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Abstract: Electronic tongues and artificial gustation for crucial analytes in the environment, such
as metal ions, are becoming increasingly important. In this contribution, we propose a multi-level
fusion framework for a hybrid impedimetric and voltammetric electronic tongue to enhance the
accuracy of K+, Mg2+, and Ca2+ detection in an extensive concentration range (100.0 nM–1.0 mM).
The proposed framework extracts electrochemical-based features and separately fuses, in the first
step, impedimetric features, which are characteristic points and fixed frequency features, and the
voltammetric features, which are current and potential features, for data reduction by LDA and
classification by kNN. Then, in a second step, a decision fusion is carried out to combine the results
for both measurement methods based on Dempster–Shafer (DS) evidence theory. The classification
results reach an accuracy of 80.98% and 81.48% for voltammetric measurements and impedimetric
measurements, respectively. The decision fusion based on DS evidence theory improves the total
recognition accuracy to 91.60%, thus realizing significantly high accuracy in comparison to the state-
of-the-art. In comparison, the feature fusion for both voltammetric and impedimetric features in one
step reaches an accuracy of only 89.13%. The proposed hierarchical framework considers for the first
time the fusion of impedimetric and voltammetric data and features from multiple electrochemical
sensor arrays. The developed approach can be implemented for several further applications of pattern
fusion, e.g., for electronic noses, measurement of environmental contaminants such as heavy metal
ions, pesticides, explosives, and measurement of biomarkers, such as for the detection of cancers
and diabetes.

Keywords: electronic tongue; metallic ions detection; sensor array fusion; voltammetric sensor array;
impedimetric sensor array; decision fusion; chemometrics; smart agriculture

1. Introduction

Potassium, calcium, and magnesium are essential metal elements for plant growth [1].
They are highly demanded as nutrient solutions, fertilizers, or supplements to enhance
the yield and quality of crops in modern agriculture [2]. Potassium is a macronutrient
for plant growth and is related to the movement of water and carbohydrates in plant
tissues [3]. Calcium and magnesium are secondary nutrients for plants and have proven
to be essential nutrient sources for photosynthesis [4], cell wall construction [5], and
second messenger [6]. Their cationic forms (K+, Ca2+, and Mg2+) are required to be
precisely optimal and controlled in the plant growth environment to match the nutrient
requirements of the crop under different growth stages [7–9]. Therefore, high-precision K+,
Mg2+, and Ca2+ quantification technologies combined with the Internet of Things (IoT) are
widely used in aquaponics [10], soilless cultivation [11], smart fisheries [12], and automatic
agriculture [13].
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With the development and increased demand for smart agriculture, there are many ob-
jective requirements for high-accuracy ion detection in a rapid, portable, and cost-effective
manner [7]. Classical ion detection techniques are costly and rely on large equipment,
unsuitable for online measurement and IoT adaptation, such as complexation titration [14],
ion chromatography [15], mass spectrometry [16], spectroscopy [17], and spectrophotom-
etry [18]. Therefore, microsensor techniques combining sensitive materials have been
applied for rapid ion detection as valued methods, such as voltammetric sensors [19–21],
impedimetric sensors [22,23], and potentiometric sensors [24], which could enable reliable
integration with portable measurement devices. Gruden and Kanoun [25,26] demonstrated
that cyclic voltammetry (CV) could be employed to discriminate the ratio of Ca2+ and
Mg2+ in water and further developed a cost-effective sensor system combining electro-
chemical impedance spectroscopy (EIS) and CV for the online determination of aqueous
solutions. Peng et al. [27] prepared an electrochemical sensor based on NiS2 nanoparticles
(NPs) for the detection of Ca2+ and Mg2+ in water with a detection range of 1 nM–100 nM.
Kumbhat et al. [28] developed an electrochemical sensor based on a self-assembled mono-
layer of 4-aminobenzo-18-Crown-6 ether as a selective ionophore for highly selective K+

(1 µM–10 mM) detection. For impedimetric detection, Akhter et al. [29] reported a 3D-
printed impedimetric sensor based on multi-walled carbon nanotubes, which can recognize
Ca2+ and Mg2+ between 1 ppm and 200 ppm. Machado et al. [30] fabricated an impedi-
metric multichannel monolayer-coated gold sensor to detect low concentration change in
K+ in mouse brains. In summary, a large number of studies regarding sensitive material-
based sensors demonstrated their critical role and potential in the field of ion detection.
However, a single sensor is generally only applicable to the detection of one single kind
of ion, whereas the desired high detection accuracy is difficult to be achieved for com-
plex multi-analyte detection scenarios. This is limited by the limitation of the sensing
principle itself.

Multi-sensor array for detecting analytes in liquids is defined as an electronic tongue
(E-Tongue; ET) and received considerable attention during the last two decades due to its
potential for analyzing multiple analytes and the IoT-integration possibility [31]. ET can
emulate the taste mechanism of humans and can perform highly accurate ion classification
and identification using response signals toward the target ions to establish specific finger-
prints. Generally, ET consists of a sensor array for chemical detection and an advanced
pattern recognition system to extract holistic features from complex samples to identify
target analytes [32]. Riul et al. [33,34] first proposed that an ET based on a conductive
polymer impedimetric sensor array (ISA) can be employed to detect metal ions in water.
Cortina-Puig et al. [35] reported an ionophore/polypyrrole-based impedimetric ET that can
simultaneously quantitatively recognize potassium, sodium, and ammonium ions. Pérez-
Ràfols et al. [36] developed an ET based on voltammetric sensor array (VSA) for several
metallic ions discrimination by employing differential pulse anodic stripping voltammetry
(DPASV) and partial least squares regression (PLSR). Men et al. [37] reported dual-ET
containing chalcogenide-based voltammetric sensors to detect metal ions in wastewater
and seawater. The above contributions demonstrated the feasibility of the ET technique
in the field of ion detection. The advantage of ET compared with using a single sensor to
detect ions is that sensor arrays bring new dimensions to the observation, contributing to
the analysis based on more parameters and improving predictive performance.

