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Abstract: High purity methyl tert-butyl ether (MTBE) can be used to adjust gasoline octane val-
ues. However, an isomer, methyl sec-butyl ether (MSBE), is the main by-product of its industrial
production, and this affects the purity of MTBE. Pt/Au NPs@Co3O4 composites with a hollow
dodecahedron three-dimensional structure were synthesized using ZIF-67 as a template, with Pt
and Au nanoparticles (NPs) evenly distributed on the shell of the hollow structure. A CTL sensor
was established for the determination of MSBE based on the specificity of Pt/Au NPs@Co3O4. The
experimental results showed that Pt/Au NPs@Co3O4 had a strong specific cataluminescence (CTL)
response to MSBE, with no interference from MTBE. The linear range was 0.10–90 mg/L, the limit of
detection was 0.031 mg/L (S/N = 3), the RSD was 2.5% (n = 9), and a complete sample test could be
completed in five minutes. The sensor was used to detect MSBE in MTBE of different purity grades,
with recoveries ranging from 92.0% to 109.2%, and the analytical results were consistent with those
determined by gas chromatography. These results indicate that the established method was accurate
and reliable, and could be used for rapid analysis of MTBE gasoline additive.

Keywords: Pt/Au NPs@Co3O4; cataluminescence sensor; methyl sec-butyl ether; methyl tert-butyl
ether; rapid analysis; gasoline additive

1. Introduction

Octane value is one of the important quality indicators of gasoline [1]. Methyl tert-
butyl ether (MTBE) is an effective additive for gasoline octane value blending [2,3]. There
are strict quality requirements for MTBE used in gasoline octane blending. China’s National
Energy Administration has issued industry standards for MTBE used in gasoline blending,
which stipulate that the purity of MTBE shall not be less than 96% (wt%). Methyl sec-butyl
ether (MSBE) is an isomer of MTBE, and known to be the main by-product of the industrial
production of MTBE. Their high structural similarity brings difficulties to their separation
and detection. Gas chromatography is the current method for determining the content
of MSBE in MTBE when evaluating its purity. However, the operation is tedious and is
not conducive to rapid analysis. Therefore, it makes sense to establish a simple and rapid
method for monitoring MSBE in MTBE gasoline additive, and for determining the purity
of MTBE. However, to date, there is no fast-sensing technology that could be used for the
rapid detection of MSBE.

As a quick analysis method, cataluminescence (CTL) has many benefits, such as high
selectivity, fast response, and easy operation [4,5]. The catalyst is the core component of
a CTL sensor, and it has an important effect on sensing performance. Therefore, a CTL
sensor could be established based on gas-sensing catalyst materials that can selectively
respond to MSBE, and might be used to detect MSBE in MTBE gasoline additive. In recent
years, metal oxides such as WO3 [6], ZnO [7], SnO2 [8], and Co3O4 [9] have been a common
type of material used in various sensors. Owing to its good catalytic performance and
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low cost, Co3O4 is a potential material for this application, and it has been widely studied
in many fields [10–12]. In addition, as a p-type semiconductor material, the gas-sensing
capability of Co3O4 is based on the catalytic properties of its surface, and it has been widely
used as a catalyst to improve the selective oxidation of various volatile organic compounds
(VOCs) [9,13].

As a porous framework consisting of metal ions and organic ligands, metal–organic
frames (MOFs) have various topologies and tunable structures [14]. They can convert
to different types of metal oxides after heat treatment, and maintain their original form.
Based on this characteristic, a MOF could be used as an ideal self-sacrificial template
for the synthesis of metal oxides with regular morphologies, and to improve the gas-
sensing properties of materials [15]. In addition, to further enhance the sensing signal and
to speed up the response recovery time, it has become popular to add a small amount
of noble metals, such as Ag, Au, Pt, etc., to metal oxides [16,17]. Loading noble metal
nanoparticles onto Co3O4 not only prevents the agglomeration of the noble metal particles,
increasing the loading capacity of the precious metal, but also improves the catalytic
activity of Co3O4. For example, an Ag@Co3O4 composite was reported to increase the
signal from formaldehyde by several times, and to reduce the working temperature of the
sensor to 90 ◦C [18]. Furthermore, the performance of composite material in catalyzing
CO oxidation has also been explored by depositing Au NPs onto different oxides [8,19].
Recently, bimetallic catalytic materials have attracted attention for use in many catalytic
reactions, and the performance of monometallic catalysts is often improved by the addition
of a second metal. Bimetallic catalysts based on metal oxides have become a research
hotspot due to their high catalytic activity and selectivity for various catalytic conversion
processes [20–22]. The advantages of dual noble metal catalysts stem from their electronic
interactions, with the possibility of complex geometric arrangement, charge transfer, or
interfacial stabilization between the atoms of the two noble metals. The development of
new dual noble metal-modified Co3O4 composites is of great significance for improving
their catalytic performance and for broadening their field of application.

