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Abstract: In this paper, the electrochemical behavior of cysteine is described, using carbon paste
electrodes (CPEs) modified with ternary silver-copper sulfide containing intrinsic silver at two pH
values (pH 3 and 5). Experiments have revealed that presence of cysteine has a large impact on the
electrochemical behavior of modified CPEs. Observed phenomena take place in solution, as well
as at the surface of the modified CPEs, and can be applied for electroanalytical purposes. Based
on the electrochemical behavior observed in the examined system, differential pulse voltammetry
(DPV) was selected as an electroanalytical method for determination of cysteine. The effects of the
various parameters on the electroanalytical signal, such as the amount of electroactive material,
electroanalytical parameters, pH etc., were investigated using differential pulse voltammograms.
The results indicated that electrochemical signal characterized with well-defined cathodic peak at
0.055 V vs. Ag/AgCl (3 M) in acetic buffer solution at pH 5 can be used for indirect electrochemical
determination of cysteine. The optimization procedure revealed that the most sensitive and stabile
electrode was that containing 5% modifier. The DPV response of the electrode, in the presence
of cysteine, showed two different linear concentration ranges of 0.1 to 2.5 µM, and 5.6 to 28 µM.
The explanation of the origin of two linear ranges is proposed. The lower concentration range was
characterized by remarkable sensitivity of the 11.78 µA µM−1, owing to the chosen indirect method
of determination. The calculated limit of detection (LOD), as well as limit of quantification (LOQ)
were 0.032 and 0.081 µM, respectively. The influence of interfering agents on the electroanalytical
response was examined, and low or no interference on the DPVs was observed. The proposed method
was validated and applied for the determination of cysteine in pharmaceutical preparations with
satisfactory recoveries in the range of 97 to 101.7%.

Keywords: electroanalysis; cysteine; differential pulse voltammetry; carbon paste electrodes; ternary
sulphides; intrinsic silver

1. Introduction

Thiols, as components of various proteins and simple molecules, play an important
role in many biological and environmental systems. Biological thiols such as cysteine,
glutathione and homocysteine have attracted special attention because they are widely
distributed in the environment, as intermediates important in the anaerobic decomposition
of organic matter in sediments and soil. These three particular thiols share a similar
structure, which has been a major obstacle for researching their physiological functions [1].

Cysteine is a sulfur-containing non-essential amino acid with pKa values of 1.96 for
the carboxylic group, 8.18 for the amine group and 10.28 for the thiol group [2]. Because it
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contains a strongly nucleophilic thiol group, cysteine is an interesting target for bioassays
aimed at investigating the biomolecular structure and dynamics of reactions [3]. Specifically,
this thiol group enables cysteine to interact with more complex biological molecules, in that
it creates strong bonds with the silver or gold electrode, and amino and carboxyl groups [4].
A particularly interesting interaction of cysteine with silver surfaces occurs, that indicates a
stronger adsorption of cysteine on silver than on copper or gold surfaces. Such interactions
may affect the creation of new interface states at the cysteine–Ag interface [5]. Silver(I) ion
forms strong complexes with organic and inorganic sulfur from thiols, which is indicated
by a higher stability constant for Ag(I) organosulfur complexes (thiols, K ≈ 1013), compared
to those of Ag(I) carboxylate complexes (monodicarboxylic acids, K ≈ 102–104, or EDTA
with K ≈ 107) [6]. Possible binding of cysteine on the surface of Ag nanoparticles was
reported by Ravindran et al. [2].