Pattern fusion is an essential strategy in a multi-sensor system, aiming to achieve
higher accuracy recognition results by different sensor combinations to obtain response
information of analytes from multiple perspectives, such as a combination of ET and elec-
tronic nose (EN) [38], combination of computer vision and pressure sensor array [39], and
hybrid sensor array of different sensing techniques. The pattern fusion strategy includes
data fusion, feature fusion, and decision fusion. Data fusion is low-level fusion aiming to
fuse raw data and extract or calculate less valuable data. Feature fusion is intermediate-
level fusion and is applied for the fusion of features extracted by different algorithms to
characterize the response signal of analytes comprehensively. Decision fusion is high-level
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fusion, which can integrate established decisions from multiple determination channels
(classifiers) to achieve high accuracy final decision based on various considerations [40,41].
The combination of voltammetric and potentiometric ET has proved to be effective in
detecting or discriminating beers [42], fermented milk [43], aspergillus of food [44], and
apple extracts [45]. Labrador et al. [46] proposed a hybrid ET combining a VSA and a single
impedimetric sensor for composition analysis of minced meat. Therefore, the combina-
tion of sensor arrays with different sensing techniques enhances recognition accuracy and
provides more evidence for classification.

This contribution firstly proposes a multi-fusion strategy framework for an electronic
tongue-based VSA and ISA to exploit their synergy and enhance, thereby, the measurement
accuracy of the concentrations of K+, Mg2+, and Ca2+ in liquid samples in the range from
100.0 nM to 1.0 mM. The developed electronic tongue consists of four voltammetric sensors
and six impedimetric sensors. We proposed to extract electrochemical-based features, which
are relevant to the corresponding measurement method, and to realize a hybrid feature
fusion (intermediate-level fusion) for every method separately, followed by a decision
fusion (high-level fusion) combining both results, as shown in Figure 1. The effectiveness
of the extracted features was evaluated. A supervised dimensionality reduction algorithm
was applied to analyze the effect of cluster scatters on the extracted features. The k-
nearest neighbor (kNN) classifier was employed to classify the clusters under multiple
dimensionalities. The evidence theory algorithm fused the decision results of the VSA and
ISA to enhance the prediction accuracy of the final decision. Recognition results based on
different algorithms and fusion strategies were compared.
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Figure 1. Concept of the proposed multi-level fusion framework for a hybrid voltammetric and
impedimetric electronic tongue for metal ions detection.

2. Experiments and Methods
2.1. Sample Preparation

The samples containing metallic ions were prepared by dissolving the chloride salt
(KCl, MgCl2, CaCl2(H2O)2) powder in phosphate buffer solution (PBS) (0.1 M, pH = 7.0)
and then sonicated for 1 h using an ultrasonic bath to ensure solubilization. The ap-
plied chloride salts were purchased from Sigma-Aldrich (Sigma Chemical Co., St. Louis,
MO, USA; Aldrich Chemical Co., Milwaukee, WI, USA). Nine concentrations (100.0 nM,
500.0 nM, 1.0 µM, 5.0 µM, 10.0 µM, 50.0 µM, 100.0 µM, 500.0 µM, 1.0 mM) of samples
were prepared for each metallic ion. Thirty samples of each metallic ion and each above
concentration were prepared, 810 samples in total. The samples were individually stored
in glass bottles at room temperature.
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2.2. Voltammetric Measurements

A VSA was applied for the voltammetry measurement of the samples, which consists
of four voltammetric sensors based on metal NPs electrochemical deposition layer and
modified with metallic phthalocyanine (MPc) and COOH-functionalized multi-walled
carbon nanotubes (MWCNT-COOH), preparation details are provided in Table S1. The
sensors were based on commercial carbon screen-printed electrodes (Itasens IS-C, PalmSens
BV, Houten, The Netherlands) with a paper substrate. The well-prepared sensor array is
shown in Figure S1A.

The measurements were executed by PalmSens4 Electrochemical Workstation (Palm-
Sens BV, Houten, Netherland) with the following procedure: 1 mL of sample was dropped
on the working area of each sensor by pipette, then left for 30 s. CV was carried out with a
scan range between −0.9 V and 0 V and 0.005 V of scan step length, and only the reduction
curve with 179 points was selected to extract features. The sensors were cleaned with
deionized water for 30 s after measurement, then dried under air flow for 1 min. For
continuous measurements, samples of the same concentration of different ions are selected
for cross-measurement to avoid sensor fatigue for the same ion. The schematic diagram of
the voltammetric measurement is shown in Figure S1B.

2.3. Impedimetric Measurements

An ISA was applied to the EIS measurement of the samples, which consists of six
impedimetric sensors modified with composite films of poly(3,4-ethylenedioxythiophene)–
polystyrene sulfonate (PEDOT:PSS), MPc, and MWCNT-COOH, and the preparation details
are given in Table S2. The electrodes are silver screen-printed interdigitated electrodes
(IDEs) on a polyimide (PI) substrate. The well-prepared sensor array is shown in Figure S2A.
Generally, impedimetric sensors demonstrate relatively lower specific detection ability
compared to voltammetric sensors; thus, the ISA has more numbers of sensors than the
VSA in this contribution. The measurement was executed by Agilent 4294A Precision
Impedance Analyzer (Agilent Technologies Inc., Santa Clara, CA, USA). The impedance
response toward samples was acquired 201 points from the frequency range between 40 Hz
and 110 MHz. Other operations are the same as voltammetric measurement. The schematic
diagram of the impedimetric measurement is shown in Figure S2B.

2.4. Pattern Fusion Framework
2.4.1. Features Extraction and Fusion

Usually, the raw signals of sensors are not used directly for analysis because the noise
and redundancy of the data increase the calculation difficulty for portable measurements.
Feature extraction is employed to extract signals corresponding to physical or chemical
processes and reduces the amount of data computation [47]. Feature extraction of VSA and
ISA represent different aspects of the response toward metal ions.