In this work, we synthesized Pt/Au NPs@Co3O4 double noble metal-modified
nanocomposites via a two-step method using ZIF-67 as a template, and we explored
their application as catalysts using a CTL method to detect the MSBE content of MTBE.
The reaction products of the CTL reaction were analyzed by gas chromatography–mass
spectrometry to explore the possible mechanism of the Pt/Au NPs@Co3O4-catalyzed se-
lective CTL response of MSBE. Ultimately, a Pt/Au NPs@Co3O4-based CTL sensor was
constructed for rapid analysis of MTBE purity.

2. Experiment
2.1. Chemicals

Cobalt nitrate, 2-methylimidazole, methanol, ethanol, sodium chloroaurate, chloropla-
tinic acid hexahydrate (H2PtCl6·6H2O), H2O2 (30%, wt%), acetone, N,N-dimethylformamide
(DMF), and 95%, 98%, 99%, and 99.9% (wt%) MTBE were obtained from Aladdin Reagent
Co., (Shanghai, China). MSBE (99.9%, wt%) was purchased from J&K Chemicals, (Bei-
jing, China). All compounds were from commercial sources and were not purified before
use. Throughout the studies, ultrapure water (18.3 MΩ·cm) was supplied from a Milli-Q
gradient system (Millipore, Billerica, MA, USA).

2.2. Instruments

A Hitachi H-7500 transmission electron microscope (Tokyo, Japan) was used to charac-
terize the morphology and size of Pt/Au NPs@Co3O4. Cu Kα incident radiation (Rigaku,
Japan) was used for X-RAY Diffraction (XRD) testing. An Escalab 250 spectrometer (Thermo
Fisher Scientific, Waltham, MA, USA) was used to record the X-ray photoelectron spec-
troscopy (XPS) spectrum. An ASAP-2020 M gas adsorption instrument (Micromeritics,
Atlanta, GA, USA) was used to measure surface area. All the CTL experiments were carried
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out using an ultraweak luminescent analyzer with a photomultiplier tube (PMT) acquired
from Academia Sinica’s Institute of Biophysics (Beijing, China).

2.3. Synthesis of Pt/Au NPs@Co3O4

The Pt/Au NPs@Co3O4 composite was prepared according to published methods
with minor changes; this mainly included three steps:

Synthesis of ZIF-67 precursor [10]: 1.164 g Co(NO3)2·6H2O and 1.312 g 2-methylimidazole
were dissolved in 100 mL methanol, then the solution was rapidly stirred and aged at room
temperature for 24 h. The precipitate obtained was washed with ethanol 4 times, and the
ZIF-67 precursor was obtained after vacuum drying overnight.

Preparation of Au NPs@Co3O4 [23]: ZIF-67 (50.0 mg) was added to 2 mL ethanol
containing 0.12 mmol NaAuCl4·2H2O, and allowed to stand at room temperature (approxi-
mately 27 ◦C) for 20 min. Then, the product was collected by centrifugation, washed with
ethanol 3 times, and dried under vacuum. The purple ZIF-67/Au3+ precursor was heated
to 300 ◦C at a heating rate of 1 ◦C/min for 2 h. After calcination, the purple precursor
turned into a black powder.

Synthesis of Pt/Au NPs@Co3O4 [24]: The modification of Pt NPs was carried out
according to a reported method. 2 g Au NPs@Co3O4 was ultrasonically dispersed in 100 mL
aqueous solution containing 0.051 mmol H2PtCl6. 0.5 g 30% H2O2 (wt%) was diluted with
20 mL water, then the solution was added to the Au NPs@Co3O4 suspension dropwise
with vigorous stirring, while maintaining the temperature at 60◦C. The resulting solid was
filtered, washed with water, and dried at 110 ◦C overnight. Finally, the powder obtained
by sintering at 350◦C for 4 h in a pure H2 atmosphere was denoted as Pt/Au NPs@Co3O4.

