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Abstract: Metal oxide (MOX) gas sensors and gas sensor arrays are widely used to detect toxic, com-
bustible, and corrosive gases and gas mixtures inside ambient air. Important but poorly researched
effects counteracting reliable detection are the phenomena of sensor baseline drift and changes in gas
response upon long-term operation of MOX gas sensors. In this paper, it is shown that baseline drift
is not limited to materials with poor crystallinity, but that this phenomenon principally also occurs in
materials with almost perfect crystalline order. Building on this result, a theoretical framework for
the analysis of such phenomena is developed. This analysis indicates that sensor drift is caused by
the slow annealing of quenched-in non-equilibrium oxygen-vacancy donors as MOX gas sensors are
operated at moderate temperatures for prolonged periods of time. Most interestingly, our analysis
predicts that sensor drift in n-type MOX materials can potentially be mitigated or even suppressed by
doping with metal impurities with chemical valences higher than those of the core metal constituents
of the host crystals.

Keywords: metal oxide gas sensor; electrical conductivity; sensor drift; oxygen vacancies; defect
formation energy; Fermi energy

1. Introduction

Metal oxide (MOX) gas sensors sensitively respond to oxidizing and reducing gases in
the ambient air. Although such sensors exhibit a broad-range response to a wide variety
of different gases, their cross-sensitivity spectra can nevertheless be tuned to respond
preferably to target gases of major interest in certain application scenarios and also to
interfering gases which are likely to turn up in these scenarios [1]. With this capability of
cross-sensitivity shaping at hand, arrays of sensors with different and well-chosen cross
sensitivity profiles can be constructed to address different target applications. Examples of
E-Nose gas sensors that address a number of target scenarios of recent interest are described
in contributions presented at the latest GOSPEL conference [2–11]. A recent application of
sensing biohazards in the International Space Station (ISS) is described in references [12,13].

An effect that can negatively impact the performance of E-Nose-type gas sensors
is sensor drift. Sensor drift arises from slow changes in the sensor baseline resistance
and in the gas response, thus mimicking apparent changes in target and interfering gas
concentrations over time [14–17]. In case such changes impact different sensors inside
an array with different intensity, sensor drift can also negatively affect the discrimination
power of gas sensor arrays rather than simply mimicking gas concentration changes [18].
Taking an overall view over the available literature, it becomes apparent that the phenomena
of sensor baseline drift and ensuing changes in gas response are receiving increasing
attention, but that almost all of those approaches aim at mitigating and correcting drift
effects by algorithmic means [19–29].
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In this paper, a different approach to the problem of sensor drift is presented which
is more hardware-related and which aims at identifying and controlling those physical
processes that drive the processes of sensor drift and sensor degradation. In the following,
it is shown that MOX gas sensors feature an intrinsic tendency of drifting to increasingly
higher baseline resistances R and of lessening gas-induced resistance changes ∆R in the
course of time, however, with the ratios ∆R/R remaining approximately constant over
time. It is argued that these changes originate from the fact that n-type metal oxides are not
normally doped with foreign impurities with chemical valences different than those of the
core metal ions inside the MOX lattices, but rather by thermally generated oxygen vacancies.
Such vacancies are normally generated during high-temperature materials preparation and
become quenched in during cool-down after preparation. Representing non-equilibrium
entities, such thermal donors tend to slowly relax towards lower densities, causing MOX
materials to slowly drift towards lower baseline conductivities and lessening capabilities of
accumulating negative oxygen ion adsorbates at their surfaces, which limits their reducing
gas response. Perhaps, the most interesting conclusion is that sensor drift effects might be
mitigated or even suppressed by doping the MOX materials with metal impurities with
higher chemical valences than the constituent metals of the core crystals.

2. Experimental Evidence for Sensor Drift

The effects of long-term sensor drift in MOX materials were investigated by the Brescia
group in the course of the S3 project [15]. There, the drift effects in SnO2 nanowire materials
were investigated which had been deposited at very high temperatures using the solid–
liquid–vapor (SLV) condensation technique [30,31]. The nanowires were deposited on
ceramic substrates with pre-deposited platinum (Pt) interdigital electrodes on the front
side and Pt heater meanders on the backside. During SLV deposition very long nanowires
with almost monocrystalline internal order formed on the interdigital electrodes, forming
networks of randomly interconnected nanowires, as shown in Figure 1a,b.
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Figure 1. (a) SLV-deposited SnO2 nanowire array, (b) current flow across nanowire network.