Toh et al. reported chemical interactions between silver nanoparticles and thiols,
showing how silver (I) forms complexes with inorganic and organic thiols without redox
reactions [7]. They also described the effect of pH on the binding of silver nanoparticles to
cysteine in terms of preventing aggregation of silver nanoparticles. The effect of Au NPs on
cysteine electroanalysis was investigated by Wang et al., who studied the sensitive detection
of cysteine performed on a modified GC electrode with Au nanoparticles dispersed in
Nafion [8]. Pei et al. reported electrochemical behavior of metal-based sulfides (Ag2S and
Ag2S/Cu2S) in the presence of cysteine, demonstrating that the glassy carbon electrode
modified with Ag2S or Ag2S/Cu2S shows semi-reversible behavior, which suggests that
such prepared electrodes have potential for cysteine determination [9]. In our previous
paper we focused on the investigation of the electrochemical behavior of cysteine on
different crystal electrodes based on silver-copper sulfides. Electrode material comprising
metallic silver and jalpaite showed the best electrochemical behavior towards cysteine [10].
A number of studies have shown that silver is a good substrate for electrodes for the
selective determination of thio compounds, in the range of submicromolar concentrations,
at low applied potential [11].

There are many questions among researchers about the electrooxidative mechanism of
amino acids, and the scientists generally agree that it is vastly dependent on experimental
conditions such as variations in pH and electrolyte, type of electrode, and amino acid
concentration itself [12].

Accordingly, many chemical and instrumental methods have been reported for the
determination of cysteine. These include chromatography separation [11,13,14], spectropho-
tometry [2,5,7,15] and electrochemical techniques [15–18]. Compared to other methods,
electroanalytical approaches have inherent advantages such as simplicity, high sensitivity,
good stability and relatively low price.

The electrochemical behavior and sensitive detection of cysteine can be determined by
various electrochemical techniques, including cyclic voltammetry, differential pulse voltam-
metry and cathodic stripping voltammetry [16,19–21]. Several electrodes usually used for
the investigation of cysteine include glassy carbon electrodes or modified glassy carbon
electrodes [16,19,22], carbon paste electrodes or modified carbon paste electrodes [17,20,23]
and mercury electrodes [24].

Comparison of the electroanalytical performances of electrodes modified with various
materials for the determination of cysteine, obtained from papers published in the last five
years, are given in Table 1. It should be noted here that in this period there have been very
few papers describing the determination of cysteine with electrodes modified with various
silver-based materials.
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Table 1. Comparison of the electroanalytical performance of electrodes modified with various
materials, for determination of cysteine.

Supporting
Electrode/Sensitive Layer pH Working Potential

E/V LOD/µM
Linear
Range
µM

Sensitivity Method Ref.

GCE/AgNPs/GQDs 7 0.52 V vs. SCE 0.01
0.1–5;

NA
CV,

[19]8–200 DPV

silver-copper sulfide 5 0.142 V vs. Ag/AgCl 0.036
1–100

0.11 µA µM−1
AMP [10]

7 0.04 V vs. Ag/AgCl 0.024 0.10 µA µM−1

GCE/rGO-Nafion@Pd 7 0.6 V vs. SCE 0.15 0.5–10 1.30 µA µM−1 cm−2 AMP [25]
screen-printed diamond

electrode 7 0.663 V vs. Ag/AgCl 0.872 1–194 0.226 µA µM−1 cm−2 CV [26]

N-PC/Ag-MOF 7 0.02 V vs. Ag/AgCl 0.05 0.1–1300 NA AMP [27]
CuO/boron nitride

7.4 0.45 V vs. Ag/AgCl 0.58 1–10 NA AMP [28]Nanocomposite

functionalized MWCNT 7 0.2 V vs. SCE 0.16 nM 0.7
nM–200µM NA DPV [29]

CeO2-CuO
nanocomposite 7 0.8 V vs. SCE 0.016 10–5000 21.6 µA cm−2 mM −1 AMP [30]

CeO2-SnO2
nanocomposite 7 0.8 V vs. SCE 16 10–2000 186.34 µA cm−2 mM −1 AMP [31]

CuFe2O4/rGO–Au
composite 6.5 0.4 V vs. Ag/AgCl 0.383 50–200 100.01 µA cm−2 mM −1 CV [32]

ethyl 2-(4
ferrocenyl[1,2,3]triazol-1-

yl)
acetate/graphene

7 0.33 V vs. Ag/AgCl 0.9 4.0–2300.0 0.0078 µA µM−1 SWV [33]

