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Abstract: An electronic nose sensor array can classify and quantify different types of gases; however,
the sensor can alter its measurement capability over time. The main problem presented during
the measurements of the sensors is related to the variation of the data acquired for long periods
due to changes in the chemosensory response, thus affecting the correct functioning of the im-
plemented measuring system. This research presents an approach to improve gas quantification
through the implementation of machine learning regression techniques in an array of nose-type
electronic sensors. The implemented methodology uses a domain adaptation approach with the
Kullback–Leibler importance estimation procedure (KLIEP) to improve the performance of the gas
quantification electronic nose array. This approach is validated using a three-year dataset measured
by a 16-electronic-nose-sensor array. The R2 regression error obtained for each of the gases fits the
resulting dataset’s measured values with good precision.

Keywords: electronic nose; quantification; Kullback-–Leibler importance estimation procedure;
KLIEP; domain adaptation; regression; machine learning; sensor array

1. Introduction

Electronic nose sensor arrays have emerged as a compact, economical and versatile
solution to analyze different analytes [1,2]. Electronic nose sensor arrays process infor-
mation similar to how human senses transmit information about smell to the brain [3].
These electronic nose devices are composed of a sensor array, an electronic data acquisition
system, and a pattern recognition unit [4]. The development of better electronic noses is
a current trend and can be performed in each of its three components. This study focuses
on the improvement of the pattern recognition unit.

Over time, electronic nose sensors have stopped work correctly due to variations
in their chemical properties [5]. This time-passing phenomenon is known as drift and
has been treated with different approaches in the literature. For example, the research
done by Vergara et al. [6] obtained a 36-month dataset from an electronic nose made up
of 16 sensors tagged by the manufacturer as TGS2600, TGS2602, TGS2610, and TGS2620
and placed into a test chamber, as is denoted in the research by Vergara et al. The authors
successfully used an ensemble machine learning method to classify six different gases
(ammonia, ethanol, acetaldehyde, toluene, acetone, and ethylene) with 54% accuracy.
The dataset mentioned above has concentration data in parts per million (ppm) of the six
gases. The solution of quantification problems in electronic noses allows detecting the
concentration of the analytes with low error. These kinds of organic compounds have toxic
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capabilities, and determining their concentration with low error is challenging due to the
sensors’ drift effect [7].

Pattern recognition and artificial intelligence techniques have been used in electronic
noses to quantify analytes with high low error [8]. Several machine learning algorithms
for regression have been used for processing electronic nose data. Some of them are:
partial least square regression (PLSR) [9–11], multilayer perceptron neural networks (MLP-
NN) [12,13], support-vector regression (SVR) [14], random forest regression [15,16], long-
short term memory (LSTM) [17,18], reservoir computing (RC) [19], and Gaussian process
(GP) [20], among others. In the following, a detailed explanation of some important studies
related to the use of machine learning regression algorithms for quantification tasks using
electronic noses are discussed. In 2016, Fonollosa et al. [21] developed an electronic nose
sensor array to quantify methane, ethylene, carbon monoxide and ethanol. Support-vector
regression (SVR) was used as the regressor algorithm to determine the concentration of
the four gases. The results indicated third quartile errors in ppm for each gas according to
the following values: ethanol, 9.4 ppm; ethylene, 5.5 ppm; methane, 14 ppm; and carbon
monoxide, 27 ppm. In other work, a fuzzy ART-based concentration estimator was used
to quantify hydrogen sulfide, ammonia and their mixture with an electronic nose [22].
The results of the estimated concentrations were measured using the root-mean-square
error (RMSE) reaching values of 1.7835 ppm, 0.0227 ppm, and 1.1859/0.0090 ppm for
ammonia, hydrogen sulfide and their mixtures, respectively. An electronic nose [23] made
with only four sensors was developed to quantify six kinds of gases including ammonia,
nitrogen dioxide, toluene, carbon monoxide, formaldehyde and benzene. A multilayer
perceptron (MLP) neural network with the multiple multiple inputs single output (MMISO)
structure was used to determine the best concentration. The results were expressed in
terms of mean square error of prediction (MSEP), with the particle swarm optimization
bacterial chemotaxis-back propagation (PSOBC-BP) algorithm being the one that found less
MSEP, with 3.327% on average. A metal oxide (MOx)-decorated graphene-based electronic
nose sensor array was developed to quantify HCHO and NH3 in [24] . The signals were
processed by a back-propagation neural network (BP-NN) finding a mean absolute error
(MAE) of 0.372 ppm and 0.274 ppm for HCHO and NH3, respectively.