Voltammetric measurements usually apply a continuously varying potential to obtain
an I–V curve of the sensor to the target analyte to demonstrate the oxidation or reduction
reaction reacting on the surface of the working electrode. The shape of the I–V curve mainly
depends on the modification of the working electrode and the redox properties of the ana-
lyte. The potential information in the curves represents the potential at which the oxidation
or reduction reaction occurs and is employed for the qualitative identification of the target
analyte. The current information exhibits a strong correlation with the concentration of
the target analyte and is usually utilized to identify the concentration of the analyte in the
sample [48]. In this study, the data from the reduction part of CV curves were utilized for
feature extraction.

The features based on the current information are the reduction current peak (RC)
and reduction curve integral (RI) of the sensor in VSA response towards the target ions, as
presented in Equations (1) and (2), respectively:

RCi = Ii,n (i = 1, 2, . . . , 4 for VSA) (1)
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RIi =
179

∑
k=1

Ii,k (i = 1, 2, . . . , 4 for VSA) (2)

where n is the number of the reduction peak point, i is the sensor label in VSA, I is the
current value of the acquired data point, and k is the number of each acquired point on the
reduction part of the CV curve.

The feature based on potential information is the potential value at the reduction peak
(RP) as presented in Equation (3):

RPi = Vi,n (i = 1, 2, . . . , 4 for VSA) (3)

where V is the potential value of the reduction peak point, and other variables are the same
as in Equations (1) and (2).

EIS characterizes and analyzes electrochemical properties such as electrode process
kinetics, bilayer, and diffusion by measuring impedance variation with sinusoidal frequency.
Nyquist plot was used to visualize EIS for analyzing properties of the electrochemical
system, such as equivalent circuits, by plotting the x- and y-axis as the real part (Z′)
and imaginary part (Z”) of impedance, respectively. Each point therein represents the
impedance information of this system at a fixed frequency; however, the relative position
of this point in the plot may change depending on the analyte [25,49,50]. Therefore, a
complete description of the sensor’s response toward the analyte can be obtained by
extracting and combining the impedance information of the points at specific positions or
specific frequencies.

The features based on the information of the characteristic points are the real part
(CPpeak-Z′) and imaginary (CPpeak-Z′′) part of the impedance at the peak characteristic
point of the charge-transfer semi-circle in the Nyquist plot of the sensor response to the
target ion in the ISA as Equations (4) and (5), respectively:

CPpeak−Z′ ,i = Ri,n (i = 1, 2, . . . , 6 for ISA) (4)

CPpeak−Z′′ ,i = Xi,n (i = 1, 2, . . . , 6 for ISA) (5)

where n is the number of the peak characteristic point of the charge-transfer semi-circle,
i is the sensor label in ISA, and R and X are the real and imaginary parts of the point’s
impedance, respectively.

The features based on the information at fixed frequency points are the impedance values
measured at 20 kHz (FF20k-Z), the real parts (FF1k-Z′, FF300k-Z′), and imaginary parts (FF1k-Z′′,
FF300k-Z′′) of the impedance measured at 1 kHz and 300 kHz as Equations (6)–(8), respectively:

FF20k−Z,i =
√

R2
i, f + X2

i, f

(
i = 1, 2, . . . , 6 for ISA

f = 20k

)
(6)

FFf−Z′ ,i = Ri,n

(
i = 1, 2, . . . , 6 for ISA

f = 1k, 300k

)
(7)

FFf−Z′′ ,i = Xi,n

(
i = 1, 2, . . . , 6 for ISA

f = 1k, 300k

)
(8)

where f is the frequency of the selected point in the Nyquist plot, and other variables are
the same as in Equations (4) and (5).

In this contribution, the process of feature fusion was performed by fusing the features
based on current and potential information for VSA and the features based on information
of characteristic points and fixed frequency points for ISA, respectively. The features
of the 4 sensors in the VSA were concatenated to form a 12-dimensional feature vector.
Similarly, the features of the 6 sensors in the ISA were concatenated into a feature vector of
42 dimensionalities.
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2.4.2. Dimensionality Reduction

Redundant correlations between each sensor in the array can result in a “curse of
dimensionality” in case of excessive features [51]. Therefore, the extracted features can
be projected into a low-dimensional space to obtain new principal variables without
redundancy. Supervised dimensionality reduction algorithms are widely used in sensor
array signal analysis [52]. In this study, linear discriminant analysis (LDA) was applied to
reduce the dimensionality of the feature vectors.

The central idea of LDA is to minimize the intra-class spacing and maximize the
inter-class variance after projection. The information of input data sets should also include
the classes of the samples, so the input data set was X = {(x1, y1), (x2, y2), · · · (xm, ym)},
where any sample xi (i = 1, 2, . . . , m) is an n-dimensional vector and yi ∈ {C1, C2, · · ·Ck}
is the classes (3 metallic ions and their 9 concentrations) of the samples. Nj (j = 1, 2, . . . k)
is defined as the number of samples (30 repeat samples) in class j, Xj (j = 1, 2, . . . k) as the
vector set of samples in class j, µj (j = 1, 2, . . . k) as the mean vector of samples in class j,
and ∑j (j = 1, 2, . . . k) as the covariance matrix of samples in class j. The within-class scatter
matrix Sw and the between-class scatter matrix Sb were calculated through the expressions
(9) and (10) [53]:

Sw =
k

∑
j=1

Swj =
k

∑
j=1

∑
x∈Xj

(
x− µj

)(
x− µj

)T (9)

Sb =
k

∑
j=1

Nj
(
µj − µ

)(
µj − µ

)T (10)

2.4.3. Classification

Classification is usually employed for further class identification of the dimensionality-
reduced feature matrix. The supervised kNN classifier as a nonparametric statistics learning
algorithm was applied in this contribution, which is a common classifier for signal process-
ing of sensor arrays [54]. The classification of the test set data was determined by counting
the major class of the k nearest samples in the feature space. The selected nearest samples
should be previously correctly classified in a supervised manner.

2.4.4. Decision Fusion for Voltammetric and Impedimetric Measurements

Decision fusion integrates the recognition results from different sensor arrays to obtain
higher prediction accuracy. Dempster–Shafer evidence theory (D–S evidence) is a general
framework for reasoning with uncertainty and has been proven feasible for multi-sensor
fusion in the literature [55].

