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Abstract: This paper assesses a custom single-type electronic nose (eNose) applied to differentiate
the complex aromas generated by the caffeinated and decaffeinated versions of one encapsulated
espresso coffee mixture type. The eNose used is composed of 16 single-type (identical) metal–oxide
semiconductor (MOX) gas sensors based on microelectromechanical system (MEMS). This eNose
proposal takes advantage of the small but inherent sensing variability of MOX gas sensors in order to
provide a multisensorial description of volatiles or aromas. Results have shown that the information
provided with this eNose processed using LDA is able to successfully discriminate the complex
aromas of one caffeinated and decaffeinated encapsulated espresso coffee type.

Keywords: electronic nose; e-nose; eNose; LDA; coffee aroma; espresso coffee; caffeinated and
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1. Introduction

Coffee is one of the hot beverages most consumed worldwide. The scent produced by
coffee after its brewing process can provide useful information to assess the quality of its
industrial production. Despite the large quantity of information that can be extracted from
analyzing the aroma that recently brewed coffee emanates, its large number of complex,
volatile compounds usually requires the use of large, expensive spectrometer devices to
analyze it [1,2]. This paper addresses this problem by assessing the application of a custom
low-cost electronic nose (eNose) to discriminate between the aromas of encapsulated
caffeinated and decaffeinated expresso coffee varieties after being brewed.

In general, an eNose consists of an array of nonspecific, low-selective electrochemical
sensors with high stability and cross-selectivity toward volatile compounds, odors, or
aromas. The information gathered by the array of sensors is processed with pattern
recognition algorithms [3] in order to generate a fingerprint of the perceived volatile
compound, odor, or aroma [4]. The continuous evolution of low-cost metal–oxide (MOX)
gas sensors is currently fostering the development of compact arrays [5,6], which are able to
provide the multivariate information required to implement an eNose. In general, low-cost
MOX gas sensors suffer from drift in sensitivity and low specificity [5,7–10] that can be
compensated [11] by applying signal processing techniques or by implementing specific
calibration procedures [12]. Despite these known drawbacks, the recent advances and
growing popularity of eNoses equipped with MOX gas sensors are promoting their use
in areas in which traditional spectroscopy was deemed unviable because of its high cost,
power consumption, and size, such as waste management [13,14] and disease detection [15].
In general, the number of gas sensors used in an eNose used to be lower than 20 [16].
As recent examples, Teixeira et al. [17] proposed the development of a custom eNose
composed of 9 different MOX gas sensor types, and Burgués et al. [18] applied a custom
eNose composed of 27 MOX from five family types.
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Alternatively, this paper is based on the use of a custom eNose composed of 16 single-
type (identical type) miniature MOX gas sensors implemented as a low-cost microelec-
tromechanical system (MEMS). The underlying idea of this alternative eNose proposal
was to take advantage of the small but inherent sensing variability of the 16 identical
MOX gas sensors [5] to provide a multivariate description of volatile compounds, odors,
or aromas. This custom eNose proposal, named Osmee One, has been proven capable
of distinguishing between two [16,19] or three [20] single volatile compounds, and this
paper presents the first assessment with complex aromas such as the ones generated by
caffeinated and decaffeinated coffee after being brewed.

Buratti et al. [21] stated that “the espresso coffee overall quality is affected by many
factors related to coffee (variety, roasting conditions and storage conditions) [22–25], to
water composition [26] and to the parameters of the percolation (temperature and pressure
of water, grinding grade, dose of coffee, coffee/water ratio, pressure on the upper surface of
coffee cake, extraction time) [27–30]”. In this first eNose application example with complex
aromas, these factors will be controlled by using an encapsulated espresso ground coffee,
using soft mineral water to brew the coffee, and using a new semiautomatic coffee machine
in order to guarantee similar brewing conditions that do not affect the aroma of the coffee.

At this moment, the specific problem of discriminating between caffeinated and decaf-
feinated coffee is addressed using expensive laboratory equipment. Souto et al. [31] used
Ultraviolet–Visible (UV-VIS) spectroscopy and chemometric techniques to classify the type
(caffeinated or decaffeinated) and the conservation state (expired or nonexpired) of aqueous
extracts of Brazilian ground roast coffee. Yulia et al. [32] discriminated between caffeinated
and decaffeinated coffee using UV-VIS spectroscopy. Zou et al. [33] analyzed caffeinated
and decaffeinated coffee using a headspace solid-phase microextraction two-dimensional
gas chromatography time-of-flight mass spectrometry (HS-SPME-GC×GC-TOFMS), identi-
fying 20 discriminatory features and specific markers that could enable a distinct classifi-
cation between caffeinated and decaffeinated coffee. Specifically, eNoses have also been
applied to evaluate bean ripening and to detect bean defects [34], classify different coffee
brands [35], discriminate geographical origin and roasting degree of the coffee [36], evalu-
ate the aromatic profile [37], and to estimate coffee intensity [38]. Brudzewski et al. [39]
proposed the recognition of high-quality arabica coffee specie using a differential eNose
composed of two identical eNoses [40]. Greco et al. [41] compared four kinds of powder
and encapsulated espresso coffees with an eNose in order to provide a user-friendly tool
that can be used in the food quality control chain.

The new contribution of this paper is the demonstration that a low-cost eNose based
on 16 single-type commercial MOX gas sensors can be applied to discriminate the aromas
of encapsulated caffeinated and decaffeinated expresso brewed coffee. At this moment,
this challenging discrimination can be made with spectrometers that cost 100 times more
than the eNose used in this paper, a fact that limits their application to quality control in
laboratory facilities. Therefore, the complete development of inexpensive eNoses has the
potential to decentralize and improve the quality control of different industrial productions,
such as goods and commodities. Regarding the eNose application presented in this paper,
caffeine is a soluble and nonvolatile compound that does not directly affects the aroma
but its presence indirectly affects the generation of other volatile substances originally
present in the aroma of coffee [42], so its presence should be detectable from the aroma of
the brewed coffee. The experimental analysis conducted in this work has demonstrated
that an eNose using 16 single-type commercial and low-cost MOX gas sensors has enough
multisensory information and enough sensitivity to successfully discriminate the complex
aroma of the coffee by applying a linear discriminant analysis (LDA) to the raw resistance
information gathered from the eNose.

In the future, this low-cost eNose will be deployed either as a fixed net of multiple
sensors or embedded in autonomous omnidirectional mobile robots [43–45] in order to
compare its gas and odor detection performances.
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2. Background: Brewed Coffee Beverage

The brewed coffee beverage is prepared from roasted and ground coffee beans har-
vested from coffee plants cultivated around the world. The brewing of coffee is a process
that extracts the volatile compounds and soluble and insoluble compounds from the ground
coffee [28]. The volatile compounds are responsible for the aroma and are composed of
ketones, aldehydes, pyrazines, and many other volatiles [46]. The soluble and nonvolatile
compounds define the taste of coffee and are composed of caffeine, acids, phenolic com-
pounds, sugars, and many other substances [46]. The insoluble molecules affect the body
and foam of coffee and are composed of proteins, polysaccharides, lipids, melanoidins, and
many other molecules [46]. The main characteristics of green coffee beans depend on the
origin, location, and climate where coffee is cultivated (altitude, land composition, and
temperature) and the processing method of each coffee variety.