Au nanoparticles/
7 0.8 V vs. SCE 1.873 15–500 NA DPV [34]anthraquinone-2-

carboxylic
acid

electrodeposited
copper/SPE 7.4

0.5 vs. Ag
pseudo-ref 0.21

1–400 0.028 µA µM−1
AMP [35]

400–1800 0.014 µA µM−1

Cu2+

5 0.1 V vs. Ag/AgCl 83.0 pM 0.010–500 102 µA µM−1 cm−2 SWV [36]modified
Fe3O4@polydopamine

Co-Gd2O3 nanocomposite 7 0.4 V vs. Ag/AgCl 0.23 1–100 NA AMP [37]
bismuth tellurate

nanospheres 7 0.14 V vs. SCE 0.046 0.1–2000 NA CV [38]

CPE/ternary silver-copper
sulfides

5 0.055 V vs. Ag/AgCl 0.032 0.1–2.5
11.78 µA µM−1 DPV This

work0.08 5.6–28

GCE: glassy carbon electrode, MWCNT: multiwall carbon nanotubes, SPE: screen printed electrode, CPE: carbon
paste electrode. Methods—AMP amperometry, CV cyclic voltammetry, DPV differential pulse voltammetry, SWV
squarewave voltammetry.

Our previous paper presented the use of a carbon paste electrode modified with
ternary silver-copper sulfides as an amperometric sensor for indirect determination of
hydrogen peroxide [39]. Relying on these results, in this paper we focused on the elec-
trochemical behavior of cysteine on a carbon paste electrode modified with silver-copper
sulfide materials. In this work, an electrochemical indirect method for determination of
cysteine is presented. This indirect method relied on the chemical complexation of cysteine
with silver ions. As a source of silver ions, ternary silver-copper sulfide containing intrinsic
silver was used, incorporated in the carbon paste electrode. As an appropriate method, dif-
ferential pulse voltammetry was chosen. Owing to the indirect method, excellent sensitivity
at low cysteine concentration was achieved. The influence of pH and different content of
electroactive material was investigated.
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2. Materials and Methods
2.1. Chemical and Solution

All reagents and chemicals were of analytical grade, and all solutions were prepared
with redistilled water. Acetate buffer (pH 3 and 5; 0.1 M) was prepared by mixing solutions
of 0.1 M acetic acid and 0.1 M potassium acetate, all purchased from Kemika (Zagreb, Croa-
tia). The cysteine solution (Merck, Kenilworth, NJ, USA) and pharmaceutical preparations
(NOW Foods tablets (dietary supplement)—NOW FOODS, Bloomingale, Illinois, USA;
Fluimukan Akut effervescent tablets—Sandoz, Zagreb, Croatia and Propomucil ® throat
syrup—Abela Pharm, Belgrade, Serbia) were prepared daily by dissolution in previously
deaerated (with N2) redistilled water. This solution was used for the preparation of solu-
tions with lower cysteine concentrations. Arginine, histidine, ascorbic acid and aspartic
acid were purchased from Sigma-Aldrich (St. Louis, MO, USA), while lactose was obtained
from Kemika (Zagreb, Croatia).

2.2. Preparation of Modified Electrode

Electrode materials were obtained by co-precipitation of Ag+ and Cu2+ with sulfide
excess of metals ions, as shown in Table 2.

Table 2. Mole ratio of the copper, silver and sulfide ions.