Θ = {θ1, θ2, . . . , θc} is defined as the discernment frame, and each class indicates a
subset θc(θc ∈ Θ). The subjective probabilities (masses) are the key evidence of decision-
making. A is a focal element of the discernment frame if the set function m : 2Θ → [0, 1] is
satisfied (11):

m(φ) = 0
∑

A∈Θ
m(A) = 1 (11)

m is then defined as the basic probability assignment in the discernment frame and m(A)
as the probability assignment value [56]. A focal element is essentially a set of evidence
derived from different sensor arrays. In this contribution, the VSA and ISA indicate two
sets of evidence, m1 and m2. Let the 27 classes of the samples be defined in the discernment
frame as Θ = {θ1, θ2, . . . , θ27}. The basic probability assignment function is obtained by
the output of kNN.

The above two sets of evidence with A1, A2, . . . , Ai and B1, B2, . . . , Bj can be integrated
into a new set of evidence m12 through D–S evidence combination rule (12) as follows:

m(A) =
∑Ai∩Bj

m1(Ai)m2
(

Bj
)

1− K
A 6= φ (12)
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where K = ∑Ai∩Bj=φ m1(Ai)m2
(

Bj
)

and K < 1 [56]. The final decision should be one of
27 classes, indicating the maximum membership of the plausibility. The algorithms were
implemented by Python3 in PyCharm (JetBrains s.r.o., Prague, Czech Republic).

3. Results and Discussion
3.1. Evaluation of Features

Radar plots (see Figure 2) are presented to observe whether pattern differences (i.e.,
fingerprints) arise between the sensors in the VSA and ISA response toward K+, Mg2+,
and Ca2+. Responses of each sensor are presented as polygons composed of the extracted
features. Overall, each sensor in both the VSA and the ISA exhibits significantly differen-
tiated patterns in response to the three target analytes, i.e., polygons of different colors
covering relatively different regions. These differences can be attributed to the effective-
ness of the feature extraction and the cross-selectivity of the applied sensitive materials
since the extracted features are all physically meaningful from CV and EIS curves and can
characterize the sensors’ response toward the analytes in multiple perspectives. These
very differentiated patterns mean that the VSA and ISA have excellent properties, which
have proven to be valuable for multi-analyte recognition in studies, e.g., volatile organic
compounds [57], bio-analytes [58], and metal ions [59].

Figure 2. Extracted features of (A–C) VSA and (D–F) ISA towards K+, Mg2+, and Ca2+ at a concentra-
tion of 50 µM.

3.2. Feature Fusion

The current features (RC, RI), potential features (RP), characteristic point features
(CPpeak-Z′, CPpeak-Z′′), and fixed frequency point features (FF20k-Z, FF1k-Z′, FF1k-Z′′,
FF300k-Z′, FF300k-Z′′) were extracted from the acquired data of VSA and ISA according to
Section 2.4.1, to more completely describe the response of the sensor arrays toward metal
ions. The features were fused into two sets of feature vectors for VSA and ISA, respectively.

The score plot of the LDA displayed on the 2D plane can be applied for visual as-
sessment of the recognition ability of the features. Less overlap in clusters of ion cate-
gories or concentrations means better recognition ability. Figures 3 and S3 show the score
plots of the VSA considering based on the current features (Figures 3A,C and S3A,C)
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and after feature fusion, that is, based on both the current and the potential features
(Figures 3B,D and S3B,D).
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Figure 3. LDA score plots (2D) of the VSA for the discrimination of the metallic ions’ categories
and concentrations (K+) based on (A,C) only current features (before feature fusion) and (B,D) both
current and potential features (after feature fusion), respectively.

In Figure 3A,B, the categories of metal ions are observed as clusters. The clusters of
Mg2+ and Ca2+ overlap with the K+ cluster considering only the current features, respec-
tively; instead, the Mg2+ is entirely independently distributed after feature fusion. The LDA
scores of Ca2+ and K+ are partially overlapped due to dimensionality limitations, whereas
they are entirely independent in higher dimensional space shown in next Section. The
added potential features correlate with the ion categories, thus enhancing the qualitative
recognition accuracy of the VSA.

The current features cannot distinguish well for different concentrations of K+ (see
Figure 3C). The overlapped boundaries reduce the correct recognition probability of the
test samples. The clusters converge relatively after considering the potential features, and
the boundaries are more clearly delineated (see Figure 3D). They mean that the quantitative
recognition ability of VSA is relatively improved. Although the clusters of concentration
range from 1.0 µM to 10.0 µM still overlap, the distribution becomes regular according to the
increasing concentration. Additionally, the within-class samples distribute more compactly,
which complies with the dimensionality reduction rule of LDA (Section 2.4.2). Similarly,
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for the concentration discrimination of Mg2+ and Ca2+ (see Figure S3), the addition of the
potential features results in the boundary condensing of each concentration’s cluster.

Figures 4 and S4 show the score plots of ISA considering only the characteristic point
features (see Figures 4A,C and S4A,C) and both characteristic point and fixed frequency
point features, that is, after feature fusion (see Figures 4B,D and S4B,D). For the clusters of
ion categories (see Figure 4A,B), more selected features enhance the distribution density of
within-class scatters, especially for Mg2+. The addition of the fixed frequency point features
significantly improves the concentration discrimination of Mg2+ (Figure 4D), compared to
discrimination only based on characteristic point features (see Figure 4C). Both between-
and within-class distances converge significantly to the ideal states of LDA. Similarly, for K+

and Ca2+, the concentration discrimination after feature fusion shows clearer boundaries
(Figure S4).
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Figure 4. LDA score plots (2D) of the ISA for the discrimination of the metallic ions’ categories and
concentrations (Mg2+) based on (A,C) only characteristic point features (before feature fusion) and
(B,D) both characteristic point and fixed frequency point features (after feature fusion).