The coffee beans are seeds of trees belonging to the botanical family Rubiaceae, genus
Coffea. Currently, there are around 100 coffee species within the genus Coffea [47]; however,
only two of them are widely cultivated and commercialized on a large scale: the arabica
coffee (Coffea Arabica) and the robusta coffee (Coffea Canephora), representing the 58.61%
and the 41.39% of the coffee cultivated and commercialized worldwide [48].

These two coffee species are very different. Arabica is cultivated on the slopes of
mountains at high altitudes, mainly in Eastern Africa and Central and South America, and
its beans have a sweet and delicate flavor, with an average of 0.9–1.4% of caffeine [46].
Alternatively, robusta is cultivated on lower altitudes, mainly in West Africa and South-
East Asia, because it is resistant to hot and humid tropical climates, and its beans have a
strong flavor with around 1.5–2.6% of caffeine [46]. Belitz et al. [46] reported that of the
850 volatile compounds identified in the aroma of coffee, only 40 contribute to generating
the characteristic aroma of coffee.

In general, any commercialized coffee beverage type is composed of a mixture of
arabica and robusta beans from different origins. This mixture is usually strictly supervised
in order to maintain the characteristic aroma profile and coffee intensity of a commercial
coffee type. The coffee beans can be processed to significantly reduce their caffeine content,
allowing the simultaneous commercialization of the same coffee mixture type in caffeinated
and decaffeinated versions. In general, the decaffeination processes are usually applied to
arabica rather than robusta because arabica has lower initial caffeine content and requires
less processing [49].

3. Materials and Methods

The materials and methods used in this paper are an eNose-based coffee measurement
setup, one selected caffeinated and decaffeinated encapsulated espresso coffee type, one
semiautomatic coffee machine, the mineral water used to brew the coffee, the procedure
for espresso coffee brewing and aroma measurement, and the linear discriminant analysis
(LDA) method applied for dimensional reduction and classification.

3.1. eNose-Based Coffee Measurement Setup

Figure 1 shows two images of the eNose-based coffee measurement setup used in this
paper to discriminate between encapsulated caffeinated and decaffeinated espresso coffee.
The measurement setup (Figure 1a) consists of a support structure and the Osmee One
eNose composed of an array of 16 single-type (identical) metal–oxide semiconductor (MOX)
gas sensors embedded as a microelectromechanical system (MEMS) in the commercially
available BME680 sensor device (Bosch Sensortec, Reutlingen, Germany). The parameter
used to modulate the array is the working temperature of the 16 different sensors. As
reported in Table 5 of the previous publication [16], the targeted heating temperature is
varied from 200 ◦C to 400 ◦C. This eNose was designed with 16 sensors in order to be
suitable in size for the intended applications. The support structure is 3D printed with
polylactic acid (PLA), with the shape of a circular pipe with a variable section. The lower
part of the pipe is laid on the ground and has the widest circular section in order to allow
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a cup to be placed inside. The upper part of the pipe has the minimum circular section
in order to hold the MOX gas sensors of the electronic board of the eNose inside the pipe
(Figure 1b) and in close contact with the coffee aromas. The lower part of the support
structure has an aperture to slide a cup of espresso coffee inside the pipe. This lower part
also has a set of holes to allow the generation of natural convection and the circulation of
the coffee aroma inside the pipe.
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Figure 1. (a) Image of the coffee measurement setup while measuring the aroma generated by a
cup of espresso coffee. (b) Detail of the Osmee One eNose placed inside and on top of the aroma
concentration pipe (only the 16 MOX gas sensors of the eNose are housed inside the pipe).

3.2. Caffeinated and Decaffeinated Encapsulated Espresso Coffee Type

The caffeinated and decaffeinated encapsulated espresso coffee types analyzed in
this work are Volluto and Volluto Decaffeinato. These two encapsulated espresso coffee
types are manufactured by Nespresso (Nestlé Nespresso, Lausanne, Switzerland) using a
proprietary single-dose sealed aluminum capsule that has the advantage of preserving the
freshness and aromas of the ground coffee [50].

Table 1 summarizes the main features of the Volluto and Volluto Decaffeinato types.
In both cases, the coffee specie is arabica, but their specific aromatic profile and notes
result from a mixture sourced from different locations and roasting processes. The intensity
of each type is quantified with a scale ranging from 1 to 13, and the acidity, bitterness,
and roast level are quantified using scales from 1 to 5. According to the manufacturer,
the features that define the intensity of a coffee are its body, bitterness, and the degree
of roasting, which are strongly related to the origin and type of beans used in the coffee
mixture. The coffee intensity is also dependent on the concentration of the coffee, and it
does not refer to the amount of caffeine it has.

Table 1 also provides an unverified estimation of the caffeine contained in each capsule,
which does not correspond to the caffeine extracted during the brewing, nor the caffeine
ingested. Then, according to the information shown in Table 1, the difference between these
two coffee types is the decaffeination process that has been applied during the manufactur-
ing of the Volluto Decaffeinato type. So, it must be expected that a generation of very similar
aromas during the brewing of these two coffee types will make discrimination difficult.
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Table 1. The main features of the analyzed encapsulated coffees. Values are per capsule.

Volluto Volluto Decaffeinato

Net weight (g) 4.9 4.9
Intensity (1–13 scale) 4 4

Recommended cup (ml) 40 40–110
Aromatic profile Sweet and light Sweet and light

Aromatic notes
Cereal

Sweet biscuit
Fruity (fresh)

Cereal
Sweet biscuit
Fruity (fresh)

Acidity (1–5 scale) 3 3
Bitterness (1–5 scale) 2 2
Roast level (1–5 scale) 2 2

Estimated caffeine in capsule (mg) 64 1 1.7 1

Bean type (origin) Arabica (Brazil, Colombia) Arabica (Brazil, Colombia)
1 Unverified public information.

3.3. Coffee Machine

The semiautomatic coffee machine used in this paper is a brand-new Nespresso C40
Inissia coffee machine (Nestlé Nespresso, Lausanne, Switzerland). This machine brews
coffee from Nespresso aluminum capsules that contain roasted ground coffee mixtures.
This coffee machine is able to brew espresso (40 mL) or lungo (110 mL) coffee brews.
The capsules are inserted into the machine, and then they are pierced in order to inject
hot pressurized water through them and obtain the brewed coffee. According to the
manufacturer specifications, the brewing pressure is 19 MPa, and the temperature of the
extracted coffee at the coffee outlet is between 83 and 86 ◦C, although it might cool quickly if
the cup where it is brewed is cold. The recommended cup size of the coffee types analyzed
in this paper is espresso or 40 mL, which corresponds to the default espresso volume setting
already programmed in the coffee machine (standard preset espresso), which is selected
and automatically initiated by pressing a button on the coffee machine.