However, the quantification studies in electronic noses mentioned above have yet
to consider the passage of time in the sensors of an electronic nose. This study devel-
ops a signal processing methodology based on a domain adaptation approach called the
Kullback–Leibler importance estimation procedure (KLIEP) [25] to treat the drift problem
for gas quantification. Domain adaptation methods are an alternative to traditional machine
learning methods that use a transfer learning approach [26]. There are two different data
domains in domain adaptation: first, the source domain, and second, the target domain [27].
The source and target domains are part of the electronic nose data grouped in different
batches over time. The data distribution of each domain varies over time [28]. Feature,
instance, and parameter-based domain adaptation methods offer a solution when only
labeled data are in the source domain [29]. The instance-based methods reweight labeled
training data to correct the difference between source and target distributions. The KLIEP
method is instance-based. The use of the KLIEP method as a domain adaptation procedure
is, to the best of the authors’ knowledge, presented for the first time to solve the electronic
nose data quantification over time problem.

At first, the introduction describes the behavior of electronic nose sensors, emphasizing
their main characteristics for proper functioning. The second section presents a selection
of the dataset used in the research, their components, and the conditions in which the
electronic nose-type sensor array was exposed. The third section compares the best ma-
chine learning regressor between XGBoost, simple linear regression and AdaBoost. These
regressors are evaluated based on their behavior with the different batches in the dataset.
Tuning parameters are also performed, obtaining the R2 error by training the regressor
with 80% of the data from batch 1. Then, the fourth section applies the Kullback—Leibler
importance estimation procedure (KLIEP) method of domain adaptation in addition to the
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selected regressor to improve the performance of the response for the R2 error to quantify
different gases. Finally, the last section shows the conclusion and further future works on
this research topic.

2. Materials and Methods
2.1. Dataset

The research done by Vergara et al. [6] concerns different variants of drift found in
electronic nose-type sensor arrays. They mainly found the actual drift or first-order drift,
which is due to the processes of chemical and physical interaction of chemical analytes in
the gas phase that occurs in the microstructure of the detection film. The second-order drift,
or drift of the measurement system, is produced by external and uncontrollable alterations
of the experimental operating system, such as temperature [6].

In their research, Alexander Vergara and his colleagues decided to make and imple-
ment an electronic nose sensor in order to control external alterations that can present
a second-order drift and focused only on the compensation of a first-order drift, which
evidences the use of these sensors for a long period of time.

The electronic nose sensor array was composed of four kind of sensors from the Figaro
Company, TGS2620, TGS2602, TGS2600 and TGS2610; four of each one of these sensors com-
posed the sensor array for a total of 16 sensors. A sampling frequency of 100 Hz was used
during each measure. The time spent for the measures was approximately 300 s. As a result,
each sensor acquired a resistance measurement of 300 Hz × 100 s = 30,000 datapoints. The
experiments comprised adsorption and desorption stages; between these stages, there was
a steady state of the signal. For these reasons, a feature extraction procedure was performed
on the signal. Only three features in the adsorption stage, two features in the steady state
stage and finally three features in the desorption stage were considered. A total of 8 features
composed the feature vector for each sensor in the electronic nose. The electronic nose
sensor array had 16 sensors; due to this, a total of 16 × 8 = 128 features were acquired in
each experiment. For a detailed description of the mathematical procedure used in the
feature extraction, the reader is referred to [1].

The dataset of Vergara et al. includes measures of the following six gases:

• Ammonia;
• Acetaldehyde;
• Acetone;
• Ethylene;
• Ethanol;
• Toluene.

These gases were dosed in different concentrations and used as the response variable
in this research. Table 1 shows the amount of gas measured in parts per million (ppm).

The database was constructed by arranging the measurements in different processes
during a set period of time. It is important to note that the sampling process has no
particular order to ensure the quantification of these gases.

Odor concentrations in parts per million (PPM) of the samples collected for the six
gases can be seen in Tables 1 and 2, showing the number of samples taken for each gas per
month of study:

Table 2 describes the 36 months of the dataset consisting of 13,910 samples. It demon-
strates the drift of the sensors over time between the last months (months 25 to 29 and
months 31 to 35), where there are missing data due to severe contamination attached to the
detection layer since there was no temperature control. This dataset is publicly available
and can be found in [30].
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Table 1. Analytes and concentrations in the dataset [6].