In order to assess the effects of long-term sensor drift, the nanowires were continually
heated to temperatures of 400 ◦C while being exposed to humidified synthetic air with
a relative humidity of r.h. = 50% at 20 ◦C. Eventual changes in baseline resistance and
gas response were assessed by repeatedly performing CO gas sensing tests as detailed in
Appendix A. As shown in Figure 2a, the conductance of the nanowire networks showed a
definite trend towards lower conductance both in humidified synthetic air (Gair), as well as
under CO exposure (GCO). Another interesting observation was that the relative change
in conductance under gas exposure, ∆G/G = (GCO − Gair)/Gair, remained relatively
constant throughout the entire experiment (Figure 2b).
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Upon closing this section, we note that the SLV growth superseded the earlier methods
of RGTO (rheotaxial growth and thermal oxidation) growth in the Brescia laboratory [32,33],
which consistently produced granular nanocrystalline materials with huge numbers of inter-
grain contacts. A surprising result of our investigations was that RGTO materials exhibit
very similar degradation characteristics as almost monocrystalline nanowire materials. In
order to keep our arguments in this paper reasonably straight and simple, a thorough
discussion of RGTO materials, inter-grain contacts and surface band bending regions is
deferred to a forthcoming publication [34].

In view of the presently available experimental evidence that similar degradation
characteristics can be observed both in fully monocrystalline and in nanogranular materials,
we present below an explanation of the phenomenon of sensor baseline drift that focusses
entirely on the bulk properties of SnO2 crystals with nanometric dimensions and with the
possibility of efficiently exchanging oxygen between bulk and surface regions.

3. Oxygen Vacancy Donors and Electrical Conductivity in n-Type Metal Oxides

In order to explain the above observations, it is necessary to take a closer look at the
intrinsic thermal disorder in the SnO2 lattice. As is well known, the regular lattice sites in
SnO2 crystals consist of Sn4+ and O2− ions, arranged in rutile or cassiterite lattice structures
which ensure overall charge neutrality [35–44]. In Kröger–Vink notation [45], the regular
lattice sites in SnO2 crystals are denoted by SnSn and OO, both of which are attributed with
zero formal charge. Charge states of more energetic lattice sites, which become possible
at higher temperature, are always measured relative to the zero-formal charge of the SnSn
and OO lattice sites.

In SnO2, the most important bulk defect sites are oxygen vacancies VO which are
generated by removing oxygen atoms from regular OO sites and by injecting the liberated
O atoms into the interstitial lattice, thus forming oxygen interstitials Oi. In this process
of forming vacancy-interstitial pairs, the two electrons, formerly associated with the O2−

lattice ions, remain with the newly formed vacancies. As this negative charge is compen-
sated by the positive ionic charges of the nearest-neighbor Sn ions, both the VO and the
Oi sites maintain zero formal charge. Due to the high mobility of the Oi interstitials, these
are able to move towards the free surfaces where they can recombine with other oxygen
atoms to form O2 molecules, which can desorb into the ambient air. O2 molecules, on the
other hand, coming from the air ambient and re-adsorbing on the SnO2 surface, can break
up into individual oxygen atoms and diffuse through the interstitial lattice again until
they eventually drop into empty vacancy sites in the interior. Through this exchange of
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oxygen across the air–solid interface, an equilibrium concentration of oxygen vacancies will
develop inside the crystal, which depends on the temperature T of the crystal lattice and
the oxygen partial pressure pO2 in the ambient air. As described in Appendix B, a volume
density of oxygen vacancies NVO(T) will then develop, which depends on the volume
densities of occupied oxygen ion sites NO, interstitial vacancy sites Ni, and the vacancy
formation energy EVO inside the crystal:

NVO(T) =
√

NONiexp
[
− EVO

2kBT

]
. (1)

Here, EVO is the vacancy formation energy, T—the absolute temperature and
kB—Boltzmann’s constant.

The key interest in these vacancy-type defects stems from the fact that these can act as
shallow double donors with ionization energies of 30 and 150 meV below the conduction
band edge EC [35–44]. This energetic situation is illustrated in Figure 3a. Shown in Figure 3b
is a situation in which the two donor electrons are transferred to a Fermi level EF lying
deeper in the bandgap, from where the two electrons can be re-excited into the conduction
band, thus forming mobile charge carriers and enabling electrical conductivity.
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With the donor levels transferring their electrons to a deeper-lying Fermi energy, the
vacancies change their formal charge states from zero to positive and double-positive and
they also refund a fraction of their formation energy to the thermal reservoir of lattice
vibrations inside the SnO2 crystal. With these lowered formation energies, the volume
densities of singly and doubly ionized vacancy sites are significantly enhanced over the
volume density of neutral donor sites and, in particular, the volume densities of these
charged vacancies become Fermi-energy-dependent:

N+
VO(EF, T) = 2 NVO(T) exp

[
EO1 − EF

kBT

]
, and: (2)

N2+
VO(EF, T) = NVO(T) exp

[
EO1 − EF

kBT

]
exp
[

EO2 − EF

kBT

]
. (3)

In these latter equations EO1 and EO2 stand for the two ionization energies of the
double donors. The factor of two in the first equation accounts for the possibility of two
different spin orientations inside a singly ionized vacancy. In Appendix B, attention is
further drawn to the fact that enhanced densities of oxygen vacancy donors are expected in
regions with upward band bending, i.e., near surfaces, at inter-grain contacts and around
catalytic metal clusters. These latter effects will be discussed in a follow-on publication [34].