3.4. Natural Mineral Water

The water used to brew the coffee samples analyzed in this paper is the Font Boix
natural mineral water [51] manufactured by Aguas Minerales de Caldas de Bohi S.A (La
Vall de Boí, Crta. De Caldes, Km 18.5, 25528 Caldes de Boí, Lleida, Spain). This natural
mineral water comes from the Aigüestortes National Park, in the Catalan part of the
Pyrenees, at an altitude of 1500 m. The water has been provided in a set of 8 L bottles made
of transparent Polyethylene Terephthalate (PET) plastic, with a cap made of high-density
polyethylene (HDPE).

Navarini et al. [52] analyzed the effect of water composition on the quality of espresso
coffee beverages. In particular, they analyzed the interactions between water and coffee
components during the brewing process and discussed the role played by alkalinity and
selected cations on sensory properties. In general, about 98% of brewed coffee is water,
and the use of hard or saturated water prevents the correct extraction of the aromatic
components during the coffee brew.

Table 2 shows the chemical composition of the bottled water used in the experiments,
which was externally provided and certified by the laboratory of Dr. Oliver Rodés (c/de
les Moreres 21, 08820 El Prat de Llobregat, Barcelona, Spain). In our country, Spain, this
natural mineral water is classified as very low mineralized water, a category that can have
up to 50 mg/L of dry residue at 180 ◦C. Additionally, the amounts of calcium (6.8 mg/L)
and magnesium (0.7 mg/L) in this water generate a permanent total hardness of 19.9 mg/L
(or ppm) of calcium carbonate (CaCO3), allowing its classification as soft water (range up
to 60 mg/L of CaCO3).
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Table 2. Chemical composition of the bottled water used in the brewing experiments.

Description Concentration (mg/L)

Dry residue at 180 ◦C 40.0
Bicarbonate (HCO3) 26.0

Sulfate (SO4) 2.6
Chloride (Cl) 3.0
Calcium (Ca) 6.8

Magnesium (Mg) 0.7
Sodium (Na) 3.2
Silica (SiO2) 8.3

3.5. Procedure for Espresso Coffee Brewing Aroma Measurement

The complete procedure used in this paper for espresso coffee brewing aroma mea-
surement has 17 steps:

1. Insert the eNose in the coffee measurement setup;
2. Power the eNose with an external power supply for at least 12 h in order to guarantee

that the MOX gas sensors are at their ideal working temperature;
3. Connect the eNose to a computer using a USB connection in order to record the data

gathered during the experiment;
4. Revise the level of the water tank of the coffee machine, refill if necessary;
5. Turn on the coffee machine (the coffee machine reaches the operating temperature

after approximately one minute);
6. Place an espresso-sized glass cup on the cup tray of the coffee machine;
7. Insert the coffee capsule into the coffee machine;
8. Initiate the registering of the data provided by the eNose;
9. Press the espresso button of the coffee machine, and when the water reaches the

correct temperature, the espresso coffee is brewed;
10. Remove the cup of coffee without sudden movements from the cup tray of the coffee

machine and place it inside the coffee measurement setup;
11. Continue registering the data provided by the eNose for another 10 min from the

insertion of the cup inside the coffee measurement setup;
12. After these 10 min, stop the recording of data;
13. Weigh the coffee cup of coffee with a precision scale;
14. Rinse the cup with tap water and dry it with a single-use paper cloth;
15. Remove the used capsule from the coffee machine and prepare to recycle it;
16. If this is the last experiment of a planned sequence, or if the next experiment will brew

a different coffee type, brew espresso without a capsule (with only water) to clean the
coffee machine, pull up the lever, and rinse the drip tray and the capsule container
with tap water;

17. Ventilate the room for at least 10 min.

During the brewing of the coffee cups performed in this paper, the amount of water
used to make an espresso coffee was 49.73 g with a standard deviation of ±0.34 g, and
the mean temperature of the water measured after coffee extraction was 72.76 ◦C with a
standard deviation of ±0.41 ◦C.

3.6. Linear Discriminant Analysis (LDA)

The linear discriminant analysis (LDA) [53] is a supervised statistical method for
dimensionality reduction that computes the eigenvectors and the covariance matrix of a
set of data. The LDA procedure assumes that the different classes included in the set of
data are based on different Gaussian distributions and looks for linear combinations of the
features that best explain the classes of data while maximizing the variance and separation
between them. The result of the computation of the LDA is a projection that reduces the
dimensionality of the data. The discriminant analysis part of the LDA procedure also



Chemosensors 2022, 10, 421 7 of 21

predicts the class of a new sample by computing its proximity to the centroid of the original
classes evaluated in the projected space [54].

4. eNose Data
4.1. Example Espresso Volluto and Volluto Decaffeinato eNose Measurements

Figure 2a,b show the typical profile of the raw resistance measured by the 16 MOX gas
sensors of the eNose exposed to the complex aromas generated by brewed coffee. The MOX
gas sensors used by the Osmee One eNose are embedded into a digital sensor that directly
provides a measurement of the resistance of the thin layer of the MOX gas sensors, so each
time-point depicted in Figure 2 is a digital value representing the resistance of the thin
layer of one of the 16 MOX gas sensors obtained after completing one measurement [16].
The evolution of the digital profiles displayed in Figure 2 is similar to the profiles obtained
when using analog MOX gas sensors [55].
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Figure 2a shows the resistance of the thin layers of the 16 MOX gas sensors of the
eNose in one measurement experiment performed with a cup of Volluto espresso coffee and
Figure 2b in one measurement experiment performed with a cup of Volluto Decaffeinato
espresso coffee. The profile displayed in Figure 2 shows that the resistance of the MOX gas
sensors suddenly drops when a cup of coffee is inserted into the coffee measurement setup.
The areas highlighted in Figure 2 correspond to the eNose measuring AIR (before inserting
the cup of coffee) and the eNose measuring the SAMPLE of coffee. At this moment, the
AIR and SAMPLE areas are manually selected and used to create reference training and
validation datasets.

4.2. Creation of a Training Dataset for Air, Hot Water, and Caffeinated and Decaffeinated Coffee

The use of an eNose to discriminate different volatiles or aromas require the creation
of a training dataset. In this paper, the training dataset is proposed to lately discriminate
the aromas of brewed Volluto and Volluto Decaffeinato espresso coffee varieties, as well
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as air and hot water. The creation of this training dataset is based on the information
gathered in 17 measurements with the coffee measurement setup. The experiments have
been conducted on alternate days and at alternate scheduling times in order to obtain
representative information on the influence of the ambient conditions in the measurements.
The training dataset is composed of the following:

• The results of eight experiments in which the eNose was exposed to the aroma of
Volluto espresso brewed coffee. In each measurement, the areas of AIR and SAMPLE
have been manually selected (see Figure 2a) and then subsampled in order to limit the
number of samples available in each selection to 30 data points (or raw resistance vec-
tors). In summary, these experiments have generated eight clusters of AIR containing
30 data points per cluster (with a total of 240 AIR data points) and eight clusters of
VOLLUTO coffee containing 30 data points per cluster (with a total of 240 VOLLUTO
data points);

• The results of eight experiments in which the eNose was exposed to the aroma of Vol-
luto Decaffeinato espresso brewed coffee. In each measurement, the areas of AIR and
SAMPLE have been manually selected (see Figure 2b) and then subsampled in order
to limit the number of samples to 30 data points. In summary, these experiments have
generated eight additional clusters of AIR containing 30 data points per cluster (with
a total of 240 additional AIR data points) and eight clusters of VOLLUTO DECAF-
FEINATO coffee containing 30 data points per cluster (with a total of 240 VOLLUTO
DECAFFEINATO data points);

• The result of one long measurement experiment in which the eNose was exposed to
the vapor generated by a cup filled with only hot water for 15 min. Hot water has
been obtained from the coffee machine brewing an espresso without any capsule of
coffee in the machine. In this measurement, a long SAMPLE area has been manually
selected and then subsampled in order to limit the number of samples to 240 data
points. In summary, this experiment generated one cluster of HOT WATER containing
240 data points.