Analytes Concentrations in ppm

Ammonia
50, 60, 70, 75, 80, 90, 100, 110, 120, 125, 130, 150, 160, 170, 175, 180, 190, 200, 210,
220, 225, 230, 240, 250, 260, 270, 275, 280, 290, 300, 350, 400, 450, 500, 600, 700,
750, 800, 900, 950, 1000

Acetaldehyde 5, 10, 13, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 80, 90, 100, 120, 125, 130, 140, 150,
160, 170, 175, 180, 190, 200, 210, 220, 225, 230, 240, 250, 275, 300, 500

Acetone
12, 25, 38, 50, 60, 62, 70, 75, 80, 88, 90, 100, 110, 120, 125, 130, 140, 150, 170, 175,
180, 190, 200, 210, 220, 225, 230, 240, 250, 260, 270, 275, 280, 290, 300, 350, 400,
450, 500, 1000

Ethylene 10, 20, 25, 30, 35, 40, 50, 60, 70, 75, 90, 100, 110, 120, 125, 130, 140, 150, 160, 170,
175, 180, 190, 200, 210, 220, 225, 230, 240, 250, 275, 300

Ethanol 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 100, 110, 120, 125, 130, 140, 150, 160, 170,
175, 180, 190, 200, 210, 220, 225, 230, 240, 250, 275, 500, 600

Toluene 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100

Table 2. Samples taken month by month in the electronic nose dataset for each gas [6].

Samples Taken Month by Month

Identification Ammonia Acetaldehyde Acetone Ethylene Ethanol Toluene Total

month1 76 0 0 88 84 0 248
month2 7 30 70 10 6 74 197
month3 0 0 7 140 70 0 217
month4 0 4 0 170 82 5 261
month8 0 0 0 20 0 0 20
month9 0 0 0 4 11 0 15

month10 100 105 525 0 1 0 731
month11 0 0 0 146 360 0 506
month12 0 192 0 334 0 0 526
month13 216 48 275 10 5 0 554
month14 0 18 0 43 52 0 113
month15 12 12 12 0 12 0 48
month16 20 46 63 40 28 0 197
month17 0 0 0 20 0 0 20
month18 0 0 0 3 0 0 3
month19 110 29 140 100 264 9 652
month20 0 0 466 451 250 458 1625
month21 360 744 630 662 649 568 3613
month22 25 15 123 0 0 0 163
month23 15 18 20 30 30 18 131
month24 0 25 28 0 0 1 54
month30 100 50 50 55 61 100 416
month36 600 600 600 600 600 600 3600

Table 3 presents samples from each gas for each month arranged in 10 different batches
for the study. The idea was to obtain data on all six gases from each batch. However,
by rearranging these data in batch 3, batch 4, and batch 5, it was shown that there were no
toluene samples. Table 3 also specifies the months that integrate each batch.

2.2. Kullback–Leibler Importance Estimation Procedure (KLIEP)

KLIEP is an instance-based method for domain adaptation. The purpose of the
algorithm is to correct the difference between input distributions of source and target
domains. It is executed by finding a source instance reweighting that minimizes the
Kullback–Leibler divergence between source and target distributions. It is not the purpose
to present a detailed mathematical formulation and description of the KLIEP method,
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but the source instance weights are given by the following Equation (1), and the description
of the KLIEP method is shown in [31]. For more information about the KLIEP method, one
can refer to the following literature [25].

w(x) = ∑
xi∈XT

αiK(x, xi) (1)

where:

x, xi are input instances.
XT are the target input data.
αi are the basis functions coefficients.

K(x, xi) = exp
(
−γ‖x− xi‖2

)
for instance if kernel = “rbf”.

Table 3. Number of measurements and batch information of the electronic nose dataset with drift [8].

Samples Taken Batch by Batch

Batch ID Month Acetaldehyde Ethanol Toluene Ammonia Ethylene Acetone Total

Batch 1 1,2 98 83 74 70 30 90 445
Batch 2 3,4,8,9,10 334 100 5 532 109 164 1244
Batch 3 11,12,13 490 216 0 275 240 365 1586
Batch 4 14,15 43 12 0 12 30 64 161
Batch 5 16 40 20 0 63 46 28 197
Batch 6 17,18,19,20 574 110 467 606 29 514 2300
Batch 7 21 662 360 568 630 744 649 3613
Batch 8 22,23 30 40 18 143 33 30 294
Batch 9 24,30 55 100 101 78 75 61 470
Batch 10 36 600 600 600 600 600 600 3600

The KLIEP algorithm aims to find an optimal αi approached by finding the local
maximum according to the following optimization problem solved with the gradient
ascent algorithm:

max
αi

∑
xj∈XT

log

(
∑

xi∈XT

αiK(xj, xi)

)
(2)

Subject to:

∑
xj∈Xs

∑
xi∈XT

αiK(xj, xi) = ns (3)

where:

Xs is the source input data of size ns.

Besides, a cross-validation procedure (LCV) is added to select the appropriate parame-
ters for the kernel function K, known as the parameter γ of the Gaussian kernel. It allows
for choosing the best parameter using cross-validation on the J score as follows:

J =
1
|X|∑x∈X log(w(x)) (4)

Finally, an estimator is fitted over the regressor by using the reweighted labeled
source instances. The KLIEP method was originally introduced for unsupervised domain
adaptation but could be widened to a supervised domain by simply adding labeled target
data to the training set.