2.4. Cataluminescence Method

A pulp suspension was obtained by mixing 0.8 g Pt/Au NPs@Co3O4 with 3.0 mL
deionized water. After that, a certain volume of pulp suspension was smeared onto the
surface of a ceramic heating rod and annealed in air to generate a catalyst layer. The
ceramic heating rod coated with the catalyst layer was inserted into a home-made quartz
tube with an air inlet and outlet, to form a CTL reaction chamber. The ceramic heating rod
was connected to a voltage regulator that was used to control the working temperature
by adjusting the output voltage. A BPCL ultra-weak luminescence analyzer was used to
detect and record the CTL signal. MTBE gases of different concentrations were obtained
by injecting different volumes of MSBE standard solutions into 1 L Teflon sample bags.
Unless otherwise specified, the detection conditions were as follows: temperature: 187 ◦C,
wave length: 440 nm, and rotation speed: 60 r/min; the injection volume for each catalytic
luminescence test was 1 mL.

2.5. Gas Chromatography Method

In this study, gas chromatography (GC) was used as comparison method to verify
the accuracy and practicability of the experiment. Instrument: Gas chromatograph with
flame ionization detector (FID). Chromatographic column: 6% cyanopropylphenyl/94%
dimethylpolysiloxane, column length: 60 m, liquid film thickness: 1.4 µm, inner diameter:
0.25 mm; carrier gas: N2, column temperature: first, the temperature was kept at 50 ◦C for
15 min, and then increased to 150 ◦C at a rate of 10 ◦C/min, and finally held for 1 min.

2.6. Sample Preparation

A 1 L Teflon sample bag was used to prepare MTBE gas with different levels of purity
(the concentrations were 100 mg/L). The luminescence signals from different samples were
measured using the proposed CTL method. A standard addition recovery experiment was
carried out by adding different amounts of MSBE, and the recovery rate was calculated.
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3. Results
3.1. Synthesis and Characterization of Pt/Au NPs@Co3O4
3.1.1. Synthesis of Pt/Au NPs@Co3O4

The process for manufacturing Pt/Au NPs@Co3O4 is shown in Figure 1. Hollow
dodecahedron Co3O4 was synthesized using ZIF-67 as a template, then Pt/Au NPs@Co3O4
was synthesized by stepwise modification.
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Figure 1. Schematic diagram of Pt/Au NPs@Co3O4 synthesis.

The properties and applications of Pt/Au NPs@Co3O4 were explored using the follow-
ing techniques. SEM and TEM were adopted to characterize the morphology and structure
of Pt/Au NPs@Co3O4. As shown in Figure 2A,B, the appearance of the Pt/Au NPs@Co3O4
presented as a regular polyhedral shape with an average size of about 500 nm. It is worth
noting that there was a distinct hollow structure. In addition, Pt/Au NPs@Co3O4 had a
rough surface, and it can be clearly seen that Pt NPs and Au NPs were uniformly distributed
on the surface of the Co3O4 without changes to its morphology and structure. The TEM
image showed the hollow structure and the morphology of the regular polyhedrons more
clearly (Figure 2C). The existence of lattice fringes of two types of nanoparticles in the high
magnification TEM image (Figure 2D) also indicated the successful recombination of Pt
NPs and Au NPs. The nanoparticles were approximately 5 nm in size.
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element mapping for Pt/Au NPs/Co3O4.

To characterize the distribution of elements in Pt/Au NPs@Co3O4 intuitively, the
distribution maps of Pt, Au, Co, and O in Pt/Au NPs@Co3O4 were investigated using
energy-dispersive X-ray spectroscopy (EDXS). It was found that Au and Pt NPs were
uniformly distributed throughout the polyhedral cavity structure (Figure 2E,F). In addition,
Figure 2G,H indicates the uniform distribution of Co and O in the Co3O4 cavity structure.
The element mapping proved the successful synthesis of Pt/Au NPs@Co3O4 composite.