Finally, Figure 3 compares two different eNose measures of the classes AIR, HOT
WATER, VOLLUTO, and VOLLUTO DECAFFEINATO. Figure 3 shows the comparative
evolution of some normalized samples of the resistance of the thin layer of the 16 MOX gas
sensors. Each individual data sample is scaled from 0.0 (minimum resistance measured in
the sample) to 1.0 (maximum resistance measured in the sample). In previous works [16],
this normalized representation of the information provided by the eNose revealed common
patterns that allowed the discrimination of isolated volatiles. However, in this applica-
tion case with complex coffee aromas, this normalized representation reveals substantial
differences between the aroma of the VOLLUTO clusters (V-1 and V-2) and also strong
differences between the aroma of the VOLLUTO DECAFFEINATO clusters (VD-1 and
VD-2). In fact, according to this normalized representation, the maximum visual similarities
are between the aromas of the two different coffee classes, V-1 and VD-1 and V-2 and VD-2,
anticipating that the discrimination between coffee and air or hot water will be simple
and that the discrimination between decaffeinated and caffeinated coffee type will pose
more difficulty.
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Figure 3. Normalized representation of the evolution of some samples of the resistance of the thin
layer of the 16 MOX gas sensors measured with the eNose. Each sample is scaled from 0.0 (minimum
resistance measured in the sample) to 1.0 (maximum resistance measured in the sample). Each MOX
gas sensor is identified with a unique color. Two random clusters of each class included in the training
dataset are represented: A-1 and A-2 are AIR clusters, W-1 and W-2 are HOT WATER clusters, V-1
and V-2 are VOLLUTO clusters, and VD-1 and VD-2 are VOLLUTO DECAFFEINATO clusters.

4.3. Creation of a Validation Dataset for Caffeinated and Decaffeinated Coffee Discrimination

The dataset used in this paper to validate the performance of the classifiers has been
obtained by performing 10 new measurement experiments with Volluto and Volluto Decaf-
feinato brewed espresso coffees using the coffee measurement setup. These experiments
have also been conducted on alternating days and different scheduling times to assess
the classifier in different sensor drift and ambient conditions. The validation dataset is
composed of the following:

• The results of five experiments measuring the aroma of Volluto espresso brewed coffee.
In each measurement, the representative SAMPLE section has been manually selected
(see Figure 2a) and then subsampled in order to limit the number of samples to 30 data
points (or raw resistance vectors). In summary, these experiments have generated five
clusters of VOLLUTO (caffeinated coffee) containing 30 data points per cluster (with a
total of 150 VOLLUTO data points);

• The results of five experiments measuring the aroma of Volluto Decaffeinato espresso
brewed coffee. In each measurement, the representative SAMPLE section has been
manually selected (see Figure 2b) and then subsampled in order to limit the number of
samples to 30 data points. In summary, these experiments have generated five clusters
of VOLLUTO DECAFFEINATO (decaffeinated coffee) containing 30 data points per
cluster (with a total of 150 VOLLUTO DECAFFEINATO data points).

5. eNose Aroma Classification Based on LDA

This section describes the different strategies followed in computing the LDA projec-
tion based on the class information included in the training dataset. The LDA projection
looks for a linear combination of the original information provided by the MOX gas sen-
sors of the eNose that maximizes the variance and separation between the clusters. In
previous works [16,19,20] dealing with simple volatile compounds, the projection per-
formance of PCA and LDA were exhaustively described and compared, but in this case,
focused on the discrimination of the complex aromas of the coffee, the LDA yields better
classification results.

5.1. LDA Projection Computed for AIR, HOT WATER, and COFFEE Classes

Figure 4 shows the LDA projection computed in the case of defining three target
classes: AIR, HOT WATER, and COFFEE (grouping the VOLLUTO and VOLLUTO DE-
CAFFEINATO original training classes). Figure 4 shows the best LDA projection results
that have been obtained when processing the information of the training dataset using the
raw resistance as a feature. The labels LD1 and LD2 represent the direction of maximal
variance and better separation obtained with the LDA projection. Figure 4 includes in the
background the colored 2D class map representation (presented in [20]), which is obtained
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by defining a 2D grid in the 2D space defined by the LD1 and LD2 axis and by classifying
each point of the grid with the discriminant part of the LDA procedure. The boundaries
defined in the class maps of the LDA are straight because the discriminant analysis uses
the centroid of the clusters for classification. Table 3 shows the statistics obtained with the
LDA classification of the training dataset in which all data points have been successfully
classified. The value of the LDA projection matrix and the centroids generated to create the
2D class map are provided in Appendix A as Equation (A2) and Table A1.
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Figure 4. LDA projection computed from the training dataset to discriminate AIR, HOT WATER, and
COFEE obtained when processing the information from the training dataset as raw resistance.

Table 3. Statistics of the classification results shown in Figure 4 obtained with the training dataset
classified with the LDA computed to discriminate between AIR, HOT WATER, and COFFEE classes.

Classified As True Positives (%) False Positives (%) True Negatives (%) False Negatives (%)

AIR 100 0 100 0
HOT WATER 100 0 100 0

COFFEE (VOLLUTO) 100 0 100 0
COFFEE (VOLLUTO

DECAFFEINATO) 100 0 100 0

The advantage of this LDA projection is that it allows the automatic discrimination
between AIR and COFFEE, so there is no need for a triggering strategy to specifically start
a coffee aroma measurement. At this point, the HOT WATER class was just proposed as
a complementary test class to evaluate the sensitivity of the eNose with hot air saturated
with humidity in order to ensure that the eNose is detecting the aroma of the coffees and
not only the effects of hot temperature and high humidity. In practice, the discrimination
between HOT WATER and COFFEE is a classification feature that can be used to detect
situations where an automatic brewing coffee machine has run out of ground coffee or
coffee is not being poured into the cup because of a mechanical malfunction.