Returning to bulk regions with essentially flat bands, the volume densities of neutral,
i.e., fully occupied, singly ionized, and doubly ionized vacancies are plotted in Figure 4a



Chemosensors 2022, 10, 171 5 of 19

as a function of the Fermi energy position inside the gap, assuming a lattice temperature
of T ≈ 1200 K, typical of SLV growth conditions and a defect formation energy EVO of
4 eV [46]. Figure 4b, for comparison, shows this same situation, but as evaluated for a much
lower temperature of 673 K, which had been chosen as the sensor operation temperature
in the long-term tests described in Section 2. Comparing both graphs, it is seen that
temperature has a huge influence on the concentration of neutral vacancies but a much
more moderate influence on the much larger concentrations of positively charged vacancies
with concomitantly lower formation energies. Also shown in Figure 4a,b are the volume
densities of mobile electrons that are expected to be re-excited from the respective Fermi
energies to the conduction band edge:

n(EF, T) = NC exp
[
−EC − EF(T)

kBT

]
. (4)
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Figure 4. Volume densities of neutral, positively, and twofold positively charged oxygen vacancies as
a function of the Fermi-energy inside the forbidden gap (a) for a temperature of 1200 K and (b) for the
chosen sensor operation temperature of 673 K. The blue lines in both sub-figures represent electron
concentrations at the conduction band edge.

Comparing both graphs, it becomes evident that the Fermi energy position that ensures
overall charge neutrality is mainly determined by the volume densities of electrons and
doubly ionized vacancies, i.e.:

n(EF, T) ≈ N2+
VO(EF, T). (5)

Solving for EF(T), one then obtains:

EC − EF(T) =
1
3

{EVO_e f f

2
− kB T ln

[
NO
NC

]}
, (6)

and for the equilibrium charge carrier density:

neq(EF, T) = N2/3
C N1/3

O exp
[
−

EVO_e f f

6 kBT

]
, (7)

with
EV0_e f f = EV0 + 2

(
EC − EO1

)
+ 2
(
EC − EO2

)
(8)

standing for the effective vacancy formation energy of neutral oxygen vacancies.
Overall, the above equations indicate that in monocrystalline MOX materials an

Arrhenius-type temperature-dependence of the electrical conductivity should arise under
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thermal equilibrium conditions. Additionally, a fractional power dependence on the
volume density of occupied oxygen lattice sites, NO, should be observed, which depends
on the availability of O2 molecules in the ambient air, i.e., on the oxygen partial pressure pO2

there [35–45]. This dependence on pO2 is widely employed in λ-probes where Ytterbium-
doped ZrO2 crystals are used to measure the difference in oxygen partial pressures in the
outside air and exhaust gas streams of automobiles [47]. Due to larger oxygen vacancy
formation energies and less mobile oxygen interstitials, these latter effects are less dominant
in the electron conductors that are conventionally employed in MOX gas sensors and
sensor arrays.

4. Thermal Quenching of Electrical Conductivity and Conductivity Relaxation

So far, our arguments have followed the general background of metal oxide materials
widely described and disseminated in the published literature [35–45]. The ideas presented
in the following with regard to equilibration, thermal quenching, metastability and sensor
drift, in contrast, largely build on ideas previously developed in the field of amorphous
semiconductors, and in particular of hydrogenated amorphous silicon (a-Si:H). In order to
ease understanding of these issues, some of those ideas are briefly described in Appendix C,
where some of the key background literature is also cited.

Considering the fact that the key intrinsic donor defects in MOX materials are oxygen
vacancies that can only be formed by simultaneously generating oxygen interstitials, it is
clear that adaptations of the donor defect densities to different Fermi energy positions will
be kinetically controlled by the rates with which oxygen interstitials are able to diffuse
through the interstitial lattices of MOX materials. Upon arriving at one of the free surfaces,
pairs of interstitials can recombine into O2 molecules which are then free to interchange
with O2 molecules in the ambient air, thus allowing the bulk electrical conductivity to
equilibrate with the O2 concentration in the ambient air.