2.3. Methodology for Regressor Selection

The programming environment used for the data treatment was python; specifically,
the scikitlearn [32], pandas [33], matplotlib [34] and adapt [35] libraries were used.

The steps or processes that describe the gas quantification methodology for the regres-
sor selection are shown in the following Figure 1:
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Figure 1. Methodology for selection of the regressor.

1. Determine the regressor: For this research, three regressors were implemented: ex-
treme gradient boosting (XGBoost), simple linear regression and AdaBoost.

2. Import batch data to study: The dataset had ten batches, as described in Table 3.
To choose and define which is the best regressor, it was decided to work with batch
1 by taking the first samples obtained in the research by Vergara et al., where the
electronic nose sensor array takes the first defined data.

3. Assignment of variables to recognize each gas: It was necessary to assign a variable
for each gas that allows the system to validate the behavior of the regressor for
each gas.

4. Implementation of the regression function: The comparison of the chosen R2 error
with the different parameters of the regressor model algorithm allowed determining
if the value was close to the model, validating the selection of the regressor function.
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5. Replacing the values in the regressor function: Once the corresponding error for
each parameter was known, they were substituted in the applied regressor function,
and in this way, the error was obtained for each gas in the dataset for the regressor.

6. Evaluation of the errors: Steps 4 and 5 were repeated for each gas in the dataset using
the same model to determine the regression error for each gas according to the dataset.

7. Minimum error applied to each regressor: the objective was to evaluate the error
applied to each regressor for the six gases to obtain the average error for the evaluated
regressor.

8. Selection of the regressor: Steps 1 to 7 were carried out for all the regressors to
compare the minimum average error to select the regressor that best fit the dataset.

2.4. Extreme Gradient Boosting (XGBoost) Regressor

The parameters of the XGBoost regressor function were:

• n_estimators
• max_depth
• eta
• subsample
• colsample_bytree

In consequence, to obtain the optimal values for the XGBoost regressor function, it is
necessary to develop an iterative process over each parameter, selecting an R2 error value
closer to 1.

The R2 error ratio is defined as the sum of the square regression (SSR) that represents
the total variation of all the predicted values and the mean value on the regression over the
sum of the square total (SST) that represents the total variation of the actual values and its
mean value [36], as follows:

R2 =
SSR
SST

=
∑(ŷi − ȳ)2

∑(yi − ȳ)2 (5)

The n_estimators parameter is evaluated at first by modifying its value according to
the magnitude error, obtaining a number of estimators between 50 and 100 as the closest
value, as shown in Figure 2:

Figure 2. Errors of the n_estimators parameter for acetone gas.

Then, the previous process is repeated for the other parameters, resulting the following
values represented in Figure 3. Max_depth parameter is shown in Figure 3a), the variation
of eta in Figure 3b), sample_bytree parameter in Figure 3c), and finally the subsample
parameter in Figure 3d).
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a) b)

c) d)
Figure 3. XGboost parameter behaviors: (a) max-depth, (b) eta, (c) colsample by tree, and
(d) subsample.

Subsequently, the XGBoost regressor function was rewritten with the values of the
previously determined parameters to obtain the error for the first gas presented as follows:

XGBRegressor(n_estimators = 90, max_depth = 1, eta = 10, subsample = 0.5, colsample_bytree = 0.4) (6)

With these parameters, the R2 error was 0.6627. To ensure an accurate result for the
first gas, 80% of the data from batch 1 were used for training and the other 20% were used
for testing, resulting in the following tracking trajectory for the regressor in Figure 4.

Figure 4. True vs. predicted behavior of the XGBoost regressor for acetone in the test set of
batch 1 (18 measurements).

Once the error for the first gas (acetone) was determined, the same process was
repeated for the other five gases. The results for the XGBoost regressor are presented in
Table 4.
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Table 4. Error for each gas with XGBoost.

Gases/Regressor XGBoost

Acetone 0.662757
Acetaldehyde 0.960751

Ethanol 0.467232
Ethylene 0.9824

Ammonia 0.988174
Toluene 0.994229

After calculating the R2 error for each of the gases (in Table 4), the errors were averaged
to evaluate the performance of the XGBoost regressor with the batch 1 dataset.