5.2. LDA Projection for AIR, HOT WATER, VOLLUTO, and VOLLUTO DECAF Classes

Figure 5 shows the alternative LDA projection computed in the case of using the
four original classes: AIR, HOT WATER, VOLLUTO, and VOLLUTO DECAFFEINATO.
Figure 5 shows the best projection results that have also been obtained when processing
the information of the training dataset as raw resistance. Figure 5 also includes a colored
2D class map representation [20]. Table 4 shows the statistics obtained with the LDA
classification of the training dataset in which the data points of VOLLUTO and VOLLUTO
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DECAFFEINATO have not been successfully classified, probably because of the similarities
between the aroma of these two coffee types and the influence of the information from the
other classes in the LDA computation.
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Figure 5. LDA projection computed from the training dataset to discriminate AIR, HOT WATER,
VOLLUTO, and VOLLUTO DECAFFEINATO, obtained when processing the information from the
training dataset as raw resistance.

Table 4. Statistics of the classification results shown in Figure 5 obtained with the training dataset clas-
sified with the LDA trained to discriminate between AIR, HOT WATER, VOLLUTO, and VOLLUTO
DECAFFEINATO classes.

Classified As True Positives (%) False Positives (%) True Negatives (%) False Negatives (%)

AIR 100 0 100 0
HOT WATER 100 0 100 0

VOLLUTO 97.91 0.41 99.58 2.08
VOLLUTO DECAF 98.75 0.69 99.30 1.25

5.3. LDA Projection Computed for VOLLUTO and VOLLUTO DECAF Classes

Figure 6 shows the LDA projection computed specifically to discriminate the aromas of
the classes of VOLLUTO and VOLLUTO DECAFFEINATO. Figure 6 shows the projection
results obtained when processing the information of the training dataset as raw resistance
and a colored 2D class map representation of the classification [20]. Table 5 shows the
statistics obtained with this LDA classification applied to the training dataset which, in
this case, has been able to successfully discriminate between VOLLUTO and VOLLUTO
DECAFFEINATO coffee varieties. The value of the LDA projection matrix and the centroids
used are provided in Appendix A as Equation (A3) and Table A2.
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Figure 6. LDA projection trained to discriminate VOLLUTO and VOLLUTO DECAFFEINATO,
obtained when processing the information from the training dataset as raw resistance.

Table 5. Statistics of the classification results shown in Figure 6 obtained with LDA trained to
discriminate between VOLLUTO and VOLLUTO DECAFFEINATO classes.

Classified As True Positives (%) False Positives (%) True Negatives (%) False Negatives (%)

VOLLUTO 100 0 100 0
VOLLUTO DECAF 100 0 100 0

6. Validation Experiments

This section validates the different LDA projections proposed in the previous section
to classify the caffeinated and decaffeinated (Volluto and Volluto Decaffeinato) espresso
coffee varieties.

6.1. Validation of the Classification of AIR, HOT WATER, and COFFEE

This section shows the classification of the validation dataset using the LDA projection
computed previously to differentiate between three classes (described in Figure 4) of AIR,
HOT WATER, and COFFEE (without discriminating between caffeinated or decaffeinated
coffee). Figure 7 shows the classification class map for these three classes in the background
of the figure and the projection of all the validation data points (caffeinated and decaf-
feinated) that have been classified successfully as COFFEE samples and represented with a
brown circular point. Table 6 summarizes the statistics of this classification, showing that
the proposed classifier does not confuse the coffee samples with hot water.
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Figure 7. Representation of the classification results obtained when projecting the validation dataset
using the LDA trained to discriminate between AIR, HOT WATER, and COFFEE (described in
Figure 4). The validation dataset has been processed as raw resistance.

Table 6. Statistics of the classification results shown in Figure 7 obtained with the LDA trained to
discriminate between AIR, HOT WATER, and COFFE classes.

Classified As True Positives (%) False Positives (%) True Negatives (%) False Negatives (%)

COFFEE (VOLLUTO) 100 0 100 0
COFFEE (VOLLUTO

DECAFFEINATO) 100 0 100 0

Case Example of a Complete Classification Result

This section shows, as a case example, the classification of a complete transitory
measurement. Figure 8a shows the evolution of a complete raw transitory resistance
provided by the eNose exposed to the aromas of Volluto Decaffeinato brewed espresso
coffee. The transitory has been manually divided into four sections: VD-S1 when the eNose
is measuring air, VD-S2 when the cup is inserted in the measurement setup, VD-S3 when
the information provided by the eNose is stable, and VD-S4 when the cup starts to cool. In
each section, the raw resistance information provided by the 16 MOX gas sensors of the
eNose has been colored with an identifying color. Figure 8b shows the classification results
of the transitory using the LDA projection computed previously to differentiate between
three classes (see Figure 4) of AIR, HOT WATER, and COFFEE.

Figure 9 shows the details of the classification; the initial section, VD-S1, has been
successfully classified as AIR; the second section, VD-S2, obtained when inserting the cup
in the measurement setup, has been classified as AIR for a brief period of time before being
correctly classified as COFEE; the third steady-state section, VD-S3, has been successfully
classified as COFFEE and its projection surrounds the centroid of the COFEE class; the final
fourth section, VD-S4, is already classified as COFFEE although the projection is moving
in the direction of the air zone. In conclusion, the presence of the aroma of the coffee
is successfully detected shortly after the insertion of the cup in the measurement setup,
revealing the high sensitivity of the MOX gas sensors of the eNose to the coffee aromas.
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Figure 8. (a) Raw transitory resistance measured when the eNose is exposed to Volluto Decaffeinato
espresso coffee. Four sections have been manually labeled as VD-S1 (blue) as the air section, VD-SD
(yellow) as a decay transition section, VD-S3 (brown) as a stable or steady-state coffee section, and
VD-S4 (green) as a final cooling section. (b) Classification results.
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Figure 9. Representation of the projection of the raw transitory resistance response displayed in
Figure 8a obtained with the aromas of Volluto Decaffeinato espresso coffee. The LDA projection
(described in Figure 4) was trained to discriminate three classes AIR, HOT WATER, and COFFEE.
The transitory has been processed as raw resistance.

6.2. Validation of the Classification of AIR, HOT WATER, VOLLUTO, and VOLLUTO DEC

This section shows the classification of the validation dataset using the LDA projec-
tion computed previously to differentiate between four classes (described in Figure 5) of
AIR, HOT WATER, VOLLUTO, and VOLLUTO DECAFFEINATO. Figure 10 shows the
classification class map for these four classes in the background of the figure and the pro-
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jection of the validation data points labeled with a unique color in case of being classified
successfully and with a different inner (classification class) and outer (real class) color in
case of misclassification.

Chemosensors 2022, 10, x FOR PEER REVIEW 15 of 21 
 

 

successfully and with a different inner (classification class) and outer (real class) color in 

case of misclassification. 

Figure 10 shows that this LDA projection is not able to successfully discriminate be-

tween caffeinated and decaffeinated coffee types, probably because of crossed effects with 

air and hot water in the LDA computation rather than the presumably similar Gaussian 

distribution of the caffeinated and decaffeinated coffee types. Finally, Table 7 summarizes 

the statistics of this classification. 