3.1.2. Characterization of Pt/Au NPs@Co3O4

XPS was a tool which is used to analyze the elemental composition and element valence
states of material surfaces. Figure 3 shows the XPS spectroscopy of Pt/Au NPs@Co3O4.
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Figure 3A displays the spectrum of Pt 4f, there is a doublet characteristic peak at 73.20 eV
and 76.05 eV which belongs to Pt 4f7/2 and Pt 4f5/2, respectively, indicating the existence of
Pt(0) in Pt/Au NPs@Co3O4 [25,26]. The XPS spectrum of Au 4f also shows double peaks
(Figure 3B), and the peaks at 87.90 eV and 84.20 eV belong to 4f5/2 and 4f7/2 of Au(0) [27].
In addition, the XPS report documented that the atomic% of Pt 4f and Au 4f was 2.69% and
1.25%, respectively, and the ratio of Pt to Au NPs was approximately 2:1. Figure 3C shows
the XPS spectrum of Co 2p; there are two characteristic peaks that come from the spin-orbit
interaction of 2p3/2 and 2p1/2 [28]. In this spectrum, the peak attributed to 2p3/2 was split
into two peaks at 781.3 and 783.2 eV, while the peak for 2p1/2 was also split into two peaks
with binding energies of 795.9 and 798.4 eV, respectively. The peaks at 781.3 eV (Co 2p3/2)
and 795.9 eV (Co 2p1/2) confirm that Co was present as Co3O4 in the composite [29,30].
Moreover, the full-range XPS spectra of the Pt/Au NPs@Co3O4 composite confirmed the
presence of all the expected elements, such as Pt, Au, C, O, and Co (Figure 3D). In summary,
the results of XPS spectra proved the successful synthesis of Pt/Au NPs@Co3O4 composite.
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Figure 3. XPS spectra of Pt 4f (A), Au 4f (B), Co 2p (C), and Pt/Au NPs@Co3O4 (D).

XRD was used to characterize the crystalline structure of Pt/Au NPs@Co3O4. As
shown in Figure 4A, the diffraction peaks at 2◦ at 19.00◦, 36.85◦, 44.81◦, and 65.24◦ corre-
sponded to the (111) face, (311) face, (400) face, and (440) face in Co3O4 respectively [31].
However, there were no diffraction peaks of Pt or Au NPs found in the XRD spectrum. The
possible reason for that might be the low content and high dispersion of the Pt and Au NPs
in Co3O4 [10,31].

The functional group information for Pt/Au NPs@Co3O4 was characterized using
FT-IR, as shown in Figure 4B. The peaks at 3411 cm−1 and 1610 cm−1 are caused by the
stretching and in-plane bending vibration of the N−H bond. The peaks near 2930 cm−1,
2850 cm−1. and 1087 cm−1 are the stretching vibration and in-plane bending vibration
peaks of the C−H bond. The vibrational peaks of the Co−O bond are associated with the
two peaks located at 670 cm−1 and 569 cm−1 [32,33].
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The specific surface area and pore size distribution of the Pt/Au NPs@Co3O4 compos-
ites were investigated by N2 adsorption–desorption experiments at 77 K, and the results
are shown in Figure 4C,D. According to the Brunauer–Emmett–Teller (BET) method, the
BET specific surface area of Pt/Au NPs@Co3O4 was calculated to be 33.7 m2/g, and the
N2 adsorption–desorption curve was a typical IV-type curve with an H3-type hystere-
sis loop, indicating the existence of a mesoporous/macroporous structure within Pt/Au
NPs@Co3O4. Furthermore, the pore size distribution map exhibited a broad pore size,
ranging from 1.6 to 30 nm, which further demonstrates the coexistence of mesopores and
macropores in the material.
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3.2. Cataluminescence Sensor
3.2.1. CTL Signal Enhancement by Pt/Au NPs@Co3O4

The enhancement of the Pt/Au NPs@Co3O4 composite material to the MSBE CTL
signal was explored by comparing it with that obtained from Co3O4, Au NPs@Co3O4, and
Pt NPs@Co3O4. As shown in Figure 5A, the signal obtained from 5.00 mg/L MSBE was
approximately 600 on the surface of Co3O4 (line 1), 1200 on Au NPs@Co3O4 (line 2), and
2000 on Pt NPs@Co3O4 (line 3); while the signal increased to 6500 on Pt/Au NPs@Co3O4
(line 4). The results suggest that both single Au NPs and single Pt NPs could improve
the catalytic ability of Co3O4 to a certain extent. However, the catalytic performance was
greatly promoted when both were present at the same time, a feature which may be caused
by the electron interaction between the Au and Pt NPs [21,22].