With oxygen diffusion constants D(T) following Arrhenius laws [48–51],

D(T) = D0 exp
[
− ED

kBT

]
, (9)

equilibration requires that at each temperature T, the crystal be maintained for a time

τeq(T) long enough to make the oxygen diffusion length LD =
√

D(T) τeq(T) comparable
to the crystal size LSnO2 :

LSnO2 =
√

D(T) τeq(T). (10)

Combining the latter two equations, τeq(T) emerges as:

τeq(T) =
LSnO2

2

D0
exp
[

ED
kBT

]
. (11)

Considering a situation in which a piece of monocrystalline MOX material is allowed
to cool down from the initially very high preparation temperatures to increasingly lower
temperatures and that sufficient time is allotted at each temperature to allow equilibration
of the oxygen vacancy densities with the outside air, Equation (11) can be inserted in
Equation (7) to obtain the equilibrated density of mobile electrons in the conduction band
as a function of time:

neq
(

τeq
)
= N2/3

C N1/3
O exp

{
−1

6
EVO_e f f

ED
ln
[

D0 τeq

LSnO2
2

]}
(12)

In Figure 5, the equilibration temperature Teq reached after a time τeq is plotted as a
function of τeq. The red line in this plot shows that the SnO2 lattice will have thermalized
to the chosen sensor operation temperature of TMOX ≈ 673 K after a time τeq ≈ 4 × 107s,
corresponding to about 400 days of continuous sensor operation. In this estimate, published
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oxygen diffusion parameters [48–51] have been used. The blue line in Figure 5 shows
the corresponding drop in the equilibrated charge carrier density after times τeq. The
equilibrium charge carrier density in the conduction band at the chosen sensor operation
temperature is then estimated to be about 2 × 1015cm−3, corresponding to an equilibrium
bulk conductivity of about 10−3Ω−1cm−1. As shown in Appendix A, such bulk conductivity
values are in an order-of-magnitude agreement with the macroscopically determined
conductances of (10−7 − 10−6) Ω−1 reported in Figure 2.
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Figure 5. (Red line) Equilibration temperatures reached after times τeq; (Blue line) equilibrated charge
carrier density in the conduction band after times τeq. Thermal equilibrium at the MOX sensor
operation temperature is reached after about 4 × 107s ≈ 400 days. Up to this point, a considerable
drop in the bulk charge carrier density will have occurred.

From both lines in Figure 5, it becomes evident that a considerable part of the equilibra-
tion does take place in the initial phases after high-temperature materials preparation and
cool-down to storage conditions. During these initial phases of cooldown, the volume den-
sity of oxygen vacancy donors rapidly equilibrates to the increasingly lower temperatures
until equilibration rates become too slow to allow for further equilibration to continuously
lower temperatures. This condition is met after a time τqe, after which the oxygen vacancy
donor density has dropped to an equilibrium value corresponding to a temperature.

Tqe
(
τqe
)
=

ED

kB ln
[

D0 τqe

L2
SnO2

] . (13)

Below this temperature, the different kinds of oxygen vacancy densities become frozen
in metastable non-equilibrium states whose volume densities do no longer change as
temperatures further drop. These latter conditions of initial equilibration and following
quench-in are illustrated in Figure 6a,b, with the first figure representing freeze-in of neutral
oxygen vacancy donors at different temperatures Tqe and the second freeze-in of twofold
positively charged oxygen vacancy donors at these same temperatures Tqe.
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Figure 6. (a,b): Effect of increasingly longer equilibration times τeq on the quenched-in (qe) concen-
trations of neutral (a) and two-fold positively charged (b) oxygen vacancy densities. Quenched-in
concentrations relate to increasingly lower quench-in temperatures Tqe; (c,d): Effect of thermal
quenching on temperature-dependent Fermi energy positions (c) and quenched-in excess carrier
densities (d). Dash-dotted vertical lines indicate slow subsequent relaxation towards sensor operation
temperature specific values of Fermi energy position and equilibrated mobile carrier densities.

The two bottom pictures of Figure 6 show the consequences that arise for the quenched-
in non-equilibrium states with regard to the temperature-dependent Fermi level positions
(Figure 6c) and mobile electron densities in the conduction band (Figure 6d). Both pictures
show that MOX materials in their quenched-in states behave like “normal” semiconductors
doped with substitutional n-type donor impurities. In these quenched-in states, Fermi ener-
gies are very close to the conduction band at very low temperatures and shift down deeper
into the forbidden gap due to the effects of statistical Fermi energy shift as temperatures
are increased [40]. In these states, the concomitant effects of increasingly larger activation
energies for mobile charge carrier excitation are counteracted by the exponentially increas-
ing probabilities of mobile charge carrier generation as temperatures increase. In this way,
temperature-independent densities of mobile charge carriers arise in these quenched-in
metastable states. When temperatures are increased towards and beyond the initial quench-
in temperature Tqe_1, the quenched-in metastable states again become unstable and start to
rapidly equilibrate again. While equilibration is relatively fast at and around the originally
employed quench-in temperature Tqe_1, the quenched-in metastable states are also unstable
at much lower temperatures. At temperatures T < Teq_1, however, the rates of relaxation
towards equilibrium are much longer than usually employed changes in gas concentration,
sensor operation or biasing conditions [52,53]. Equilibration in these latter cases usually
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goes undetected and only shines up when specifically designed long-term tests are carried
out, as described in Section 2.