ErrorXGBoostAverage = 0.842590 (7)

2.5. AdaBoost Regressor

The parameters for the AdaBoost regressor function were:

• max_depth
• n_estimators
• random_state

Next, applying the same methodology for the AdaBoost regressor, the R2 error was cal-
culated for each parameter. Figure 5a) presents the behavior for the parameter max_depth;
Figure 5b) presents the behavior for the parameter n_estimators, and Figure 5c) shows the
behavior for the parameter random_state.

a) b) c)

Figure 5. Adaboost regressor parameter tuning versus R2 error for (a) max-depth, (b) n-estimators
and (c) random state.

The AdaBoost regressor function was rewritten with the values of the previously
determined parameters to obtain the actual error for the first gas in batch 1, as follows:

AdaBoostRegressor(DecisionTreeRegressor(max_depth = 10), n_estimators = 800, random_state = 1) (8)

With these parameters, the R2 error for gas #1 was 0.7030. As before, the system was
trained and tested using 80% and 20%, respectively, of the dataset from batch 1 for the first
gas (acetone), resulting in the following tracking trajectory in Figure 6:

Once the R2 error of gas #1 was determined, the same process was repeated for the
other five gases.

The results for the AdaBoost regressor are presented in Table 5.
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Figure 6. True vs. predicted behavior of the AdaBoost regressor for acetone in the test set of batch 1
(18 measurements).

Table 5. Error for each gas with AdaBoost.

Gases/Regressor AdaBoost

Acetone 0.703059
Acetaldehyde 0.985634

Ethanol 0.680716
Ethylene 0.955653

Ammonia 0.984298
Toluene 0.992297

After calculating the R2 error for each of the gases (in Table 5), the errors were averaged
to evaluate the performance of the AdaBoost regressor with the batch 1 dataset.

ErrorAdaBoostAverage = 0.883609 (9)

2.6. Simple Linear Regression

Finally, the R2 error was evaluated directly with a comparison projected by a linear
regressor for batch 1, as is shown in Figure 7.

Figure 7. True vs. predicted behavior of the simple linear regressor for acetone in the test set of batch
1 (18 measurements).

The value of the R2 error for the first gas was 0.7223.
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As before, repeating the process for the other five gases, the results in Table 6 are
obtained for all gases with the simple linear regressor.

Table 6. Error for each gas with the simple linear regressor.

Gases/Regressor Simple Linear Regressor

Acetone 0.722352
Acetaldehyde 0.982838

Ethanol 0.11206
Ethylene 0.9362

Ammonia 0.874889
Toluene 0.938725

The average between the R2 errors in Table 6 was calculated to evaluate the perfor-
mance of the simple linear regressor error for batch 1, as follows:

ErrorSLRAverage = 0.761177 (10)

2.7. Best Regressor for the Dataset

After the performance of the three previous regressors was evaluated on the batch
1 dataset, the AdaBoost regressor was selected as the regressor that best fit the dataset
because its average error was 0.8836, which was more accurate than XGBoost and Simple
linear regressor, as shown in the following Table 7.

Table 7. Comparison of average errors of the regressors.

Best Regressor for the Dataset

Gases/Regressor XGBoost Simple Linear Regression AdaBoost

Acetone 0.662757 0.722352 0.703059
Acetaldehyde 0.960751 0.982838 0.985634

Ethanol 0.467232 0.11206 0.680716
Ethylene 0.9824 0.9362 0.955653

Ammonia 0.988174 0.874889 0.984298
Toluene 0.994229 0.938725 992297

Average 0.842590 0.761177 0.883609

3. Results

To verify the performance of the AdaBoost regressor on the entire dataset, the following
experiment evaluated the regressor’s operation on the other gases, as shown in Figure 8,
in which the prediction algorithm was divided into the training and testing data. This
process was used to find a pattern that helps the model to predict new results with the
following methodology:

3.1. First Experiment: n Batch Training and n+1 Batch Testing

The first experiment consisted of training the algorithm using the AdaBoost regressor.
First, the algorithm was trained on the data from Batchn, and its performance was tested on
batchn + 1. Therefore, the size of the dataset in each batch was a significant parameter since
fewer data during training leads to a larger error, such as for batch 5, which has a total of
197 samples.

For example, for the first gas (acetone), the R2 error for the algorithm was 0.9396,
which used training data from batch 6 and test data from batch 7, which showed that it has
good tracking as its error was close to 1. Figure 9 shows precise signal tracking.
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Figure 8. Methodology for checking the operation of the AdaBoost regressor under different conditions.
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Figure 9. True vs. predicted behavior of AdaBoost regressor for acetone in batch 7 for experiment 1.