 

Figure 10. Representation of the classification results obtained when projecting the validation da-

taset using the LDA trained to discriminate between AIR, HOT WATER, VOLLUTO, and 

VOLLUTO DECAFFEINATO (described in Figure 5). The validation dataset has been processed as 

raw resistance. 

Table 7. Statistics of the classification results shown in Figure 10 obtained with the LDA trained to 

discriminate between AIR, HOT WATER, VOLLUTO, and VOLLUTO DECAFFEINATO classes. 

Classified As True Positives (%) False Positives (%) True Negatives (%) False Negatives (%) 

VOLLUTO 98.00 17.33 82.66 2 

VOLLUTO DECAF 82.66 2 98.00 17.33 

6.3. Validation of the Classification of VOLLUTO and VOLLUTO DECAFFEINATO 

This section shows the final classification of the validation dataset using the LDA 

projection computed to differentiate between the two coffee types (described in Figure 6) 

of VOLLUTO and VOLLUTO DECAFFEINATO (or caffeinated and decaffeinated coffee). 

Figure 11a,b represents the class map generated with this two-class LDA projection in the 

background of the figure. The projection of the validation data points is labeled with a 

unique color in cases being successfully classified and with a different inner (classification 

class) and outer (real class) color in case of misclassification. 

Figure 11a shows the projection of the 150 data points representing the caffeinated 

coffee type and 150 data points of the decaffeinated coffee type. In this case, three samples 

of caffeinated coffee have been misclassified as decaffeinated. This misclassification effect 

is caused by the discriminant analysis of the LDA procedure, which is based on represent-

ing the classes with a centroid, so the boundaries between classes are always summarized 

with a line that, in this case, is not able to fully successfully classify the concave distribu-

Figure 10. Representation of the classification results obtained when projecting the validation dataset
using the LDA trained to discriminate between AIR, HOT WATER, VOLLUTO, and VOLLUTO
DECAFFEINATO (described in Figure 5). The validation dataset has been processed as raw resistance.

Figure 10 shows that this LDA projection is not able to successfully discriminate
between caffeinated and decaffeinated coffee types, probably because of crossed effects
with air and hot water in the LDA computation rather than the presumably similar Gaussian
distribution of the caffeinated and decaffeinated coffee types. Finally, Table 7 summarizes
the statistics of this classification.

Table 7. Statistics of the classification results shown in Figure 10 obtained with the LDA trained to
discriminate between AIR, HOT WATER, VOLLUTO, and VOLLUTO DECAFFEINATO classes.

Classified As True Positives (%) False Positives (%) True Negatives (%) False Negatives (%)

VOLLUTO 98.00 17.33 82.66 2
VOLLUTO DECAF 82.66 2 98.00 17.33

6.3. Validation of the Classification of VOLLUTO and VOLLUTO DECAFFEINATO

This section shows the final classification of the validation dataset using the LDA
projection computed to differentiate between the two coffee types (described in Figure 6)
of VOLLUTO and VOLLUTO DECAFFEINATO (or caffeinated and decaffeinated coffee).
Figure 11a,b represents the class map generated with this two-class LDA projection in the
background of the figure. The projection of the validation data points is labeled with a
unique color in cases being successfully classified and with a different inner (classification
class) and outer (real class) color in case of misclassification.
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Figure 11. Representation of the classification results obtained when projecting the validation
dataset using the LDA trained to discriminate between VOLLUTO and VOLLUTO DECAFFEINATO
(described in Figure 6): (a) projection of the 150 data points of the five clusters of Volluto and the 150
data points of the five clusters of Volluto Decaffeinato; (b) projection of the average values of the five
clusters of Volluto and the five clusters of Volluto Decaffeinato.

Figure 11a shows the projection of the 150 data points representing the caffeinated
coffee type and 150 data points of the decaffeinated coffee type. In this case, three samples
of caffeinated coffee have been misclassified as decaffeinated. This misclassification effect is
caused by the discriminant analysis of the LDA procedure, which is based on representing
the classes with a centroid, so the boundaries between classes are always summarized with
a line that, in this case, is not able to fully successfully classify the concave distribution of
the Volluto Decaffeinato data points. Table 8 summarizes the statistics of the classification
displayed in Figure 11a that successfully classified 99% of the validation data points.

Table 8. Statistics of the classification results displayed in Figure 11a obtained with the LDA trained
to discriminate between VOLLUTO and VOLLUTO DECAFFEINATO classes.

Classified As True Positives (%) False Positives (%) True Negatives (%) False Negatives (%)

VOLLUTO 100 2 98 0
VOLLUTO DECAF 98 0 100 2

Alternatively, Figure 11b shows that the misclassification effect can be avoided by av-
eraging the clusters included in the validation dataset. Then, each validation measurement
composed of the original 30 data points is summarized in only one average data point:
five average data points are used to represent the caffeinated coffee and five to represent
the decaffeinated coffee. These average data points are listed in Tables A3 and A4 in the
Appendix of this paper. Finally, Table 9 shows the statistics of the classification displayed
in Figure 11b, which was able to successfully discriminate between caffeinated and decaf-
feinated coffee types because the use of one average value to represent a measurement has
the effect of reducing the variance of the data measured.
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Table 9. Statistics of the classification results displayed in Figure 11b obtained with the average
values of the clusters of the validation dataset classified with the LDA trained to discriminate between
VOLLUTO and VOLLUTO DECAFFEINATO classes.

Classified As True Positives (%) False Positives (%) True Negatives (%) False Negatives (%)

VOLLUTO 100 0 100 0
VOLLUTO DECAF 100 0 100 0

7. Discussion and Conclusions

This paper has assessed the performance of a single-type electronic nose design applied
to differentiate between the complex aromas of caffeinated and decaffeinated espresso
coffee varieties. The eNose used in this paper is composed of 16 single-type (identical)
metal–oxide semiconductor (MOX) gas sensors embedded as a microelectromechanical
system (MEMS) in a versatile digital sensor. The hypothesis explored with this eNose is
that the small but inherent variability of MOX gas sensors can be exploited to provide the
multisensorial description required to identify a volatile or aroma. In previous works, this
eNose was assessed with different single volatile compounds, and in this paper, this eNose
has been first exposed to the chemistry of a complex coffee aroma, composed of more than
850 mixed volatile compounds, although it is known that the characteristic aroma of coffee
is dominated by fewer compounds [46].

This paper has assessed the discrimination of the aromas of a caffeinated and de-
caffeinated Volluto and Volluto Decaffeinato encapsulated espresso coffee variety manu-
factured by Nespresso. The use of a single-dose sealed aluminum encapsulated ground
coffee has the advantage of preserving the constant freshness and aroma of the coffee [50].
These two coffee types are based on the arabica specie and are almost identical, the only
difference being their caffeine content. The caffeine is not a volatile, so it should not affect
the aroma of the brewed coffee, but the coffee aroma can be affected by the procedure used
to extract the caffeine from the beans, which can affect the formation of other volatiles
during the brewing [42]. Discriminating between caffeinated and decaffeinated coffee has
so far been approached using expensive laboratory equipment [31–33], so analyzing the
complex aromas of brewed coffee has been considered an ideal, challenging application for
the low-cost Osmee One eNose.