Returning to the problem of analyzing experimental sensor drift data, one problem
is that in such analyses, neither times nor temperatures of freeze-in are known. In this
situation, the best approach is returning to Equation (12) and evaluating the ratio of
conductivities at the beginning and at all intermediate times during the long-term stability
tests. In this way, the loss in sensor conductivity σloss

(
τ, τre f

)
at time τ can be related

to the unknown reference time τre f at which the metastable state of concern had been
quenched-in:

σloss

(
τ, τre f

)
=

neq(τ)

neq

(
τre f

) = exp

{
−1

6
EVO_e f f

ED
ln

[
τ

τre f

]}
. (14)

With the bulk values of the vacancy formation energy EVO_e f f ≈ 4 eV [46], and an
oxygen diffusion energy ED ≈ 1.83 eV, well within the range of published oxygen diffusion
data [48–51], the data in Figure 7 were obtained. The only free parameter in this equation is
the reference time τre f ≈ 106 s ≈ 6 d. This latter figure indicates that some uncontrolled
equilibration may have taken place either during cool-down from preparation or during
some initial gas-sensing tests prior to initiating the very long-term tests.
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Figure 7. Decrease in baseline conductivity upon slow relaxation from quenched-in non-equilibrium
states towards equilibrium states corresponding to the sensor operation temperature of 673 K applied
in the experiments described in Section 2: Full line: calculated from Equation (14) assuming bulk
conductivity limitation; data points: Brescia long-term sensing test (Section 2).

The other interesting piece of experimental evidence presented in Section 2 is the
parallel variation of the relative gas response upon prolonged sensor operation. Such
parallel variations in sensor baseline conductance and relative gas response had already
been observed in earlier experiments and explained in references [41,42]. This subject will
also be taken up again in our forthcoming publication dealing with surface band bending
regions [34].

5. Impurity Doping, Mitigation and Suppression of Sensor Drift

So far, we have been dealing with the intrinsic oxygen vacancy donors which turn
many MOX materials naturally n-type. As a culmination point, we have arrived at the
conclusion that the experimentally observed effects of sensor drift arise from the slow
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annealing of quenched-in oxygen vacancy donors. In this final section, we turn to n-type
and p-type doping by adding metal impurities with chemical valences different from those
of the core metal constituents of the host crystals. These latter considerations reveal that
the formation of positively ionized oxygen vacancy donors can be largely suppressed,
and sensor drift effects be mitigated by adding n-type impurities whose densities are
permanently fixed during materials preparation. P-type doping, in contrast, appears less
attractive as it enhances the formation of oxygen vacancy donors which are responsible for
the sensor drift.

Dissimilar to crystalline silicon (c-Si), for instance, where both heavy n- and p-type
impurity doping is possible, a large asymmetry between n- and p-type doping exists in
n-type metal oxides. This asymmetry is illustrated in Figure 8. Figure 8a shows that incor-
porating increasing densities of donor impurities successfully moves the Fermi energy from
its intrinsic position in the upper half of the forbidden gap to positions increasingly closer
to the conduction band. As in c-Si and other crystalline semiconductors, largely enhanced
and temperature-independent mobile electron densities are then observed (Figure 8b).
Similar to conventional semiconductors, the introduction of increasing densities of accep-
tor impurities does move the Fermi energy deeper into the forbidden gap, a conversion
towards p-type conductivity, however, cannot be observed in this case. This latter fact is
vividly demonstrated by Figure 8b, where it is shown that Arrhenius-type temperature
dependencies, similar to the undoped case, are retained. Any signs of an extrinsic and
temperature-independent p-type conductivity, however, clearly do not show up.
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Figure 8. (a) Effect of n- and p-type impurity doping on Fermi energy position within the forbidden
gap, and (b) on mobile charge carrier concentrations.

