based on electrode modification by click chemistry provided the highest sensitivity, with a
LOD value of 0.1 pg/mL vs. 0.8 ng/mL obtained with the magnetic assisted immunoplat-
form. This may be due to the different configurations prepared for the bioassays and also
to the different enzymes, redox probes and electrochemical technique used for detection.
However, both configurations were suitable for detecting chemokine overexpression with
respect to normal levels of CXCL7 in human serum samples of healthy individuals, which
are around 850 ng/mL [117].
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CCL2 chemokine, also named monocyte chemotactic protein-1 (MCP-1), has relevant
roles in pathogeneses of several diseases related to heart and circulatory system, and ac-
tively participates in progression of autoimmune diseases. It is considered an initiating
factor and biomarker of atherosclerosis and is also involved in several events related to
rheumatoid arthritis. Therefore, a there is great interest in the development of sensitive
biosensors for detecting CCL2 in different types of clinical samples. Among the electro-
chemical biosensors proposed for this chemokine, a sensitive electrochemical design based
on conductive wires orderly oriented was reported by Li et al. [105]. Such wires were pre-
pared with gold nanoparticles joined to Au@Pt core–shell microspheres via a cysteamine
(CA) crosslinker and grafting to the gold electrode to immobilize anti-CCL2 antibodies.
After incubation in the presence of the chemokine using only 6 µL of sample, differential
pulse voltammetry with Fe(CN)6

3−/4− as the redox probe, provided decreasing changes in
the signal response related to the increase in antigen concentration, which reduces the peak
current by hindering the spread of redox probe to the electrode surface. A high sensitivity
with a calibration interval ranging between 0.09 and 360 pg/mL CCL2, and a LOD value of
0.03 pg/mL was achieved.

CXCL10/IP-10 is an interferon (IFN) inducible chemokine associated with poor prog-
nosis in many types of cancer, showing greater affinity for the CXCR3 receptor. The
CXCR3/IFN chemokine axis plays a significant role in cancer progression. To detect this
chemokine, Bonham et al. [102] reported an electrochemical DNA biosensor which was
prepared by immobilizing a DNA strand with a distal methylene blue redox reporter
attached via SAM-AuE. The method involved the grafting of a 21-residue polypeptide
binding element derived from CXCR3 receptor onto a peptide–nucleic-acid strand, and
hybridization to the AuE-attached methylene blue-modified DNA strand via a terminal
thiol group. The binding of CXCL10 to this recognition element reduces current from
methylene blue related to the target concentration, which can be measured by square
wave voltammetry (SWV). Figure 5 shows the fundamentals of this biosensor, that allows
determination of the chemokine in a concentration range between 1 nM to 2 µM.
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Regarding chemokine receptors, CCR4 has aroused considerable interest as a biomarker
of prostate cancer. For its quantitation, an impedimetric immunosensor was prepared using
an ITO electrode modified with an acid-substituted polypyrrole (p(Pyr-Pac) containing
several carboxyl groups for covalent immobilization of the specific capture anti-CCR4
antibody [109]. As in other research works from Aydin´s group, the implementation of a
label-free immunosensor achieves a high sensitivity, with a detection limit of 6.4 fg/mL
and a wide linear range extending from 0.02 to 8 pg/mL, which is suitable for application
of the developed method to analyze clinical samples.

4.2. Optical Techniques

Although electrochemical techniques comprise the majority for biosensor applications,
other forms of transduction such as fluorimetry, have also been used. Figure 6 shows a
schematic of the method developed by Verbarg et al. [93] for the detection of CXCL8 using
a magnetic modulation biosensing system (MMB) which combines fluorescence measure-
ments with the use of superparamagnetic beads on which capture anti-CXCL8 antibodies
were immobilized. As can be seen, a sandwich-type immunoassay was implemented with
biotinylated detection antibodies and streptavidin phyco-erythrin (SA-PE) fluorescent dye.
In the laser system developed (Figure 6b), the fluorophores in the sample were excited and
the emitted response was collected and detected by a photomultiplier tube (PMT). The
resulting method allowed determination of CXCL8 through a 6-log dynamic range, being
capable of detecting 0.08 ng/L of the chemokine in blood plasma. Important advantages
of the MMB system are the ability to measure very low concentrations of analyte such as
those from the calibration plot obtained in this method (up to 50 ng/L CXCL8) in a short
time (after a 15-min incubation time) and the discrimination between the signal and the
background noise due to unbound fluorescent molecules without requiring washing or
separation steps.