The aroma measurement experiments conducted in this paper have been performed in
a controlled environment [21] using a specific measurement setup to facilitate the circulation
of the aromas of the brewed coffee around the eNose. The raw resistance data gathered by
the eNose have been analyzed with LDA because the achieved supervised dimensional
reduction maximizes the variance and separation between the analyzed classes.

In this application with complex coffee aromas, the use of the raw resistance of
the MOX gas sensors as a classification feature has provided better classification results
than the use of the raw resistance normalized according to the resistance of reference air
samples. This is probably because all the MOX gas sensors are of the same type, so the
homogenization of their resistance has no effect on the classification. The evolution of
the aroma profiles gathered during the brewed coffee experimentation has shown that
exposing the eNose to the coffee aromas causes a significant drop in the MOX gas sensors,
followed by a characteristic stable zone, which has been used to identify the aroma of
each experiment.

Different LDA projections have been computed using a training dataset and validated
using an additional validation dataset. The LDA projection trained to discriminate be-
tween AIR, HOT WATER, and COFFEE has proven that the eNose is able to differentiate
the humidity generated by hot water from the aroma of coffee samples. This LDA pro-
jection provides feasible and logical projection trajectories when analyzing its complete
transitory evolution. The LDA projection trained to discriminate between AIR, HOT WA-
TER, VOLLUTO, and VOLLUTO DECAFFEINATO has shown some difficulties in the
discrimination of the caffeinated and decaffeinated aromas, probably because the effort
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required to model the air and hot water hides some differences between the caffeinated and
decaffeinated aromas. Finally, the LDA projection computed to discriminate between VOL-
LUTO and VOLLUTO DECAFFEINATO has yielded a superior validation classification
performance—100% for the caffeinated coffee data points and 98% for the decaffeinated
coffee data points, although this classification rises to 100% when classifying the average
value of one measurement instead of classifying sequentially all the points obtained during
a measurement.

The conclusion of this paper is that an eNose composed of single-type MOX gas
sensors is able to differentiate the aromas of caffeinated and decaffeinated encapsulated
espresso coffee types. This conclusion agrees with Zou et al. [33], who also discriminated
between caffeinated and decaffeinated coffee from the volatile point of view using gas
chromatography techniques. According to the results obtained, a practical application
of the Osmee One eNose in the detection of caffeinated and decaffeinated encapsulated
espresso coffee types first applied an LDA dimensional reduction optimized to differentiate
between coffee aroma, air, and hot water, and second, in case of detecting a coffee aroma,
to discriminate between caffeinated and decaffeinated coffee varieties. The first LDA
projection can have a direct application in detecting machine malfunctions in automatic
brewing machines. The second LDA projection computes a dimensional reduction that is
able to successfully discriminate caffeinated and decaffeinated coffee types, although the
training data used to compute the dimensional reduction performed by the LDA need to
be as representative as possible of the variability of the response of the eNose in different
temperature and humidity conditions.

In future work, this low-cost eNose will be deployed either as a fixed net of multiple
sensors or embedded in autonomous omnidirectional mobile robots in order to compare its
dynamic and static gas and odor detection performances in a large building.
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Appendix A

This Appendix contains the projection matrix of the different LDA analyses computed
in this paper. The LDA transformation applied to an individual data sample provided by
the eNose, composed of the resistance of the thin layer of the 16 MOX gas sensors of the
eNose (S1 . . . S16), is computed using:

ProjectedData = S1,...,16 x ω (A1)

The LDA projection matrix, ω, computed in Section 5.1 to discriminate between AIR,
HOT WATER, and COFFEE is:

ω =



0.0096 0.0845 0.0023 −0.2148 0.1150 0.0861 −0.0018 −0.0304 −0.0082 −0.0116 −0.0700 0.0207 −0.1651 0.0319 −0.0410 −0.0210
0.1216 0.0242 0.0562 0.2325 −0.0428 0.1278 −0.0134 0.0117 −0.0285 0.0288 −0.0150 0.0133 −0.0161 −0.0797 0.1643 0.1755
−0.0014 0.0345 −0.1206 −0.0321 −0.0888 −0.1143 0.0286 0.0965 0.0024 0.0650 0.0493 −0.0110 0.0023 0.0696 −0.0912 −0.0096
−0.2409 −0.4329 0.3171 0.0377 0.2240 0.0960 0.0720 −0.1293 −0.0010 −0.0501 −0.0557 −0.1102 0.3032 −0.0424 −0.0280 −0.2036
0.0108 0.2421 −0.0803 0.0418 0.1502 −0.3436 −0.1025 −0.1547 0.0056 −0.0483 0.0493 −0.4306 −0.0149 −0.0379 0.2581 −0.0229
−0.1186 −0.0289 0.2857 0.0498 0.0861 −0.1939 0.0283 0.1163 0.0797 0.0063 0.0922 0.4608 0.0166 0.0577 −0.1593 0.0273
0.1312 −0.1032 −0.0438 −0.0226 −0.0107 0.1998 −0.1544 −0.0765 −0.0093 −0.0478 −0.0520 −0.0179 0.0935 0.1451 −0.0411 −0.1023
−0.0380 −0.0096 −0.2019 −0.1000 −0.2662 0.0870 0.1886 −0.0347 −0.0098 0.0082 −0.0129 0.1899 −0.2199 −0.2052 0.0978 −0.0587
−0.0365 0.0826 0.2286 −0.0519 −0.0304 0.0456 0.0171 0.0833 0.0359 0.0289 0.0769 0.1496 −0.0218 0.1089 −0.0306 0.0560
−0.1057 0.2679 0.2679 0.0393 0.0393 −0.0395 −0.0272 −0.0828 0.0119 −0.0669 −0.0363 −0.0414 −0.0721 −0.2859 −0.2367 −0.1121
−0.0935 −0.2307 −0.2031 −0.1661 0.1482 0.0508 −0.1344 0.0207 0.0374 0.0183 0.0769 −0.1217 0.0400 −0.0901 0.1105 0.3471
0.0067 0.0627 0.1399 −0.0005 −0.2185 −0.0096 0.0867 0.0280 0.0147 0.0004 −0.0762 −0.0517 0.0527 0.1935 −0.0470 0.0262
0.0864 −0.0278 −0.0214 −0.0124 −0.0184 −0.0239 0.0035 0.0086 −0.0133 0.0058 −0.0250 0.0558 0.1000 −0.0982 0.0662 −0.0856
−0.0270 0.0211 0.0257 0.0015 −0.0709 0.0079 0.0086 −0.0512 −0.0124 −0.0340 −0.0188 −0.0263 0.0253 0.0161 −0.0898 0.1502
−0.0933 −0.0212 −0.1599 0.0896 0.1603 0.0724 0.0785 0.0293 0.0133 −0.0095 0.0170 0.0675 −0.0605 0.1181 0.0812 −0.0968
0.0265 0.0096 0.1024 −0.0885 −0.0028 −0.0537 −0.0379 0.0568 −0.0320 0.0424 0.0111 −0.0774 −0.0637 −0.0184 0.0449 −0.0878



× 10−3 (A2)

Complementarily, Table A1 provides the centroids computed by the LDA procedure
to discriminate the classes AIR, HOT WATER, and COFFEE.
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Table A1. Centroids for the discrimination of the classes AIR, HOT WATER, and COFFEE.