The CTL responses of different concentrations of MSBE and MTBE on the surface of
Pt/Au NPs@Co3O4 were also explored. As shown in Figure 5B,C, MSBE exhibited a strong
CTL signal. In Figure 5B, the CTL signal was approximately 1100 when the concentration
was 1.00 mg/L (curve 1), which was enhanced to approximately 5000 and 9000 when
the concentration was increased to 5.00 and 10.0 mg/L (curves 2 and 3, respectively).
Meanwhile, the background noise was very low, only approximately 100, resulting in a
high signal-to-noise ratio. Therefore, Pt/Au NPs@Co3O4 showed high sensitivity for the
detection of MSBE. At the same time, the CTL responses of Pt/Au NPs@Co3O4 to different
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concentrations of MTBE were explored. As shown in Figure 5C, there was no CTL signal
observed with concentrations ranging from 5.00 to 100.0 mg/L. This phenomenon shows
that Pt/Au NPs@Co3O4 could not catalyze the CTL reaction of MTBE, which laid the
foundation for establishing a CTL method based on Pt/Au NPs@Co3O4 that can be used to
determine MSBE in MTBE and to monitor the purity of MTBE.
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3.2.2. The Catalytic Performance of the Cataluminescence Sensor

It is necessary that the presence of large concentrations of MTBE should not interfere
with the CTL detection of MSBE if we want to determine the purity of MTBE using a CTL
sensor based on Pt/Au NPs@Co3O4. In order to explore the anti-interference performance
of Pt/Au NPs@Co3O4, the CTL signals of different concentrations of MSBE in the presence
of 100 mg/L MTBE were detected, and compared with the detection results of MSBE alone,
as shown in Figure 5D. CTL signals were measured for 0.100, 0.500, 1.00, and 2.00 mg/L
MSBE in the presence of 100 mg/L MTBE (blue). Comparing these data to the results from
MSBE tested alone (black), it was found that the presence of MTBE did not significantly
affect the CTL signal of MSBE, including at higher concentrations. This suggested that
MTBE does not interfere with the CTL response of MSBE when the content of MSBE
exceeds 5%. The purity of MTBE used for gasoline octane blending must exceed 96% (wt%).
Therefore, the CTL sensor based on Pt/Au NPs@Co3O4 could be used to determine the
content of MSBE in MTBE, thus determining the purity grade of MTBE.

The possible mechanism of Pt/Au NPs@Co3O4 to the selective catalysis of MSBE was
speculated by comparing the structures of MTBE and MSBE. The CTL test (Figure 5) showed
that MSBE presented a strong CTL response, while MTBE showed no signal, therefore the
functional groups involved in the CTL signaling response will not be methoxyl groups,
which are present in both MTBE and MSBE [34,35]. The possible CTL reaction process of
MSBE is shown as a response equation in Figure 6. The functional group that reacts is
specific to MSBE, and is absent from MTBE. Thus, it is possible for the two isomers to have
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completely different reactions. To support this speculation, the reaction products of MSBE
with different reaction times were analyzed by gas chromatography–mass spectrometry,
as shown as Figure 6. Methyl acetate (Peak 5) was found in the intermediate products of
the reaction, and all the intermediate products generated by the CTL reaction were finally
converted into carbon dioxide (Peak 1) after 300 s. Although the amount of methyl acetate
seems very low, the emergence of methyl acetate proved the accuracy of our speculated
reaction path. Methyl acetate seems to be present as an intermediate which was eventually
converted to CO2. However, because the sampling process was not a completely closed
environment, the intensities of the peaks could not be quantified. The discovery of methyl
acetate confirmed the reaction pathway shown in Figure 6, and given the CTL phenomena,
it was inferred that the CTL signal of MSBE was caused by the reaction of −CH2−CH3.
Thus, this explains the different CTL phenomena exhibited by MTBE and MSBE, which are
isomers.
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3.3. Analytical Characteristics of the Sensor

The analytical performance evaluation, including the assessment of selectivity, stability,
linear range, limit of detection, and sample analysis application, was carried out with the
optimized operational conditions as follows: temperature: 187 ◦C, wave length: 440 nm,
and rotational speed: 60 r/min.