Composition of Mediator Mole Ratio of Ions Moles of Ions

metallic silver, Ag1.2Cu0.8S and CuAgS (Cu2+; Ag+): S2− Cu2+; Ag+; S2−

1:0.5 0.02; 0.04; 0.02

Modified carbon paste electrodes (CPEs) were used as the working electrodes. The
modified CPE containing 5% by weight of the material were prepared by hand-mixing
0.475 g of graphite powder (<20 µm, Sigma-Aldrich, St. Louis, MO, USA) and 0.025 g
(5% by weight) of modifier. The mixture of graphite powder and mediator was used
for preparation of carbon paste with the addition of 200 mm3 of paraffin oil (Kemika,
Zagreb, Croatia) followed by homogenization in a mortar. Similar procedures were applied
for CPEs with 2.5% and 10% of mediators. Obtained pastes were kept overnight in the
refrigerator. CPEs were prepared by packing prepared paste into a syringe with a working
surface of 0.2 cm2. Electrical contact was made by inserting a copper wire into the paste.
The working surface of the electrode was polished with a wet filter paper. The mediator
was ternary silver–copper mixed sulfide with composition: metallic silver, Ag1.2Cu0.8S and
CuAgS; composition of the mediator was determined by XRD analysis [40]. This mediator
was synthesized according to the proposed method [10,40] in the presence of an excess of
the metal ions. The mole ratio and molarity details of the ions in the preparation procedure
are given in Table 2.

2.3. Apparatus and Measurements

All experiments were carried out in an electrochemical cell with three electrodes, at
room temperature (ca. 22–25 ◦C). Prepared modified CPEs were used as the working
electrodes, a Radiometer XR300 Ag/AgCl 3 M electrode (Copenhagen, Denmark) was used
as a reference electrode, and platinum as an auxiliary electrode. Electrochemical measure-
ments (cyclic voltammetry and differential pulse voltammetry) were carried out using a
potentiostat (Autolab PGSTAT 302N, Metrohm, Autolab B.V., Utrecht, The Netherlands),
connected to a PC and driven by GPES4.9 software (Eco Chemie, Metrohm, Autolab B.V.,
Utrecht, The Netherlands).

Cyclic voltammograms were recorded in the range of −0.25 to +0.75 V, in quiescence
solution at a scan rate of 50 mV s−1, using modified CPEs in 50 cm3 acetate buffer (pH 3
and 5), unless otherwise stated.

Differential pulse voltammograms (DPV) were carried out in 50 cm3 acetate buffer
(pH 5) spiked with aliquots of cysteine to obtain desired cysteine concentrations. As in
the case of CV, prior to cysteine addition, the electrode was cycled 10 times with a scan
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rate of 25 mV s−1. The differential pulse voltammetry (DPV) was applied under optimized
parameters, i.e., pulse amplitude 0.05 V, pulse width 0.05 s and step potential 0.01 V. The
solution was stirred and then left to rest for 15 s before each voltammetric measurement.

3. Results and Discussion
3.1. Composition of the Modifier

Phase composition of the synthesized material was determined by x-ray powder
diffraction (XRD), as previously reported [11,40]. The pattern for the material clearly indi-
cates the existence of the metallic silver and silver-copper sulfides (Ag1.2Cu0.8S and CuAgS).

3.2. Cyclic Voltammetry

The pH values were chosen with respect to pKa values of the cysteine; in the pH range
1.92–8.37 cysteine exists as zwitterion. Furthermore, presence of the intrinsic metallic silver
in the modifier restricted higher pH values, at which formation of hydroxo-species of the
silver can occur.

Thus, the electrochemical behaviors of electrodes consisting of various amounts of
material were observed in acetic buffer solution at pH 3 and 5. The results of cyclic voltam-
metry and recorded cyclic voltammograms (CVs) are presented in Figure 1. All recorded
CVs gave obvious cathodic and anodic current peaks. Both peaks are a consequence of the
redox behavior of intrinsic silver, present in the material.
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ior is not surprising if we take into consideration a simplified reaction that can be applied 
on both types of copper-silver sulphides: 

CuAgS + H+ ⇌ Cu2+ + Ag+ + HS– + e–  (1)

Somewhat improved dissolution occurred at lower pH, besides the release of the sil-
ver ions from the copper–silver material, also as consequence providing more available 

Figure 1. Cyclic voltammograms of the CPEs, modified with various amount of the material, recorded
at the different pH values (0.1 M acetate buffers).

This claim is supported by CV recorded upon addition of 10−5 M silver ions, at
electrode modified with 5% of material at pH 5. As shown, current peak was more
pronounced at the same potential in the presence of the silver ions. Furthermore, we
investigated influence of the addition of cupric ions, which are also released from the
material, according to Equation (1). Meager influence on the current peaks was found when
compared to the addition of silver ions.