The observed asymmetry of n- and p-type doping is a direct consequence of
Equations (2) and (3), which predict that oxygen vacancy concentrations are Fermi-energy-
dependent. While the introduction of shallow n-type donors prevents neutral oxygen
vacancies from discharging towards singly and doubly ionized positive charge states,
Figure 9a shows that in this case, the densities of positively charged oxygen vacancies are
hardly able to equilibrate to densities much higher than the neutral donor density. Similar
to conventional semiconductors, the electroneutrality condition in n-type doped MOX
materials is then dominated by the equation nE_n ≈ N+

D , where ND is the donor impurity
density and nE_n the mobile electron density in n-type doped material. Considering the
fact that the concentration of donor impurities ND is permanently fixed during materials
preparation, the baseline conductivity and its ensuing gas response become independent
of the lattice temperature. Sensor drift thus can be mitigated or even suppressed. In
this context, it is relevant to note that n-type doping of SnO2, for instance, is possible by
substituting antimony ions on SnSn lattice sites in SnO2 [52].
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Figure 9. Effect of n-type (a) and p-type impurity doping (b) on mobile electron density and densities
of the differently charged oxygen vacancy centers. Electron and positive donor densities in (a) and
negative acceptor and twofold positive vacancy densities in (b) have been slightly displaced from
their positive counterparts for clarity of presentation.

The situation of p-type doping with shallow acceptor impurities is a very different one.
In this case, empty acceptors with energy levels close to the valence band edge, actively
drive neutral oxygen vacancies towards their positively charged states and densities of
N++

VO donor sites towards high and acceptor-controlled densities satisfying N++
VO ≈ N−

A .
Figure 9b shows that in this case, the Fermi energy is pinned between equal densities
of positively charged vacancy donor levels close to the conduction band edge and neg-
atively charged acceptor impurity levels close to the valence band edge. The small re-
maining mobile electron densities nE_p in this case are counterbalanced by similarly small
and very strongly temperature-dependent densities of singly charged N+

VO vacancies, i.e.,
nE_p ≈ N+

VO. As the densities of N+
VO sites remain sensitive to the lattice temperature, dop-

ing with p-type impurities does not appear to be an equally interesting option, as n-type
impurity doping for mitigating or suppressing sensor drift.

In concluding this section, we note that similar effects of sensor baseline drift and
ensuing changes in gas response as in Section 2 have also been observed in p-type NiO [31].
It therefore appears that our arguments can—mutatis mutandis—also be extended to p-type
materials. In brief, it appears possible that intrinsically p-type materials can be stabilized
by p-type impurity doping thus overwhelming the effects of intrinsic metal vacancies.

6. Conclusions

In this paper, we have provided experimental evidence for the effect of sensor baseline
resistance drift in metal oxides, and we have developed a framework for the theoretical
explanation of this effect.

Concerning experimental evidence, we have concentrated on SnO2 as the most ex-
tensively used MOX material for resistive gas sensors. Performing tests on SLV-deposited
nanowire materials, we have provided evidence that sensor drift is not an artifact arising
from poor crystallinity, but that the phenomenon of sensor drift principally also occurs in
materials with almost ideal crystalline order.

Building on the fact that the nanowire materials had not been intentionally doped
with metal impurities with chemical valences different than the core Sn ions, a theoretical
framework has been developed which focuses on shallow oxygen-vacancy donors as the
key reason for the occurrence of sensor baseline drift.

With shallow oxygen vacancy donors being key components of the thermal lattice
disorder, their number densities are principally dependent on the sensor operation tempera-
tures that are being employed. As oxygen vacancy donors can exist in three different charge
states, i.e., neutral, singly and doubly positively charged, their charge states and number
densities are also sensitively dependent on Fermi-level positions in the sensor´s bulk and
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at band-bending regions at the nanowire surfaces. Whereas annealing of quenched-in bulk
vacancy donors cause the sensor baseline conductivity to drop, the annealing of vacancy
donors also lowers the capability of the nanowires to adsorb surface oxygen ions. In this
way, concomitant changes towards lower reducing gas responses are initiated. These latter
conclusions about adsorption are still of a preliminary nature and more detailed results will
be reported in a follow-on publication which will deal in an exhaustive manner with the
effects of adsorption, band bending, and equilibration processes in nanowires and granular
materials with large numbers of inter-grain contacts [34].

As equilibration rates of oxygen vacancy donors are limited by the slow rates of
diffusion of lattice oxygen ions, equilibration processes normally do not become visible at
the relatively fast rates at which gas exposure conditions and sensor operation parameters
are being changed [53,54]. Due to the low speed of defect equilibration processes, the effects
of long-term sensor drift often take the form of apparently random and hardly reproducible
dirt effects. With the approaches taken in this paper, a framework has been established that
allows such seemingly irreproducible effects to be turned into reproducible effects that are
amenable to physical analysis.

As authors, we regard our experiments and theoretical treatments as a first step
towards more systematic investigations of sensor drift effects and their impacts on gas
sensitivity changes and gas discrimination capabilities of metal oxide materials. The
potential reward of baseline resistance suppression discussed in Section 5 appears to be a
good motivation to progress towards this direction.

Author Contributions: Conceptualization and original draft preparation, G.M., materials prepara-
tion, long-term sensor performance tests and experimental data procurement G.S. All authors have
read and agreed to the published version of the manuscript.