3.3.1. Selectivity and Stability

The selectivity and stability of CTL sensors was the premise of establishing the ana-
lytical method. To explore the selectivity of Pt/Au NPs@Co3O4-based CTL sensors, other
impurities that may coexist in MTBE were selected as interferents, including methanol,
tert-butanol, propanol, acetone, and n-hexane. Then, 10.0 mg/L MSBE gas and 200 mg/L
coexistence impurity gases were prepared individually in Teflon sampling bags, and the
CTL signals were collected under the same operational conditions, as shown in Figure 7A. It
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was found that 10 mg/L MSBE had a strong response with a signal value of approximately
9000, while the coexistence impurities showed no obvious response, indicating the excellent
selective catalytic chemiluminescence capability of Pt/Au NPs@Co3O4 towards MSBE. In
addition, the stability of the method was also explored, and the result is shown in Figure 7B.
The Pt/Au NPs@Co3O4-based CTL gas sensor was used to detect 10.0 mg/L MSBE nine
times in parallel; the results presented a low RSD value of 2.5%. In addition, the sensor
was placed naturally in the air at room temperature for more than a month. The results
suggested that the sensor has a good stability for a long period of use and the humidity of
the air had no significant effect on the test results.
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3.3.2. Linear Range and Limit of Detection

Under the optimized operational conditions, the CTL response curves of standard
MSBE gas at concentrations of 0.100, 0.500, 1.00, 5.00, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0,
80.0, and 90.0 mg/L were recorded and are shown in Figure 8A. Figure 8B demonstrates a
linear increase in the signal intensity with the MSBE concentration. Therefore, the linear
range of the Pt/Au NPs@Co3O4-based CTL analysis method was 0.100–90.0 mg/L, and the
limit of detection was calculated as 0.031 mg/L (S/N = 3).
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3.3.3. Sample Analysis

To evaluate its practicability, the Pt/Au NPs@Co3O4-based CTL analysis method was
employed to detect the content of MSBE in MTBE gasoline additives with different purity
grades, including 95%, 98%, 99%, and >99.9% (wt%). Thus, 100 mg/L MTBE gas samples
were prepared in Teflon sampling bags, and the CTL curve for each sample was recorded.
The results showed 0.31 mg/L MSBE was found in the 95% (wt%) pure MTBE gas sample,
and its CTL curve (line 2) is shown in Figure 8C; while no CTL signal was observed in the
other samples. These results indicate that 95% (wt%) MTBE is not suitable for gasoline
octane blending, while the content of MSBE in 98%, 99%, and >99.9% (wt%) MTBE was
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less than 0.1% (wt%). Moreover, the results of the recovery tests which were carried out by
adding 0.50, 1.00, and 3.00 mg/L MSBE were in the range of 92.0–108.6%. In addition, these
four MTBE gas samples were also analyzed using GC. A relative error of 3.7% was obtained
between the results of the proposed CTL method and the standard GC method, indicating
the accuracy and reliability of the Pt/Au NPs@Co3O4-based CTL analysis method. The
detailed results of MTBE gas samples analysis are listed in Table 1.

Table 1. Detection and recovery of MSBE in MTBE samples.

Sample
(wt%)

The CTL Method

GC
(mg/L)

Relative
Error (%)Amount

(mg/L)
RSD (%)

(n = 5)

Recovery (%)

0.500
(mg/L)

1.00
(mg/L)

3.00
(mg/L)

95% MTBE 0.31 2.6 106.2 92.0 94.4 0.29 ± 0.013 +3.7
98% MTBE ND - 92.0 98.0 108.6 ND -
99% MTBE ND - 106.8 93.0 99.4 ND -

99.9% MTBE ND - 103.5 93.4 105.3 ND -

ND: Not detected.

4. Conclusions

MSBE is the main by-product of the industrial production of MTBE, and affects its
application in gasoline octane blending. In this work, a Pt/Au NPs@Co3O4 CTL sensor
was developed for rapid analysis of MSBE as an impurity in MTBE gasoline additives. A
hollow dodecahedral structure Co3O4 material was synthesized successfully using MOFs
as a template, while the Pt/Au NPs@Co3O4 composite was synthesized via a two-step
method. The synthesized Pt/Au NPs@Co3O4 material exhibited excellent selective catalytic
chemiluminescence properties towards MSBE, even in the presence of a high concentration
of MTBE. Thus, a Pt/Au NPs@Co3O4 CTL sensor was constructed for rapid analysis of
MSBE. The CTL method for MSBE analysis had a linearity range of 0.10–90 mg/L and a
LOD of 0.031 mg/L (S/N = 3). Finally, this Pt/Au NPs@Co3O4 CTL sensor was applied to
MSBE analysis in MTBE gasoline additives with different purity grades. The results were in
good agreement with those obtained from gas chromatography, and satisfactory recoveries
were achieved, in the range of 92.0–109.2%. Overall, the developed Pt/Au NPs@Co3O4-
based CTL method was accurate and reliable, and can be used for rapid analysis of the
purity of MTBE gasoline additives, such as for quality monitoring.
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