The comparison of the quantitative recognition accuracies of VSA and ISA based on
different features is presented in Figures S5 and S6. Higher accuracies are observed in most
cases of recognition after feature fusion. The results of both VSA and ISA demonstrated
the advantages of feature fusion in characterizing the comprehensive signal of sensors.
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The vectors of multi-features better described the overall signals of the sensor array and
improved the qualitative and quantitative prediction accuracy. The reason for ISA’s better
result is related to the number of added fixed-frequency features. More considered valuable
features compared to the VSA can provide a more comprehensive recognition basis [60].

3.3. Dimensionality Reduction

The number of principal components (PC) in the dimensionality reduction process
impacts the prediction accuracy [57,61]. This section studied the PC number’s effect of
LDA on the prediction accuracy of VSA and ISA toward ion categories (see Figure 5).
Figure 5A,B demonstrate the score plots of VSA and ISA in 3D space composed of the
first three PCs (LD1, LD2, LD3) of the LDA results and the eigenvalues and cumulative
contributions of its PCs (scree plot). The cumulative contributions of VSA and ISA are
94.48% and 91.90%, respectively, which can represent the majority of the information of
the fused feature vector. The cumulative contributions of the first six PCs are nearly 100%.
Compared to the 2D plane (Figures 3B and 4B), the clusters representing ion categories are
distributed independently in the 3D space due to the addition of the LD3 projection on the
z-axis direction. Extending information in the 3D space provides more precise boundaries
for the categories and improves prediction accuracy.
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The prediction accuracy of VSA and ISA toward ion categories in the 1D to 6D space is
shown in Figure 5C,D, respectively. The predictions were performed by LDA only, and the
training and testing set consisted of 405 samples each. The accuracies were relatively low
under 1D and 2D due to the unclear boundaries of the clusters. From 3D to 6D, the accuracy
no more increased significantly with increasing dimensions. The prediction accuracy for
Ca2+ was relatively low (<70%) due to the performance limitations of the sensor array itself.
The highest accuracies were 85.18% for K+ (VSA, 6D) and 95.55% for Mg2+ (ISA, 6D).

The results demonstrate that the LDA method is effective in the supervised classification
of potassium, calcium, and magnesium ions. It can be applied for accurate and fast classifi-
cation due to the simplicity of the computational process [53]. In addition, the results show
that there is a difference in the recognition accuracy obtained by the ET when different PC
numbers are considered. The LDA method has been employed by many researchers for the
ET classification of metal ions. Li et al. [62] applied the LDA method in colorimetric ET for
the determination of six metal ions. Similarly, Sipos et al. [63] and Men et al. [64] classified
mineral water by determinizing contained ions through LDA-based ETs.

3.4. Classification

As an instance-based learning algorithm, the recognition accuracy of kNN is influenced
by the k value (nearest neighbors) [65]. In this section, the classification effect of kNN on
the reduced-dimensional samples and the impact of different combinations of k values
and dimensions on the recognition accuracy were discussed (see Figure 6). Figure 6A,B
demonstrate the classification effect of kNN (k = 5) on the LDA-processed samples in the 2D
plane. The training set (squares) and the testing set (stars) consist of 405 samples each. The
different colored areas mean that if the testing sample is within them, it will be identified
as the indicating ion category and concentration. For the VSA, the regions’ area of the
three metal ions are approximately the same, but Ca2+ was divided into two separate parts.
Each region has clear boundaries, and the colored areas were arranged in a regular pattern
according to the concentration changes. For ISA, K+ and Mg2+ were well classified, as
well as the concentration regions in Ca2+ overlapped each other obviously, which can be
improved at higher dimensions.

The choice of the k value usually depends on the data. A larger k value can reduce the
influence of noise during classification but blurs the boundaries between categories [66].
Figure 6C,D show the impact of different combinations of dimensions (D: 1 to 6) and k value
(k: 1 to 15) on the total recognition accuracy. In 1D and 2D space, the accuracy roughly
increases with increasing k value. However, in the 3D–6D space, the accuracy remains
at around 80% and is not influenced by the change in k. The optimal total recognition
accuracies are 80.98% and 81.48% for VSA and ISA, respectively, both happening under the
condition of D = 6 and k = 5.

The obtained results showed that kNN could be efficiently applied to voltammetric
and impedimetric ETs by adjusting the k value. KNN algorithm could be used for either
classification or regression; therefore, it was employed by researchers in many valuable
application fields of ETs, for example, the determination of wine [67], classification of
tea [68], geographical origin identification of crops [69], etc.
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3.5. Comparison of Algorithm Combinations

The effectiveness of the LDA-kNN combination was compared with other popular
dimensionality reduction-classification combinations. The total prediction accuracy of
different combinations of dimensionality reduction algorithms (LDA, principal component
analysis (PCA), and isometric mapping (ISOMAP)) and classifiers (kNN, support vector
machine (SVM), random forest (RF), and gradient boosting machine (GBM)) applied on
VSA and ISA are shown in Figure 7.

For the dimensionality reduction algorithm, ISOMAP achieves a total accuracy of only
61% (with classifier kNN) due to it being more suitable for non-linear data structures. PCA,
as an unsupervised algorithm, achieves a total accuracy of around 75%. LDA was proven
to provide the highest recognition accuracy of over 80% due to its supervised model and
optimal between/within class distances.

For the classifiers, the accuracy exceeds 70% in all combinations with LDA
(kNN > RF > SVM > GBM). SVM is a non-probabilistic binary linear classifier based
on model boundaries; thus, the complex scatters distribution reduces its recognition accu-
racy. In contrast, kNN with a small k value outperforms SVM for complex boundaries [70].
RF and GBM are ensemble methods more suitable for large-scale processing data [71].
Moreover, they require high computing power, which results in their unsuitability for
real-time computing on portable devices. The best combination is LDA-kNN (80.98%), and
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the worst is ISOMAP-GBM (52.59%). Overall, the dimensionality reduction algorithms
affect the recognition accuracy more than the classifier.
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3.6. Quantitative Determination of Metallic Ions Based on Different Fusion Strategies

The LDA-kNN framework based on multi-features can improve the total recognition
accuracy of VSA and ISA to approximately 80%. Nevertheless, it is not satisfactory for
plant growth processes that require precise determination of metal ion concentrations. DS
evidence theory is applied for decision-level fusion to obtain higher recognition accuracy.
Based on the results in Section 3.4 regarding the optimal accuracy, the optimal parameters
of both VSA and ISA were chosen as D = 6 and k = 5.