Using a very different methodology but also involving fluorescence measurements,
Zhang et al. [37] developed a microfluidic biosensor with dual function and based on rolling
circle amplification (RCA) for on-line detection of CXCL8/IL-8. The analytical concept of
on-line detection in this method derives from the configuration depicted in Figure 7. As can
be seen, a microfluidic chip was constructed with two passages connected by the vertical
channels, where the specific capture antibody was immobilized onto one channel, and
the other was used for investigating cell culture. Affinity bioassays to determine CXCL8
were performed by a sandwich-type configuration involving antibodies and aptamers. As
Figure 7A shows, once the target is sandwiched, the biotinylated RCA primer template
complexes are linked to aptamers followed by isothermal amplification with Phi29 DNA
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polymerase. Finally, addition of DNA probes complementary to the amplified sequence pro-
vides multiple fluorescent probes to generate enhanced signals observed by a fluorescent
microscope. This assay allowed quantitative determination of the chemokine to be per-
formed within a linear range between 7.5 and 120 pg/mL CXCL8. Furthermore, the system
was also applied to study the expression of CXCL8 tumor-derived and human umbilical
vein endothelial cells (TDEC and HUVEC, respectively) under hypoxic conditions.
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more information). Reprinted from Ref. [93] with permission.

A surface-enhanced Raman scattering (SERS) immunoassay for the determination of
CXCL8/IL-8 was also reported [90], which involves diatom biosilica with immobilized
antibodies and integrated gold nanoparticles (AuNPs) using 5,5′-dithiobis(2-nitrobenzoic
acid (DTNB) as a Raman reporter molecule. As Figure 8 shows, the immune reaction was
performed in a sandwich-type configuration using silica-rich frustules from diatom species
(Pseudostaurosira trainorii) where anti-CXCL8 capture antibodies were covalently bound. In
the presence of the target chemokine, an intense SERS spectrum of DTNB bonded with the
detection antibody was obtained, which was suitable for the development of an analytical
method for quantitative determination by measuring the peak intensity of the average
SERS response. A linear increase in these signals with the CXCL8 concentration in human
blood plasma up to 30 ng/mL, and a limit of detection of 6.2 pg/mL were reported.



Chemosensors 2022, 10, 294 16 of 23

Chemosensors 2022, 10, x FOR PEER REVIEW 16 of 24 
 

 

umbilical vein endothelial cells (TDEC and HUVEC, respectively) under hypoxic condi-
tions. 

 
 

 
Figure 7. (A) Scheme of the steps for CXCL8/IL-8 determination by RCA and a fluorescent probe. 
(B) The design of a dual function microfluidic chip. (C) Hypoxia signalling pathway in TDECs and 
HUVECs. Adapted from Ref. [37] with permission. 

A surface-enhanced Raman scattering (SERS) immunoassay for the determination of 
CXCL8/IL-8 was also reported [90], which involves diatom biosilica with immobilized an-
tibodies and integrated gold nanoparticles (AuNPs) using 5,5′-dithiobis(2-nitrobenzoic 
acid (DTNB) as a Raman reporter molecule. As Figure 8 shows, the immune reaction was 
performed in a sandwich-type configuration using silica-rich frustules from diatom spe-
cies (Pseudostaurosira trainorii) where anti-CXCL8 capture antibodies were covalently 
bound. In the presence of the target chemokine, an intense SERS spectrum of DTNB 
bonded with the detection antibody was obtained, which was suitable for the develop-
ment of an analytical method for quantitative determination by measuring the peak in-
tensity of the average SERS response. A linear increase in these signals with the CXCL8 

Figure 7. (A) Scheme of the steps for CXCL8/IL-8 determination by RCA and a fluorescent probe.
(B) The design of a dual function microfluidic chip. (C) Hypoxia signalling pathway in TDECs and
HUVECs. Adapted from Ref. [37] with permission.

Chemosensors 2022, 10, x FOR PEER REVIEW 17 of 24 
 

 

concentration in human blood plasma up to 30 ng/mL, and a limit of detection of 6.2 
pg/mL were reported.  