Class LD1 LD2

AIR 25.450 −26.118
HOT WATER 36.072 −2.437

COFFEE 3.452 −9.672

The LDA projection matrix, ω, computed in Section 5.2 to discriminate between
VOLLUTO and VOLLUTO DECAF is:

ω =



−0.2795 0.0558 0.3370 0.1614 −0.1059 0.0702 0.0417 0.0207 0.0311 −0.0244 0.1761 0.0922 0.1050 0.1594 0.0781 0.0495
0.3419 −0.1215 −0.1472 −0.1784 0.1954 −0.0284 0.2194 −0.0077 −0.0566 −0.0800 0.0742 −0.0881 −0.1667 −0.3686 −0.1334 −0.0726
−0.0232 0.0994 −0.3247 0.1320 0.1878 0.0597 −0.1064 −0.0093 0.0046 0.0224 −0.1632 −0.0091 0.0103 0.2283 0.1263 0.0944
−0.2700 −0.1534 0.6831 −0.2213 −0.9907 −0.1557 −0.1489 −0.2050 −0.0253 0.0620 0.1220 0.1615 0.1031 −0.4776 −0.3019 −0.3572
0.2012 0.0684 0.4793 −0.3784 0.0786 −0.3271 0.1463 0.0218 −0.0611 −0.0740 −0.0296 −0.1082 −0.4908 0.5345 0.5780 0.0450
−0.4031 −0.4528 −0.6795 0.1892 0.0984 0.0210 −0.2118 0.0548 0.0849 0.0141 0.0768 0.1405 −0.0074 −0.1512 −1.0733 −0.4009
0.1469 0.3253 −0.2121 −0.1110 −0.2236 −0.1026 −0.0883 0.0561 0.0562 −0.0085 0.0615 0.0967 0.5965 −0.3673 0.5024 0.3808
0.0392 −0.2692 0.4470 0.2575 0.1789 0.4565 0.1715 0.1125 −0.1259 0.0879 −0.1169 −0.3635 −0.3549 0.4123 −0.3139 −0.0972
−0.1728 −0.4556 −0.1133 0.3723 0.2469 −0.2890 0.0918 0.0124 0.0017 −0.0138 −0.1789 0.0465 0.3953 0.0319 −0.0357 −0.0239
0.2016 0.6073 0.1891 −0.6683 0.0916 0.2335 0.0863 0.0133 0.0090 −0.0670 0.0953 −0.0408 −0.0698 0.1070 −0.4176 0.0448
−0.4362 −0.3955 0.2153 0.0164 0.0661 −0.0258 −0.1548 −0.0173 0.0938 −0.0397 −0.0369 0.3075 −0.1869 −0.4217 0.1889 0.5365
0.1889 0.3674 −0.1949 0.3407 −0.1863 0.0743 −0.0619 −0.0354 0.0132 0.0296 −0.0012 −0.1126 −0.1949 0.0426 0.1517 −0.6513
0.0987 −0.2581 −0.0095 −0.1650 −0.0205 0.0638 −0.0236 −0.0231 −0.0114 0.0193 0.0228 −0.1707 −0.0158 −0.0278 −0.0738 −0.0716
−0.1200 0.2725 0.0998 0.1597 0.1020 −0.0589 −0.0466 0.0083 0.0099 0.0171 −0.0573 0.0772 −0.0132 −0.0671 0.0991 −0.0690
0.0504 0.1065 −0.1582 0.0168 −0.1413 0.0187 0.0588 −0.0066 −0.0194 0.0184 0.0677 −0.0063 −0.0013 0.0878 −0.1390 0.4010
0.0509 −0.2389 −0.0176 −0.0734 −0.0731 0.0228 0.0447 −0.0094 −0.0121 −0.0024 0.0356 0.0228 0.0221 0.0873 0.0852 −0.1676



× 10−3 (A3)

Complementarily, Table A2 provides the centroids computed by the LDA procedure
to discriminate the classes VOLLUTO and VOLLUTO DECAF. Finally, Tables A3 and A4
provide the average sensor values displayed in Figure 11b computed from the validation
dataset obtained when the eNose was exposed to five cups of Volluto coffee (Table A3) and
five cups of Volluto Decaffeinato coffee (Table A4).

Table A2. Centroids for the discrimination of the classes VOLLUTO and VOLLUTO DECAF.

Class LD1 LD2

VOLLUTO −23.583 −0.956
VOLLUTO DECAF −30.189 −0.956

Table A3. Average sensor values (raw resistance) computed in the five Volluto coffee experiments
used in the validation dataset (all sensor values in kΩ).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

V1 233.6197 272.9935 417.5866 134.1410 177.2392 143.5308 234.0895 150.4707 186.6248 169.7982 152.8316 163.2184 365.9558 505.9365 324.2241 340.1474
V2 222.1514 255.2601 385.6286 123.2908 151.4932 121.6720 195.8795 125.0791 144.7964 131.4272 119.3213 126.1655 266.5443 369.5040 242.8072 252.0324
V3 209.6339 259.4666 398.0393 131.5514 175.1309 142.3251 232.4512 153.7200 188.3102 174.5404 155.8522 167.1309 329.6669 465.0260 302.3931 309.5499
V4 162.3197 200.1100 310.7178 105.7822 154.4905 126.0300 206.3464 137.3099 183.8869 169.4927 152.2238 164.8267 327.4478 457.4220 300.7659 313.5123
V5 220.0600 266.8982 401.2258 132.7363 182.2781 148.3930 242.3956 155.3336 203.8987 185.7505 168.1786 177.2128 385.9134 524.2297 338.5421 347.6896

Table A4. Average sensor values (raw resistance) computed in the five Volluto Decaffeinato coffee
experiments used in the validation dataset (all sensor values in kΩ).

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16

VD1 270.0999 301.4718 457.1092 146.8990 182.4756 145.8404 236.3724 150.4246 203.8154 185.0321 166.0505 178.1799 407.8162 559.7236 355.0178 369.0275
VD2 239.2935 271.7979 406.5265 129.4665 170.4763 137.5019 224.4115 143.9452 201.3473 184.1641 166.0086 177.6931 407.6212 560.1162 354.3992 371.1771
VD3 295.5279 352.6312 541.8739 178.1242 245.1693 197.6698 331.1741 206.8063 262.1753 237.0994 215.6835 227.8538 464.7114 629.1617 412.2043 421.8158
VD4 233.9675 282.9196 436.0366 143.8689 200.7087 167.3685 279.8349 178.8581 242.2865 223.8612 203.1181 214.9443 454.1638 623.7118 406.6007 429.5396
VD5 246.8511 298.0711 471.0274 154.5690 202.8527 165.9621 275.8510 176.1835 230.2137 211.8414 188.1960 194.4607 448.3422 606.2981 382.4480 407.6461
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