Table 8 presents the results for the entire process for the other batches and gases.
Table 8 shows the results of the evaluated error for the trained dataset in each of the

six gases. However, the undefined (“-”), zero, and negative values represent a result where
there were not enough samples for the training algorithm to perform a proper test over the
next batch. This happened with the toluene gas, in which there was not enough data in
batches 3 to 5 to train and test, which is why a second experiment was planned to ensure
sufficient data of all the gases in each of the batches for a better training algorithm and test



Chemosensors 2022, 10, 538 13 of 21

error evaluation. In the case of batch 10, it is important to point out that although it has
negative data because the sensors were off for six months, it should be considered because
it is essential to reduce the drift of the sensors over time.

Table 8. Batch_n training and testing errors in Batchn+1.

AdaBoost

Gases/Batch 1→ 2 2→ 3 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 9→ 10

Acetone −0.130729 0.150858 −0.506272 0.983796 −0.486567 0.939646 0 1 −1.92532
Acetaldehyde 0.842822 0.686795 0 −0.183673 0.57755 0.507228 0 1 −1.97581

Ethanol 0.1675 0.563065 0 1 −0.061294 0.0813233 −5.45995 −46.0663 −1.44975
Ethylene 0.63787 0.775758 0.395175 −4.4625 −0.0845528 0.617038 −11.141 0 −0.103226

Ammonia 0.837509 0.91124 0 −0.495356 −0.823205 0.795848 0.495545 0 −1.53419
Toluene 0 - - - - 0.319257 0 1 −1.40275

3.2. Second Experiment: Training Batches 1–5 and Testing Batches 6–9

Due to the lack of data, experiment 1 was undesired, so the second experiment was
trained in batches 1–5 and then tested in batches 6–9. This experiment allowed the algorithm
to train with more data, verifying the regressor’s behavior.

When programming and using the proposed methodology, the R2 error corresponding
to the first gas (acetone) was 0.7824. Because it is not so close to 1, this error demonstrates
that the AdaBoost regressor allows the proper tracking of data.

Figure 10 shows the tracking trajectory.
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Figure 10. True vs. predicted behavior of AdaBoost regressor for acetone in batches 6–9 for
Experiment 2.

Table 9 shows the results obtained for the present experiment. The algorithm’s perfor-
mance for the data implemented is much better than in Experiment 1 because the R2 errors
obtained for each gas, since there are no negative errors and all gases could be evaluated,
show that there is no problem with a lack of data in the gas samples. This experiment
shows that the AdaBoost regressor has a correct function in the database with large volumes
of data.

Table 9. R2 errors in Batch1−5 training and testing in Batch6−9.

EXPERIMENT #2

Gases AdaBoost

Acetone 0.782454
Acetaldehyde 0.670189

Ethanol 0.423060
Ethylene 0.570609

Ammonia 0.768746
Toluene 0.165012

Average 0.563345
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3.3. Third Experiment: Training Batches 6–9 and Testing Batch 10

The third experiment consisted of training with batches 6–9, corresponding to nine
months of recorded data, and testing it in batch 10, corresponding to one month of recorded
data. The main objective was to obtain more training data, which leads to more accurate
tracking. However, it should be mentioned that the data of batch 10 were much more
imprecise due to the fact that there was an erroneous acquisition of the data, showing
a much more significant error than in the previous experiment. For example, the R2 error
for the first gas (acetone) was 0.7944, as shown in Figure 11, presenting the following
tracking trajectory.
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Figure 11. True vs. predicted behavior of AdaBoost regressor for acetone in batch 10 for experiment 3.

Table 10 shows the R2 errors obtained for the present experiment, but it is important
to note that the behavior of the first experiment improved because the evaluated data
increased, although the data for ethanol and ammonia are presented as uncertain values
because of their negative values due to the conditions of batch 10 exposed in the research
by Vergara et al.

Table 10. R2 errors in Batch6−9 training and testing in Batch10.

EXPERIMENT #3

Gases AdaBoost

Acetone 0.794446
Acetaldehyde 0.183383

Ethanol −0.703551
Ethylene 0.235817

Ammonia −0.586564
Toluene 0.099474

Average 0.003834

3.4. Fourth Experiment: Training Batch 1 and Testing the Other Batches

The last experiment involved training the algorithm using batch 1 and then testing
it on the different batches of the dataset. In this way, it was possible to verify that it was
necessary to have more training data by attaining proper tracking with a minor error.

Once programming was applied and executed, the R2 error corresponding to the first
gas (acetone) in batch 2 was −0.1307. This error can be seen in Figure 12 and Table 11 in
the first row of columns 1→ 2. Figure 12 shows the tracking trajectory R2 for AdaBoost in
the fourth experiment, and Table 11 presents the values obtained for the entire dataset.
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Figure 12. True vs. predicted behavior of AdaBoost regressor for acetone in batch 2 (164 measurements).

Table 11. R2 errors in Batch1 training and testing in Batch1+n.