 
Figure 8. Scheme of the SERS immunosensor for CXCL8 detection (a) the glass slide modified with 
diatom frustules; (b) SEM image of a portion of the modified slide; (c) the sandwich-type configu-
ration; (d) the bonding of the antibody. Reprinted from Ref. [90] with permission. 

A sensitive real-time biosensing approach to quantify secretion and receptor binding 
of native chemokines in live cells was developed by White et al. [85]. CRISPR/Cas9 ge-
nome editing was used to tag the chemokine CXCL12 with the nanoluciferase fragment 
HiBiT and subsequent monitoring and determination by luminescence output. Binding of 
CXCL12-HiBiT to Alexa-Fluor488-tagged CXCR4 chemokine receptors was analyzed us-
ing BRET (bioluminescence resonance energy transfer) in a range between 1 fM and 1 nM. 
This live cell biomonitoring combines the sensitivity of nanoluciferase with CRISPR/Cas9 
genome editing, to detect and quantify binding of low levels of native secreted proteins 
in real time.  

Surface plasmon resonance (SPR) measurements can be used to study interactions 
between biomolecules immobilized onto metal surfaces and those present in liquid sam-
ples. Indeed, SPR biosensors have demonstrated their usefulness as diagnostic tools in a 
wide variety of biomedical applications [118]. As an example, an SPR biosensor was fab-
ricated by Vega et al. [86] for real-time detection of CXCL12 chemokine in urine samples 
of RA patients. The developed configuration involved the use of lentiviral particles which 
bear the chemokine receptor CXCR4 in its native plasma membrane. In fact, CXCL12 
chemokine, also named stromal cell-derived factor 1 (SDF-1), is one of the most relevant 
biomarkers for RA [119]. It is expressed by synovial endothelial cells binding to proteo-
glycans and participates in bone erosion and progression of the disease. The SPR method 
showed linear responses to CXCL12 concentration in the 5–40 nM range with good repro-
ducibility and stability of the sensor responses for more than 150 measurements. Further-
more, its application to analyze urine samples demonstrated the high expression of this 
chemokine in RA patients with respect to healthy individuals, suggesting value of this 
biomarker for diagnosis of the autoimmune disease.  

5. Advantages and disadvantages of electrochemical and optical biosensors 
As discussed above, electrochemical and optical biosensors have been applied to the 

determination of chemokines. Although all of them are highly sensitive and selective, both 
have pros and cons. Regarding electrochemical biosensors, they show advantageous 
properties that, in general, can be summarized as providing wide linear dynamic ranges 
and low LODs, as well as the ability to be miniaturized and having lower experimental 
cost compared to optical biosensors. Moreover, they are not affected by interference of the 
light source and can be used for analyzing turbid samples. However, the electrode surface 

Figure 8. Scheme of the SERS immunosensor for CXCL8 detection (a) the glass slide modified
with diatom frustules; (b) SEM image of a portion of the modified slide; (c) the sandwich-type
configuration; (d) the bonding of the antibody. Reprinted from Ref. [90] with permission.



Chemosensors 2022, 10, 294 17 of 23

A sensitive real-time biosensing approach to quantify secretion and receptor binding
of native chemokines in live cells was developed by White et al. [85]. CRISPR/Cas9 genome
editing was used to tag the chemokine CXCL12 with the nanoluciferase fragment HiBiT and
subsequent monitoring and determination by luminescence output. Binding of CXCL12-
HiBiT to Alexa-Fluor488-tagged CXCR4 chemokine receptors was analyzed using BRET
(bioluminescence resonance energy transfer) in a range between 1 fM and 1 nM. This live
cell biomonitoring combines the sensitivity of nanoluciferase with CRISPR/Cas9 genome
editing, to detect and quantify binding of low levels of native secreted proteins in real time.

Surface plasmon resonance (SPR) measurements can be used to study interactions
between biomolecules immobilized onto metal surfaces and those present in liquid samples.
Indeed, SPR biosensors have demonstrated their usefulness as diagnostic tools in a wide
variety of biomedical applications [118]. As an example, an SPR biosensor was fabricated
by Vega et al. [86] for real-time detection of CXCL12 chemokine in urine samples of RA
patients. The developed configuration involved the use of lentiviral particles which bear
the chemokine receptor CXCR4 in its native plasma membrane. In fact, CXCL12 chemokine,
also named stromal cell-derived factor 1 (SDF-1), is one of the most relevant biomarkers
for RA [119]. It is expressed by synovial endothelial cells binding to proteoglycans and
participates in bone erosion and progression of the disease. The SPR method showed
linear responses to CXCL12 concentration in the 5–40 nM range with good reproducibility
and stability of the sensor responses for more than 150 measurements. Furthermore, its
application to analyze urine samples demonstrated the high expression of this chemokine
in RA patients with respect to healthy individuals, suggesting value of this biomarker for
diagnosis of the autoimmune disease.