Figures 8 and S7 show the confusion matrix and the recognition accuracy of ion
categories, respectively, based on different fusion strategies. The total recognition accu-
racies of VSA and ISA after individual feature fusion are 80.98% (Figure 8A) and 81.48%
(Figure 8B). The proposed multi-fusion based on individual feature fusion and DS evidence
as decision fusion improved the total accuracy to 91.60% (Figure 8D). In comparison, the
one-step feature fusion method, which combines all extracted voltammetric and impedi-
metric features together and makes only one decision, was tested, and total accuracy of
89.13% was obtained (Figure 8C). The diagonal line of the confusion matrix indicates the
correct recognition of the 27 patterns (three categories × nine concentrations), and the other
elements indicate the misidentification between classes. For Mg2+, the average recognition
accuracy of VSA is 82.96%, while that of ISA is as high as 95.55%. After fusing the decisions,
the accuracy improved to 97.78%. The accuracy of VSA and ISA for Ca2+ was 73.33%
and 59.26%, respectively, and the decision fusion improved it to 82.96%. Especially for
the relatively high concentration range (50 µM to 1.0 mM), decision fusion corrected the
misidentifications of ISA and improved the accuracy to 98.33%. The one-step feature fusion
method showed a similar accuracy on Mg2+ compared to the multi-fusion approach but
lower accuracy on K+ and Ca2+. The above results demonstrate the effectiveness of DS
evidence-based decision fusion in improving the recognition accuracy of VSA and ISA for
the categories and concentrations of Mg2+, K+, and Ca2+.
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Figure 8. Confusion matrix of (A) VSA, (B) ISA, (C) only using one-step feature fusion, and (D) using
multi-fusion under the optimal condition of D = 6 and k = 5 toward 100.0 nM to 1.0 mM of the K+,
Mg2+, and Ca2+.

The obtained results reveal the application potential of the fusion of sensor arrays. Even
the result based on one-step feature fusion is far preferable to the individual sensor arrays
due to the inclusion of more observation dimensions. The fusion of sensor arrays based on
different artificial senses (e.g., ET + EN, ET + EN + electronic eye (EE)) has been applied in
many detection scenarios, especially in food evaluation, including ET + EN for evaluation of
meat [72], olive oil [73], black tea [74], and ET + EN + EE for evaluation of green tea [75], red
wine [76], and rice wine [77]. However, the sensor arrays fusion of the same artificial sense
with different sensing principles has rarely been investigated. In particular, the fusion with
the impedimetric sensor array is still in the initial stage until now.
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4. Conclusions

In this paper, we proposed a multi-level pattern fusion framework to improve the
recognition accuracy of Mg2+, K2+, and Ca2+ by hybridizing voltammetric and impedimet-
ric sensor arrays. This framework provided sensor arrays’ individual decisions based on the
feature fusion and classifier LDA-kNN with optimized parameters, then fused them with
DS evidence to realize decision fusion. The features extracted from the voltammetric and
impedimetric measurement data were evaluated as satisfying the expectations of observing
the measured samples from different perspectives. LDA score plots and statistics in 2D
demonstrated that feature fusion enhances the qualitative/quantitative accuracy of VSA
and ISA for metal ions. The qualitative accuracy of VSA and ISA increased significantly in
1D–3D, showing clearer boundaries and more projection information. The kNN-based clas-
sification results showed that both VSA and ISA have optimal total recognition accuracies of
80.98% and 81.48% at D = 6 and k = 5. The recognition accuracies of some combinations of
dimensionality reduction algorithms and classifiers were shown to verify that the proposed
LDA-kNN combination is the optimal strategy. The proposed multi-fusion based on feature
and DS evidence-based decision fusion enhanced the total recognition accuracy to 91.60%.
This multi-fusion framework can characterize the voltammetric and impedimetric response
of metal ions more comprehensively, which is the reason why this system outperforms
single-feature methods or single sensor-arrays.

The proposed multi-level pattern fusion framework and the hybrid ET are the first
studies to consider the fusion of voltammetric and impedimetric sensor arrays and bring
new possibilities to apply them in analyte determination. This framework also has the
potential to be extended to fuse other sensor array-based artificial senses technologies or to
detect biomarkers, heavy metal ions, explosives, pesticides, and other important analytes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/chemosensors10110474/s1, Table S1: The preparation details of the sensors in voltametric
sensor array (VSA), Table S2: The preparation details of the sensors in impedimetric sensor array
(ISA), Figure S1: Setup of the voltammetric measurement: (A) the prepared VSA consists of 4 sensors
and (B) schematic diagram of voltammetric measurement, Figure S2: Setup of the impedimetric
measurement: (A) the prepared ISA consists of 6 sensors and (B) schematic diagram of impedimetric
measurement, Figure S3: LDA score plots (2D) of the VSA for the concentrations discrimination
of (A,B) Mg2+ and (C,D) Ca2+, respectively, based on (A,C) current features and (B,D) both current
and potential features (after feature fusion), Figure S4: LDA score plots (2D) of the ISA for the
concentrations discrimination of (A,B) K+ and (C,D) Ca2+, respectively, based on (A,C) characteristic
point features and (B,D) both characteristic point and fixed frequency features (after feature fusion),
Figure S5: Quantitative recognition accuracies (LDA, 3D) of VSA based on current features (before
feature fusion) and both current and potential feature (after feature fusion), Figure S6: Quantitative
recognition accuracies (LDA, 3D) of ISA based on characteristic point features (before feature fusion)
and both characteristic point and fixed frequency point features (after feature fusion), Figure S7:
Average recognition accuracies of VSA, ISA, one-step feature fusion, and multi-fusion toward Mg2+,
K+, and Ca2+.