EXPERIMENT #4

Gases/Batch 1→ 2 1→ 3 1→ 4 1→ 5 1→ 6 1→ 7 1→ 8 1→ 9 1→ 10

Acetone −0.130729 0.246876 −0.122286 −0.377315 −2.66535 0.170476 0 0 0.572529
Acetaldehyde 0.842822 −0.294713 0 0.7813 −0.098906 0.508916 0 0 0.583842

Ethanol 0.1675 −4.76936 0 0 −15.835 −2.12151 −24.41040 −2145.3 0.635629
Ethylene 0.63787 0.606361 0.402112 −3.3788 0.554814 0.745456 −2.81817 0 −0.127318

Ammonia 0.837509 0.814116 0 0.596261 0.686284 0.698325 0.108429 0 −0.150167
Toluene 0 - - - 0.54694 0.258964 0 0 0.521434

Table 8 shows an improvement with respect to the previous experiment, although there
are still negative errors, zero errors, and errors that could not be calculated (-).

Negative and zero R2 errors are due to underfitting because of the lack of data when
calculating the error.

3.5. Discussion

Comparing the performance between the results:

• From the previous tables, it can be added that the problem of the negative values is
caused because of underfitting.

• In some cases, the results improved for some batches, but in other cases, the error
increased. This variation is due to the number of samples evaluated in which a lower
number of samples represents a lower presicion for the proposed model.

• This experiment verifies the AdaBoost regressor’s performance on the dataset. In the
end, it shows good monitoring and improvement of the results based on the R2 error
for the entire dataset.

4. AdaBoost Regressor with KLIEP Domain Adaptation Methodology

After determining the regressor, it was necessary to apply the domain adaptation
method (DA). DA is a method to ensure the proper function of a model over multiple
source distributions when trained over a different but related distribution. Combining
AdaBoost and DA is expected to reduce the drift error.

Mathelin et al. [35] explained the domain adaptation method and divided it into
three main strategies:

1. Feature-based containment methods that perform feature transformation;
2. The instance-based methods with the implementation of reweighting techniques;
3. Parameter-based proposal methods for adapting pre-trained models to novel observations.

ADAPT is a python library that implements different DA methods, including those
that are function-based, instance-based, and parameter-based [35]. Mathelin et al. ex-
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plained how the DA method’s objective is to use the instance-based module of the ADAPT
library to correct sample bias and assume that the distribution source and target share the
same support in the input space. This method reweights the source instances to correct
the difference between the source (source domain S) and destination (target domain T)
distributions [25].

The process of the DA instance-based method is shown in Figure 13.

Reweighted InstancesInput Space

A B C

Regression

Classification
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yt

ys

yt

W f
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task

Instance
weighting XtXt

XsXs

Figure 13. Strategy based on DA instances method. [35].

In this study, the KLIEP algorithm (Kullback–Leibler importance estimation) was
used for the instance-based method. This algorithm aims to correct the difference between
input distributions of the source and destination domains, finding a reweighting of source
instances that minimizes the Kullback–Leibler divergence between the source (source—S)
and destination (target—T) distributions [31].

The proposed methodology to implement the KLIEP based DA method with AdaBoost
is shown in Figure 14.

The methodology was similar to the validation of the AdaBoost regressor. In this case,
the domain adaptation method was also applied in addition to the regressor.

The experiments performed for this section were the same ones performed in the
Adaboost regressor behavior validation section to compare the results obtained in each
experiment, which is a way to verify the behavior of AD.

4.1. n Batch Training and n+1 Batch Testing with DA

To validate the regressor, it was trained using batchn and evaluated on batchn+1.
The same process of implementing the database and recognizing the gases by the program
was carried out. Subsequently, it was necessary to implement the AdaBoost regressor and
apply the KLIEP algorithm, as shown in Figure 13.

The R2 error corresponding to the first gas was obtained in 1→ 2, which was 0.9988,
as shown in Figure 15.

This process was repeated for each gas and batch. Table 12 show the R2 errors for each
gas and batch.

Table 12. R2 errors in Batch1 training and testing in Batch1+n.

DOMAIN ADAPTATION EXPERIMENT 1

Gases/Batch 1→ 2 2→ 3 3→ 4 4→ 5 5→ 6 6→ 7 7→ 8 8→ 9 9→ 10

Acetone 0.998806 0.955239 0.918737 1 0.856410 0.968663 0.956009 1 1
Acetaldehyde 0.970722 0.910951 0.926854 1 1 0.908055 0.747359 1 1

Ethanol 0.997943 1 0.991445 1 1 0.942600 0.340262 0.971570 1
Ethylene 0.995803 1 0.998587 1 1 1 0.872420 1 1

Ammonia 0.986907 0.999214 0.991036 1 1 0.948215 0.947587 0.457177 1
Toluene 0.954738 - - - - 0.978532 0.040563 1 1
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Figure 14. Methodology to assess the operation of the AdaBoost regressor with the KLIEP DA method
under different conditions.