5. Advantages and Disadvantages of Electrochemical and Optical Biosensors

As discussed above, electrochemical and optical biosensors have been applied to the
determination of chemokines. Although all of them are highly sensitive and selective,
both have pros and cons. Regarding electrochemical biosensors, they show advantageous
properties that, in general, can be summarized as providing wide linear dynamic ranges
and low LODs, as well as the ability to be miniaturized and having lower experimental
cost compared to optical biosensors. Moreover, they are not affected by interference of the
light source and can be used for analyzing turbid samples. However, the electrode surface
easily deteriorates, thus explaining why disposable electrodes are more frequently used,
with the subsequent increase in the cost of analysis. In addition, and also in general, optical
biosensors involving luminescence or absorbance measurements, require more complex
instrumentation than that used in electrochemical transduction, and are more susceptible
to physical damage and environmental interferences.

Furthermore, amperometric detection is easy to implement and use. The involve-
ment of nanomaterials as electrode surface modifiers to improve the electrochemical re-
sponses [88] or as carrier tags for current amplification [104] allow for a high sensitivity.
As has been pointed out, an important advantage of these biosensors is the possibility of
carrying out the simultaneous detection of several biomarkers, as has been demonstrated
with the bioplatforms magnetically assisted with MBs, for the immobilization of the biore-
agents [89,100]. In addition, label-free detection involving the EIS technique allows the
highly sensitive determination of CXCL8 [94,97] and the CCR4 receptor [108,109]. Re-
garding optical biosensors, the high sensitivity achieved with sensors using luminescent
detection [85] and their suitability for detection in cells [37], as well as the wide dynamic
range of calibrations [95] should be highlighted. Also noteworthy is the use of fluorometric
detection in microfluidic systems [37] and the one-pot approach using Förster resonance en-
ergy transfer (FRET) detection [96]. In this area, the advantages of nanomaterials have been
exploited to build SPR-based biosensors that allow real-time monitoring without the need
for labels [86], or SERS immunoassay using Raman-reporter-labelled gold nanoparticles for
signal enhancement [90].
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6. Conclusions and Future Perspectives

In this review, the importance of the determination of different chemokines in clin-
ical samples due to their involvement in diseases of high severity and incidence in the
population has been highlighted. The selected examples have demonstrated the need
for highly sensitive detection techniques to reach the low concentration levels in which
these proteins are usually expressed, but also selective enough to be used directly in the
analysis of complex samples without the need for previous treatment. In this context,
electrochemical biosensors can offer a wide range of possibilities using different bioassay
configurations, by detection with different techniques, and employing nanomaterials and
signal amplification strategies.

Assuming that biosensors improve many of the characteristics of conventional method-
ologies for chemokine determination, it is necessary to pose new challenges that make
more efficient detection in the early stages of the disease possible, when the probabil-
ity of cure is higher, but also during its course by applying accurate methodologies for
monitoring capable of detecting selected biomarkers from biological samples obtained by
non-invasive collection.

As has been seen, some biosensors are validated by applying them to spiked samples
instead of real clinical samples from patients, this being one of the many challenges that
still lie ahead when evaluating the clinical utility of biosensors for chemokine detection.
On the other hand, there are still only a few examples of multiple biosensing that enable
the simultaneous detection of several chemokines and their receptors, to provide more
information on the course of the disease. In this context, the use of label-free detection
devices should be emphasized, which in the field of electrochemical biosensors has a
predominant role in the impedance spectroscopy (EIS) technique.

Additionally, the dissemination of the utility of these devices must be carried out
intensively so that the implemented methodologies reach users in clinical laboratories and
patients, for point-of-care and self-application. This objective will be easier to achieve if
the biosensors are prepared with the additional criteria of ease-of-use and low cost using
simple protocols and cheap instrumentation, as well as working with miniaturized systems
that allow the patient to monitor parameters of medical interest in spaces that do not
necessarily qualify as laboratories or hospitals.
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