Author Contributions: Conceptualization, T.L. and A.A.-H.; methodology, T.L. and A.A.-H.; soft-
ware, T.L. and J.H.; validation, J.H. and Y.L.; formal analysis, T.L. and A.A.-H.; investigation, J.H.;
resources, O.K.; data curation, Y.L. and Y.Q.; writing—original draft preparation, T.L., A.A.-H. and
O.K.; writing—review and editing, T.L., A.A.-H. and O.K.; visualization, T.L. and Y.Q.; supervision,
O.K.; project administration, O.K. and A.A.-H.; funding acquisition, O.K. and A.A.-H. All authors
have read and agreed to the published version of the manuscript.

Funding: T.L., A.A.-H. and O.K. acknowledge the financial support within the project Nutricon
(no. 24119201, 1 January 2020–31 December 2022) funded by the Sächsische Aufbaubank (SAB).
O.K. and A.A.-H. acknowledge the financial support of Deutsche Forschungsgemeinschaft (DFG)
(PhotoSens project no. KA 1663/12-1, 1 February 2020–31 January 2023).

Data Availability Statement: Not Applicable.

Conflicts of Interest: The authors declare no conflict of interest.

https://www.mdpi.com/article/10.3390/chemosensors10110474/s1
https://www.mdpi.com/article/10.3390/chemosensors10110474/s1


Chemosensors 2022, 10, 474 16 of 18

References
1. Uchida, R. Essential Nutrients for Plant Growth: Nutrient Functions and Deficiency Symptoms. In Plant Nutrient Management in

Hawaii’s Soils, Approaches for Tropical and Subtropical Agriculture; Silva, J.A., Uchida, R., Eds.; College of Tropical Agriculture and
Human Resources, University of Hawaii at Manoa: Honolulu, HI, USA, 2000; pp. 31–55.

2. Tenkorang, F.; Lowenberg-DeBoer, J. Forecasting Long-Term Global Fertilizer Demand. Nutr. Cycl. Agroecosyst. 2009, 83, 233–247.
[CrossRef]

3. Zörb, C.; Senbayram, M.; Peiter, E. Potassium in Agriculture—Status and Perspectives. J. Plant Physiol. 2014, 171, 656–669.
[CrossRef] [PubMed]

4. Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of Potassium and Magnesium in Photosynthesis, Photosynthate Translocation and
Photoprotection. Physiol. Plant. 2018, 163, 414–431. [CrossRef]

5. Kirkby, E.A.; Pilbeam, D.J. Calcium as a Plant Nutrient. Plant Cell Environ. 1984, 7, 397–405. [CrossRef]
6. Poovaiah, B.W.; Reddy, A.S.N.; Leopold, A.C. Calcium Messenger System in Plants. Crit. Rev. Plant Sci. 1987, 6, 47–103. [CrossRef]
7. Mikula, K.; Izydorczyk, G.; Skrzypczak, D.; Mironiuk, M.; Moustakas, K.; Witek-Krowiak, A.; Chojnacka, K. Controlled Release

Micronutrient Fertilizers for Precision Agriculture—A Review. Sci. Total Environ. 2020, 712, 136365. [CrossRef] [PubMed]
8. Aoren, G.I. Ideal Nutrient Productivities and Nutrient Proportions in Plant Growth. Plant Cell Environ. 1988, 11, 613–620.

[CrossRef]
9. Ahn, T.I.; Son, J.E. Theoretical and Experimental Analysis of Nutrient Variations in Electrical Conductivity-Based Closed-Loop

Soilless Culture Systems by Nutrient Replenishment Method. Agronomy 2019, 9, 649. [CrossRef]
10. Zaini, A.; Kurniawan, A.; Herdhiyanto, A.D. Internet of Things for Monitoring and Controlling Nutrient Film Technique (NFT)

Aquaponic. In Proceedings of the 2018 International Conference on Computer Engineering, Network and Intelligent Multimedia
(CENIM), Surabaya, Indonesia, 26–27 November 2018; pp. 167–171. [CrossRef]

11. Savvas, D.; Manos, G. Automated Composition Control of Nutrient Solution in Closed Soilless Culture Systems. J. Agric. Eng.
Res. 1999, 73, 29–33. [CrossRef]

12. Akhter, F.; Siddiquei, H.R.; Alahi, M.E.E.; Mukhopadhyay, S.C. Recent Advancement of the Sensors for Monitoring the Water
Quality Parameters in Smart Fisheries Farming. Computers 2021, 10, 26. [CrossRef]

13. Lavanaya, M.; Parameswari, R. Soil Nutrients Monitoring For Greenhouse Yield Enhancement Using Ph Value with Iot and
Wireless Sensor Network. In Proceedings of the 2018 Second International Conference on Green Computing and Internet of
Things (ICGCIoT), Bangalore, India, 16–18 August 2018; pp. 547–552. [CrossRef]

14. Pereira, C.M.; Neiverth, C.A.; Maeda, S.; Guiotoku, M.; Franciscon, L. Complexometric Titration with Potenciometric Indicator to
Determination of Calcium and Magnesium in Soil Extracts. Rev. Bras. Ciênc. Solo 2011, 35, 1331–1336. [CrossRef]

15. De Caland, L.B.; Silveira, E.L.C.; Tubino, M. Determination of Sodium, Potassium, Calcium and Magnesium Cations in Biodiesel
by Ion Chromatography. Anal. Chim. Acta 2012, 718, 116–120. [CrossRef] [PubMed]

16. Collins, D.; Lee, M. Developments in Ion Mobility Spectrometry–Mass Spectrometry. Anal. Bioanal. Chem. 2002, 372, 66–73.
[CrossRef] [PubMed]

17. Wu, J.; Yu, J.; Li, J.; Wang, J.; Ying, Y. Detection of Metal Ions by Atomic Emission Spectroscopy from Liquid-Electrode Discharge
Plasma. Spectrochim. Acta Part B At. Spectrosc. 2007, 62, 1269–1272. [CrossRef]