Generally, both current peaks were higher at the lower pH value (pH 3). This behavior
is not surprising if we take into consideration a simplified reaction that can be applied on
both types of copper-silver sulphides:

CuAgS + H+ 
 Cu2+ + Ag+ + HS− + e− (1)
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Somewhat improved dissolution occurred at lower pH, besides the release of the
silver ions from the copper–silver material, also as consequence providing more available
intrinsic silver. Consequently, both current peaks were higher. This effect was followed by
larger separation between oxidation and reduction peaks. As expected, higher amounts of
the materials in CPEs produced larger currents.

As we shall discuss later, mechanism of determination of cysteine relies on the complex-
ation of the cysteine with silver ions. As a consequence of the higher amount of available
silver ions, a lower current response would be expected at lower cysteine concentrations.

Referring to the above-mentioned behavior, and taking into account the possibility of
determining cysteine in real samples at more “natural” pH values, a decision was made to
further proceed with investigation at pH 5.

Influence of the scan rate on the CVs was examined in order to gain insight into
problems related to the mechanism of both redox processes. Recorded CVs for electrode
modified with 5% of the material is presented in Figure 2. Analyses of the cathodic
current peaks high in dependence on the scan rate, square root of the scan rate, and
log(ν) − (−log|i|) dependence for all prepared electrodes are shown in Figure 3.
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Figure 2. Cyclic voltammograms recorded in 0.1 M acetate buffer solution at pH 5, with the CPE
modified with 5% of the material, at different scan rates: 25, 50, 100, 150, 200, 250, 300 and 400 mV s−1.

The obtained dependences (Figure 3a,b) reveal that cathodic reaction is governed
by the diffusion process, since values of the current peaks high in dependence on the
square root of scan rate are linear in large parts of the applied scan rates. However, the
best linearity was obtained using electrode with 5% of material. Additional proof of
the above-mentioned is revealed from dependence of the log(ν) − (−log|i|) (Figure 3c).
As presented, all electrodes show linearity in some part with the slope of 0.55, which is
close to the theoretic slope for diffusion-controlled processes. Accordingly, based on the
previous results, the electrode with 5% of the materials was selected for further work
and optimization.

In addition, beside analysis of the cathodic reaction, analysis was also performed
of the behavior of the anodic peak currents according to the scan rate. The recorded
CVs for the electrodes modified with 2.5% and 5.0% of the material are presented in
Supplementary Figure S1, while corresponding analysis of the anodic current peaks vs scan
rates and square root of the scan rates are given in Supplementary Figure S2. As presented,
no linearity was observed in the dependences of the anodic current peaks on the scan rate,
nor of the square roots on scan rates. In fact, anodic current peaks tended towards constant
values with increase of the scan rate. This suggests a somewhat complex mechanism that
involves diffusion phenomena as well as surface-related phenomena. Further confirmation
for this can be found in the CVs presented in Supplementary Figure S3. At a scan rate of
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25 mV s−1, the width of the anodic peak was proportional to the content of the material,
suggesting that the anodic peak was a consequence of the silver reduced from the previous
cycle as well as intrinsic silver from the material, which produced the complex form of the
anodic peak. Whatever the reason, the complex mechanism of the anodic process is not
suitable for electroanalytical purposes.
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Figure 3. Dependences of the cathodic peak currents for the CPEs modified with different amounts
of materials on: (a) scan rate; (b) square root of scan rate; (c) logarithm of oxidative current peak vs
logarithm of scan rate. The dependences were obtained from the cyclic voltammograms presented
in Figure 2.

The cyclic voltammograms recorded for electrode modified with 5% material in the
presence of cysteine are presented in Figure 4a.
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As shown, both current peaks decreased as the cysteine concentration increased. A
decrease of both of the peaks was followed by no shift in the potentials of the current peaks.
This indicates that the phenomenon arose from the lower concentration of silver ions. This
lower concentration was a consequence of the complexation of the cysteine with silver
ions; it is well known that thiols tend to react with silver ions to form stable, undissociated,
mercaptides [18,41].