Funding: Project NMP- 7FP: Surface ionization and novel concepts in nano-MOX gas sensors with
increased Selectivity, Sensitivity and Stability for detection of low concentrations of toxic and explosive
agents. Contract number 247768 Coordinator Prof Giorgio Sberveglieri CNR—INFM project budget
469.000,00 Euro.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design
of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or
in the decision to publish the results.

Appendix A. Materials Preparation and Long-Term Tests

SnO2 nanowires were prepared by the solid–liquid–vapor (SLV) condensation tech-
nique. SnO2 material was placed in the high-temperature zone of a cylindrical quartz tube
and transported by an argon gas stream towards a ceramic substrate with pre-deposited
platinum electrodes and condensed there in single-crystal nanowire form. Nanowires with
lengths up to several hundred µm and thicknesses in the order of 100 nm then formed on
the Pt interdigital electrodes (IDE) thus forming “spaghetti-type” networks with random
inter-wire contacts thus bridging the IDE gaps [30,31]. The resulting electrical arrange-
ments are schematically illustrated in Figure A1a,b. With the bulk conductivities reported
in Figure 5, single nanowires with cross sections in the order of 100 nm are expected to
exhibit resistances in the order of 1011Ω. The macroscopically observed resistances in the
order of (106–107) Ω imply parallel connections of ( 104–105 ) nanowires, i.e., nucleation
densities of nanowires in the order of (0.1–1) µm−1, as illustrated in Figure A1b and as
similarly indicated in Figure 1a.
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After preparation, both types of materials were operated for prolonged periods of time
at a constant temperature of 400 ◦C, and repeatedly tested for their CO response following
the protocol displayed in Figure A2.
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Appendix B. Oxygen Vacancies as Elements of Thermal Disorder in MOX Materials

In the main part of this paper, our focus has been on SnO2 as one of the key materials
used in resistive MOX gas sensors. As we believe that the arguments presented above
will have a much wider range of applicability beyond SnO2, the key Equations (1)–(3) in
the main text will be rederived from elementary considerations about a simplified and
idealized form of MOX material. The model substance considered is a two-dimensional
lattice consisting of positive metal ions and negatively charged oxygen ions. The equations
below largely follow the lines of thought presented in the textbook of O. Madelung [44].

In Figure A3, the positive background of metal ions is represented by a homogenous
background of positive charge with discrete negative oxygen ions embedded into this
jellium of positive charge. While Figure A3a represents the ideal case of complete order
that is principally accessible at the absolute zero of temperature, Figure A3b represents a
state that is more likely to arise when the crystal lattice is operated at finite temperature. In
this latter picture, a situation is shown in which three oxygen vacancy-interstitial pairs are
distributed across the available oxygen (OO) and interstitial (Oi) sites.
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Generating such vacancy-interstitial pairs requires energies EVO per vacancy-interstitial
pair and an amount of energy

∆E =NVOEVO (A1)

when NVO of such pairs are created. As such pairs can be distributed across the available
OO and Oi sites, an entropy ∆S is associated with the generation of these vacancies:

∆S = kBln
[

NO!
NVO!(NO − NVO)!

Ni!
ni!(Ni − ni)!

]
. (A2)

In this latter equation, NO and Ni stand for the numbers of available OO and Oi
sites and NVO and ni for the numbers of vacancies and interstitials that have actually
been formed.

In order to obtain the equilibrium concentration of oxygen vacancies at a fixed temper-
ature T, the free energy

∆F = ∆E − T∆S (A3)

needs to be minimized. With the requirement d(∆F)/d(NVO) = 0 and the use of Stirling´s
formula (ln(n!) = n ln(n)− n), Equation (1) of the main text is obtained:

NVO(T) =
√

NO Ni exp
[
− EVO

2 kBT

]
. (A4)

Re-writing Equation (A4) in the form

(NO − ni)(Ni − ni)

n2
i

= exp
[
−EVO

kBT

]
, (A5)

it emerges that Equation (A5) can be interpreted as a law of mass action connecting the
different kinds of lattice and defect sites:

occupied lattice site + unoccupied interstitial site <—->

<—-> unoccupied lattice site + occupied interstitial site.