18. Bosch Ojeda, C.; Sanchez Rojas, F. Recent Applications in Derivative Ultraviolet/Visible Absorption Spectrophotometry: 2009–
2011. Microchem. J. 2013, 106, 1–16. [CrossRef]

19. Nasraoui, S.; Al-Hamry, A.; Teixeira, P.R.; Ameur, S.; Paterno, L.G.; Ben Ali, M.; Kanoun, O. Electrochemical Sensor for Nitrite
Detection in Water Samples Using Flexible Laser-Induced Graphene Electrodes Functionalized by CNT Decorated by Au
Nanoparticles. J. Electroanal. Chem. 2021, 880, 114893. [CrossRef]

20. Talbi, M.; Al-Hamry, A.; Teixeira, P.R.; Paterno, L.G.; Ali, M.B.; Kanoun, O. Enhanced Nitrite Detection by a Carbon Screen
Printed Electrode Modified with Photochemically-Made AuNPs. Chemosensors 2022, 10, 40. [CrossRef]

21. Brahem, A.; Al-Hamry, A.; Gross, M.A.; Paterno, L.G.; Ali, M.B.; Kanoun, O. Stability Enhancement of Laser-Scribed Reduced
Graphene Oxide Electrodes Functionalized by Iron Oxide/Reduced Graphene Oxide Nanocomposites for Nitrite Sensors. J.
Compos. Sci. 2022, 6, 221. [CrossRef]

22. Xiao, S.; Chen, L.; Xiong, X.; Zhang, Q.; Feng, J.; Deng, S.; Zhou, L. A New Impedimetric Sensor Based on Anionic Intercalator for
Detection of Lead Ions with Low Cost and High Sensitivity. J. Electroanal. Chem. 2018, 827, 175–180. [CrossRef]

23. Chabbah, T.; Abderrazak, H.; Souissi, R.; Saint-Martin, P.; Casabianca, H.; Chatti, S.; Mercier, R.; Rassas, I.; Errachid, A.; Hammami,
M.; et al. A Sensitive Impedimetric Sensor Based on Biosourced Polyphosphine Films for the Detection of Lead Ions. Chemosensors
2020, 8, 34. [CrossRef]

24. Bratov, A.; Abramova, N.; Ipatov, A. Recent Trends in Potentiometric Sensor Arrays—A Review. Anal. Chim. Acta 2010, 678,
149–159. [CrossRef] [PubMed]

25. Gruden, R.; Kanoun, O. Low-Cost Online Determination of Calcium-Magnesium-Ratio by Cyclic Voltammetry. In Proceedings of
the 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14), Castelldefels, Spain, 11–14 February
2014; pp. 1–3. [CrossRef]

26. Gruden, R.; Kanoun, O. Low-Cost Multifunctional Sensorsystem for Online Determination of Aqueous Solutions. In Proceedings
of the 2015 IEEE 12th International Multi-Conference on Systems, Signals & Devices (SSD15), Mahdia, Tunisia, 22–25 March 2015;
pp. 1–4. [CrossRef]

http://doi.org/10.1007/s10705-008-9214-y
http://doi.org/10.1016/j.jplph.2013.08.008
http://www.ncbi.nlm.nih.gov/pubmed/24140002
http://doi.org/10.1111/ppl.12747
http://doi.org/10.1111/j.1365-3040.1984.tb01429.x
http://doi.org/10.1080/07352688709382247
http://doi.org/10.1016/j.scitotenv.2019.136365
http://www.ncbi.nlm.nih.gov/pubmed/31935544
http://doi.org/10.1111/j.1365-3040.1988.tb01803.x
http://doi.org/10.3390/agronomy9100649
http://doi.org/10.1109/CENIM.2018.8711304
http://doi.org/10.1006/jaer.1998.0389
http://doi.org/10.3390/computers10030026
http://doi.org/10.1109/ICGCIoT.2018.8753083
http://doi.org/10.1590/S0100-06832011000400027
http://doi.org/10.1016/j.aca.2011.12.062
http://www.ncbi.nlm.nih.gov/pubmed/22305906
http://doi.org/10.1007/s00216-001-1195-5
http://www.ncbi.nlm.nih.gov/pubmed/11939214
http://doi.org/10.1016/j.sab.2007.10.026
http://doi.org/10.1016/j.microc.2012.05.012
http://doi.org/10.1016/j.jelechem.2020.114893
http://doi.org/10.3390/chemosensors10020040
http://doi.org/10.3390/jcs6080221
http://doi.org/10.1016/j.jelechem.2018.09.022
http://doi.org/10.3390/chemosensors8020034
http://doi.org/10.1016/j.aca.2010.08.035
http://www.ncbi.nlm.nih.gov/pubmed/20888446
http://doi.org/10.1109/SSD.2014.6808784
http://doi.org/10.1109/SSD.2015.7348251


Chemosensors 2022, 10, 474 17 of 18

27. Peng, Z.; Cao, Y.; Gao, Y.; Wang, K.; Song, H.; Yan, S. Fabrication of NiS2 Nanomaterial for Ca2+, Mg2+ Sensing. In Proceedings of
the International Conference on Optoelectronic and Microelectronic Technology and Application, Nanjing, China, 20–22 October
2020; Liu, J., Ed.; SPIE: Bellingham, WA, USA, 2020; p. 21. [CrossRef]

28. Kumbhat, S.; Singh, U. A Potassium-Selective Electrochemical Sensor Based on Crown-Ether Functionalized Self Assembled
Monolayer. J. Electroanal. Chem. 2018, 809, 31–35. [CrossRef]

29. Akhter, F.; Nag, A.; Alahi, M.E.E.; Liu, H.; Mukhopadhyay, S.C. Electrochemical Detection of Calcium and Magnesium in Water
Bodies. Sens. Actuators A Phys. 2020, 305, 111949. [CrossRef]

30. Machado, R.; Soltani, N.; Dufour, S.; Salam, M.; Carlen, P.; Genov, R.; Thompson, M. Biofouling-Resistant Impedimetric Sensor for
Array High-Resolution Extracellular Potassium Monitoring in the Brain. Biosensors 2016, 6, 53. [CrossRef]
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