4.2. Training Batches 1–5 and Testing Batches 6–9 with DA

The following test involves training the regressor in matches 1 to 5 and testing using
batches 6 to 9; this method shows an R2 error of 0.46. Figure 16 shows the signal tracking
for the first gas.

Table 13 shows the R2 errors for the missing gases.

4.3. Training Batches 6–9 and Testing Batch 10 with DA

The final test involved training the regressor using batches 6 to 9 and testing with
batch 10. The R2 error for acetone was 0.97. This result shows a decrease in sensor drift.
The R2 error for acetone is shown in Figure 17.
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Figure 15. True vs. predicted behavior of AdaBoost regressor with KLIEP method for acetone in
batch 2 (164 measurements).
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Figure 16. True vs. predicted behavior of AdaBoost regressor with KLIEP method for acetone in
batches 6–9 for Experiment 2.

Table 13. R2 errors in application of the AdaBoost regressor with KLIEP for testing in Batch6−9.

DOMAIN ADAPTATION EXPERIMENT 2

Gases AdaBoost/DA

Acetone 0.466610
Acetaldehyde 0.922668

Ethanol 0.980563
Ethylene 0.974383

Ammonia 0.892407
Toluene 0.956007

Average 0.865440
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Figure 17. True vs. predicted behavior of Adaboost regressor with KLIEP method for acetone in
batch 10 for experiment 3.

Table 14 shows the R2 error when repeating the process for each gas.
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Table 14. R2 errors in the application of the AdaBoost regressor with KLIEP for testing in Batch10.

DOMAIN ADAPTATION EXPERIMENT 3

Gases AdaBoost/DA

Acetone 0.968071
Acetaldehyde 0.821917

Ethanol 0.528604
Ethylene 0.907779

Ammonia 0.905870
Toluene 0.632908

Average 0.794192

From the application of AdaBoost with KLIEP DA, it is possible to conclude an improvement
in the drift, which is supported by R2 errors being closer to 1.

• From the first experiment using DA, it can be seen that there are no negative errors,
as shown in Tables 12 and 8. Several errors of 1% were obtained, which is the best-
calculated error, with only six errors less than 88%. This percentage demonstrates the
proper functioning of the applied domain adaptation KLIEP algorithm. This behavior
was constant among the batches.

• The validation of the correct functioning of the second experiment with AD was
carried out directly by comparing Table 13 with Table 9. There was an improvement in
the errors calculated with the regressor. In Table 9, the average error was 56.3%, but Ta-
ble 13 shows an average error of 86.5%. These results show how the instancebased
domain adaptation model helped improve the accuracy of the AdaBoost regressor.

• To verify the methods of the third experiment, the comparison of Table 14 was carried
out with Table 10. The difference in the average R2 error was 79.4% and 0.003%,
respectively. Additionally, no negative error was obtained.

5. Conclusions

This study developed a methodology to improve gas quantification in an electronic
nose sensor array. The methodology was based on the application of the KLIEP domain
adaptation procedure using an AdaBoost regressor as an estimator. The methodology was
satisfactorily validated using a 13,910-measurement dataset of an electronic nose sensor
array taken for 36 months. The results obtained in the experiments show a high average
value of R2 error. The results also shows that the more data there are in the source domain,
the better the behavior of the R2 error is in the target domain.

The gas quantification was addressed in this study through a machine learning data
processing approach. First, it was necessary to select a regressor; AdaBoost showed the
best R2 error compared with XGBoost and simple linear regression. Second, the AdaBoost
estimator was paired with the KLIEP method. According to the results, after applying
the developed methodology based on AdaBoost and KLIEP, it improved the average
R2 error obtained in different test sets. This can be evidenced in experiment 3, where
batches 6–9 composed the source data, and batch 10 composed the target data, yielding
an average R2 error value of 0.794 ppm. In contrast, when only using the AdaBoost
estimator, the average R2 error was 0.00383 ppm. Due to the combination of the KLIEP
with the AdaBoost methods, it was possible to extend the useful life of an electronic nose,
and the implementation of the developed methodology can reduce costs by preventing
sensors from recalibrating.

As future work, different regressor estimators and domain adaptation methods will
be tested to find their behavior related to R2 error. Additionally, to accomplish online
monitoring, an ETL process (extract, transform and load) in a web cloud server can be
used to store the information in a database so that the experiments are constantly updated,
generating more training data. Furthermore, the developed methodology will be tested
with new data from another electronic nose sensor array.
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