Further assuming NO = Ni, Equation (A4) reduces to:

NVO(T) = NO exp
[
− EVO

2 kBT

]
. (A6)
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From Equation (A4), the number densities of positively charged oxygen vacancy donor
sites (Equations (2) and (3) of the main text) follow:

N+
VO(EF, T) = 2 NVO(T) exp

[
EO1 − EF

kBT

]
, and: (A7)

N2+
VO(EF, T) = NVO(T) exp

[
EO1 − EF

kBT

]
exp
[

EO2 − EF

kBT

]
. (A8)

In regions with upward band-bending profiles qϕ(x), the generation of positively
charged oxygen vacancy donors benefits from additional position-sensitive energy gains:

N+
VO(EF, T, x) = N+

VO(EF, T) exp
[

qϕ(x)
kBT

]
, and: (A9)

N2+
VO(EF, T, x) = N2+

VO(EF, T) exp
[

2 qϕ(x)
kBT

]
. (A10)

In such events, higher oxygen vacancy donor densities and higher levels of oxygen
depletion are expected to arise as bands continually bend up. These latter effects will be
discussed in a forthcoming publication [34]. There, we will deal with the coordinated effects
of surface band bending, surface oxygen adsorption and sub-surface oxygen depletion and
associated effects of sensor drift.

Appendix C. Electronically Induced Metastability and Drift in Amorphous Semiconductors

While the equations in Appendix B build on the general background of MOX materials
widely described and disseminated in the published literature [35–45], the ideas about dop-
ing, equilibration, metastability and drift in MOX materials described in the main text have
largely developed during the extensive work that had previously been performed in the
field of amorphous semiconductors, and, in particular, on hydrogenated amorphous silicon
(a-Si:H) [55–61]. For the convenience of the reader, the key ideas of electronically driven
weak bond-dangling bond conversion, bond separation and stabilization processes via
hydrogen diffusion are pictorially presented in Figures A4–A7. The illustrated microscopic
processes have successfully explained the multitude of photo-, doping- and bias-induced
defect formation, equilibration and drift processes that had been observed in amorphous
semiconductor films and devices. In brief: while the weak bond—dangling bond equilibria
are determined by the availability of electrons and holes, i.e., by the positions of Fermi and
quasi-Fermi energies, the speeds at which weak-bond dangling bond equilibria can adapt
to changes in Fermi- or quasi-Fermi level positions are kinetically controlled by the rates
of H-diffusion. Whereas equilibration is fast at elevated temperature (T~200 ◦C) where
bonded hydrogen is reasonably mobile, equilibration is slow at room temperature. Upon
rapid cooling from elevated temperatures towards room temperature, high-temperature
equilibria thus turn into “frozen in” metastable non-equilibrium states, which slowly re-
lax towards their new room temperature equilibria. A-Si:H device properties, therefore,
are subject to drift. Ultimately, these ideas on a-Si:H had all been consolidated by the
Xerox group in the so-called “Hydrogen glass model” which is excellently reviewed in the
textbook of R.A. Street [61].

Regarding the above processes, it is relevant to note that overall equilibria between
electronic and lattice subsystems are by no means limited to disordered materials. Overall
equilibria between electronic charge carriers and charged defect centers can principally
arise in all kinds of solids as such equilibria are driven by the universal principle of
charge conservation and the requirement of overall charge neutrality on macroscopic
scales. In particular, such electronically driven equilibria exist in crystalline MOX materials
and amorphous semiconductors alike. Material-specific differences arise according to
the microscopic nature of the defects and the kinds of kinetic constraints that limit the
speed of equilibration inside the individual materials. Whereas overall equilibria between
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mobile charge carriers and charged lattice defects are well appreciated in the field of MOX
materials [35–45], the related issues of thermal quenching, metastability and drift arising out
of the limited and temperature-dependent speeds of oxygen diffusion have attracted much
less attention in gas-sensitive and electron-conducting MOX materials [62]. Considering
the fact that much larger backgrounds of knowledge about quenching, metastability and
drift had emerged in the field of amorphous semiconductors, a cross-fertilization between
different fields of materials science appears possible with the possible benefit of valuable
new insights into MOX materials.
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Figure A4. Mechanical strain on Si-Si nearest neighbor bonds reduces the bonding–antibonding gap
and causes conduction and valence band states to become localized into exponential conduction and
valence band tails (triangular areas). Depending on electron (hole) availability, weak bonds can decay
into pairs of dangling bonds with localized states near mid-gap.
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Figure A5. (a) Photo-dissociation of weak bonds (Staebler–Wronski effect [57]) into pairs of neutral
dangling bonds (b) which separate via H-diffusion (c). Separated dangling bonds are metastable
at room temperature (c). In darkness, weak bonds can reform at elevated temperatures and under
conditions of enhanced H-mobility (d).
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Figure A6. (a) Electrons supplied by shallow donors, injected through contacts or induced by
field effect become trapped in weak antibonding states and cause weak bonds to convert in pairs
of negatively charged dangling bonds (b) [56,57]. Dangling bonds are once again separated and
stabilized via H-diffusion forming metastable conduction states (c). At room temperature, metastable
conduction states slowly relax after the bond-breaking electrons have disappeared (d) [60,61].
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stabilized via H-diffusion.
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