A decrease of both current peaks took place at cysteine concentration ranges between
0.1 and 10 µM. At higher concentrations of cysteine, the electrode become polarizable
in the measured potential range. This phenomenon can be attributed to the adsorption
of the products of the complexation onto the electrode surface, causing the electrode to
become blocked.

3.3. Differential Pulse Voltammetry (DPV)

Taking into account everything mentioned above, differential pulse voltammetry
(DPV) was chosen as a suitable method for electroanalytical determination of the cysteine
at given conditions.

DPVs recorded at electrode modified with 5% of material in the presence of the various
concentrations of cysteine are presented in Figure 5. The dependences of the current peak
on the cysteine concentration, produced by DPVs, are presented in Figure 5.
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Figure 5. Differential pulse voltammograms, recorded at the CPE modified with 5% of the material,
in acetate buffer at pH 5, upon successive addition of cysteine for obtaining: 0.1, 0.4, 0.9, 1.6, 2.6, 5.6,
10, 17, 27, 57, 100 and 170 µM in an acetate buffer solution (pH 5). The dashed line represents DPV
recorded without cysteine solution. Initial measurement parameters: conditional potential 25 mV,
pulse amplitude 0.05 V, pulse width 0.05 s, step potential 0.01 V.

As shown in Figure 6, during the determination of cysteine, two different linear
concentration ranges of cysteine were observed, 0.1 to 2.5 µM, and 5.6 to 28 µM.

Analytical response in lower concentration ranges is characterized with good linearity
(R2 = 0.998) and excellent sensitivity of 11.78 µA µM−1. This was expected, considering
preliminary results obtained by CV and presented in Figure 4a. It is obvious that in this
concentration range there is negligible influence on adsorption of the products of complex-
ation at the electrode surface. The decrease of the slope (0.45 µA µM−1) in concert with
preservation of linearity can to some extent be attributed to the adsorption of complexation
products at the electrode surface. This decrease in linearity was followed by an increase in
the peak width (w1/2). At higher concentrations of cysteine, DPVs become more complex
in shape, indicating a change in the mechanism of silver reduction, probably related to the
reduction from the complex and/or the EC-controlled mechanism (decomposition of the
complex followed by electrochemical reduction of silver). However, this did not have an



Chemosensors 2022, 10, 240 9 of 13

impact onto electroanalytical capabilities, and the reproducibility of the analytical signal
was unaffected (see error bars). The repeatability and reproducibility of the electrode was
investigated, and relative standard deviation of five-value datasets did not exceed 3%. It
must be emphasized that prior to repeatability measurements, the electrode surface was
renewed by removing the surface layer, followed by cyclization between 0.3 V and 0.7 V
at a scan rate of 25 mV s−1 for 10 cycles. This cyclization ensured an optimal amount (see
Section 3.2) of the silver ions in solution for complexation with cysteine.
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Figure 6. The calibration plot of the cathodic current peaks dependent on cysteine concentration
(sequential addition of cysteine), derived from voltammograms presented in Figure 5. The inset
represents the lower concentration range. For the plot, the five data value sets were used.

As an important part of the development of electroanalytical methods, optimization of
DPV parameters were performed. Parameters including modulation time (tDP), modulation
amplitude (EDP) and step potential (∆Es) did not significantly affect electroanalytical
performability. However, it was found that conditional potential (ECP) had an impact on
electroanalytical signals. The results of this impact are presented in Figure 7.
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parameters: conditional time 20 s, pulse amplitude 0.05 V, pulse width 0.05 s, step potential 0.01 V.
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As shown, conditional potentials higher than 250 mV had a low effect on current.
Accordingly, conditional potential ECP = 250 mV was chosen for 20 seconds as current
signal was unaffected for conditional potential time (tCP) above 15 s.

The limit of detection (LOD) and limit of quantification (LOQ) were calculated ac-
cording to IUPAC definitions and recommendations [42] using the signal to-noise (S/N)
method. S/N ratios of 10:1 and 3:1, which approximate the requirements for LOQ and
LOD, were determined as 0.081 and 0.032 µM, respectively.

3.4. Effects of Interfering Compounds

Under optimum conditions, the selectivity of prepared CPE for determination of
cysteine was examined using several potential silver-interfering compounds, including
amino acids arginine, histidine and aspartic acid. The DPV was carried out in the presence
of cysteine (2.6 µM) and similar concentrations of interfering compounds.

Previous studies report that basic amino acids arginine and histidine are the strongest
Ag+ binders, with structures similar to cysteine, but they do not have -SH groups. Aspartic
acid is a more complex system because it has two carboxyl groups and it can be considered
both an α-and β-amino derivative [43,44].

According to the obtained results (Figure 8), no significant interfering effects were
observed, while only cysteine (amino acid with thiol group) could bind silver.
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These results suggest that the selectivity of the selected electrode is superior to other
amino acids for the detection of cysteine. Similar behaviors described in articles by Han
et al. and Borase et al. [45,46].

Furthermore, the interference effect of certain ions and species labeled in pharmaceuti-
cal preparations, such as sodium, lactose and ascorbic acid was also investigated. In this
case, no significant interference was observed, which indicates the possibility of using this
electrode for the determination of cysteine in selected real samples by the electrochemical
method based on differential pulse voltammetry, under optimized conditions.

3.5. Detection of Cysteine in Real Samples

In order to confirm the claim made above, the applicability of the electrode to cysteine
determination was investigated using the standard addition method for selected real sam-
ples, i.e. pharmaceutical preparations, including NOW Foods tablets (dietary supplement),
Fluimukan Akut effervescent tablets and Propomucil ® throat syrup.

The obtained results of three replicate measurements are shown in Table 3.
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Table 3. Determination of cysteine in real samples by using standard addition method.

Sample Expected/µM Found/µM Average/µM RSD/% Recovery/%

NOW Foods tablets 1 0.96; 0.95; 1.02 0.98 3.9 97.7
Fluimukan Akut 6 6.13; 6.23; 5.94 6.10 2.4 101.7

Propomucil 24 23.91; 24.32; 24.15 24.13 0.9 100.5

The recoveries varied from 97.7 to 101.7% and relative standard deviations were less
than 3.9% (n = 3). The obtained results showed that the proposed DPV method was suitable
for cysteine determination in real samples.

4. Conclusions

This paper presents the electrochemical behavior of CPEs modified with different
amounts of silver–copper sulfides containing intrinsic silver, in order to determine possible
electroanalytical application for determination of cysteine. Differential pulse voltammetry
(DPV) was selected as the electroanalytical method for determination of cysteine, based on
the electrochemical behavior observed in the examined system. The effects on differential
pulse voltammograms of various parameters of the electroanalytical signal, such as the
amount of electroactive material, electroanalytical parameters, pH, etc., were investigated.
The results revealed that the optimal electrochemical behavior was obtained using electrode
modified with 5% of material, with well-defined cathodic peak at 0.055 V vs Ag/AgCl
(3 M), in acetic buffer solution at pH 5. As an analytical signal, the decrease of cathodic
current peak is attributed to the decrease of silver ions near the electrode surface due to
their complexation with added cysteine. This indirect method was characterized by a
remarkable sensitive signal of the 11.78 µA µM−1 in the presence of low cysteine concen-
trations. The existence of the second linear range at a higher concentration of cysteine is
attributed to the adsorption of the products of the complexation, and had no significant
effect on reproducibility and repeatability. The calculated limit of detection (LOD) and
limit of quantification (LOQ) were 0.032 and 0.081 µM, respectively. On the basis of the
results obtained, it is apparent that the modified carbon paste electrode for determination
of electrochemical behavior of cysteine showed good stability, short analysis time, high
sensitivity and reproducibility. Finally, the proposed procedure was successfully validated
using a standard addition method and applied in the determination of cysteine in pharma-
ceutical preparations including NOW Foods tablets (dietary supplement), Fluimukan Akut
effervescent tablets, and Propomucil® throat syrup.
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Dependences of the oxidative peak currents, for CPEs modified with different amounts of materials,
on: (a) scan rate; (b) square root of scan rate. Cyclic voltammograms were recorded in 0.1 M acetate
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