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Abstract: In this paper, a composite of tin diselenide (SnSe2) functionalized by graphite-phase carbon
nitride (g-C3N4) was successfully prepared by a hydrothermal method, and was characterized by
X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy
(XPS). These microstructure characterization results verified the successful synthesis of a multilayer
g-C3N4/rod-shaped SnSe2 composite. The gas sensitivity results showed that when the g-C3N4

ratio was 30%, the g-C3N4/SnSe2 composite sensor had the highest response (28.9%) at 200 ◦C
to 20 ppm sulfur dioxide (SO2) gas, which was much higher than those of pristine g-C3N4 and
SnSe2 sensors at the optimum temperature. A series of comparative experiments proved that the
g-C3N4/SnSe2 composite sensor demonstrated an excellent response, strong reversibility and good
selectivity for ppm-level SO2 gas detection. The possible SO2 sensing mechanism was ascribed to the
heterostructure between the n-type SnSe2 and n-type g-C3N4 nanomaterials. Furthermore, we also
proposed the influence of the special structure of the g-C3N4 functionalized SnSe2 composite on the
gas-sensing characteristics.

Keywords: tin diselenide; carbon nitride; hydrothermal; heterostructure; SO2 sensors

1. Introduction

As an important indicator of air pollution, sulfur dioxide (SO2) is an irritating, highly
toxic and colorless gas, which mainly comes from factory exhaust and automobile exhaust
emissions [1,2]. When the emitted concentration of sulfur dioxide in air is too high, it is
oxidized to sulfur trioxide and combined with water to form acid rain, which can destroy
buildings, pollute the environment and reduce soil fertility [3,4]. In addition, human
health is seriously threatened by some harmful gas species including sulfur dioxide gas.
Respiratory diseases such as bronchitis and asthma can result from the excessive inhalation
of sulfur dioxide gas [5]. There are reports that the human-permissible exposure limit for
SO2 gas is 5 ppm and the long-term exposure limit is 2 ppm [6]. Therefore, the development
of portable, efficient and reliable gas sensors can be used to monitor the composition and
concentration of environmental gas pollutants in the atmosphere, which can help people to
deal with dangerous gases in time, and further protect social safety and human health.

Recently, two-dimensional (2D) layered inorganic materials (such as graphene and
transition metal materials) have attracted attention due to their unique crystal structures
and characteristics. Among them, two-dimensional transition metal dichalcogenides
(TMDs) are ideal materials for preparing field effect transistors [7], photodetectors [8]
and electronic devices [9] because of their unique electronic, magnetic, optical and me-
chanical properties. Due to their planar crystal structure, high specific surface area and
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physical affinity, they also have unique advantages in sensing applications [10]. According
to the reports from a few studies, two-dimensional transition metal compounds such as
molybdenum disulfide (MoS2) [11,12], tungsten disulfide (WS2) [13,14] and tin diselenide
(SnSe2) [15,16] offer good gas sensing characteristics for detecting dangerous gases. SnSe2
is an n-type two-dimensional transition chalcogenide, and its gas-sensitive properties have
been widely reported [15–17]. The results of a study reported by Moreira et al. on the
ammonia (NH3) and nitrogen dioxide (NO2) gas sensitivity of tin-diselenide-based sensors
revealed that these sensors had steady repeatability and long-term stability under UV
radiation [17]. Zhang et al. fabricated coral-like tin diselenide/metal-organic frameworks
(MOFs)-derived nanoflower-like tin dioxide (SnO2) heteronanostructures via a hydrother-
mal method. The SnSe2/SnO2 nanocomposite sensor exhibited excellent NO2-sensing
performance at room temperature, which was significantly improved under UV illumi-
nation. The enhanced NO2 sensing performance was attributed to the formation of an
n-n heterostructure and light-excited electrons [18]. By using the template-sacrificial ap-
proach, Wang et al. created rod-shaped SnSe2 and polyhedral zinc oxide (ZnO) composite
nanostructures, and the ZnO/SnSe2 heterostructures exhibited an enhancement of carbon
monoxide (CO)-sensing properties at room temperature [19]. Pan et al. reported a coral-like
Au-modified SnSe2 Schottky-junction-based ammonia gas sensor and demonstrated good
gas sensitivity to ammonia gas detection. In addition, the effect of Au modification on
ammonia gas molecules adsorption was also investigated using a first-principles density
functional theory (DFT). Because of these studies, it can be concluded that SnSe2 is a feasible
material as building block for constructing high-performance gas sensors [20]. However, the
use of a single SnSe2 material for gas sensitivity research has certain limitations, and the test
results may show poor selectivity and low sensitivity. According to previous studies, the
sensing characteristics of gas sensors can be improved by forming a heterojunction [21,22].
Graphite-phase carbon nitride (g-C3N4), as a common two-dimensional material, has a
structure like graphene and provides more active sites for gas adsorption. The material
has excellent chemical stability, good electron mobility and low cost. In addition, g-C3N4
can also promote the uniform dispersion of active ingredients, so it can be used as a stable
catalyst carrier [23,24].

In this paper, a composite of SnSe2 functionalized by g-C3N4 was prepared via a
hydrothermal method and served as the sensitive nanomaterial for SO2 gas sensing. The
nanostructure of the g-C3N4/SnSe2 composite was characterized by X-ray diffraction (XRD),
scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The
characterization results verified the successful synthesis of a multilayer g-C3N4/rod-shaped
SnSe2 composite. The as-prepared g-C3N4/SnSe2 composite sensor showed an excellent
gas response and rapid adsorption/desorption ability towards SO2 under the optimal
temperature of 200 ◦C, which was much higher than those of pristine g-C3N4 and SnSe2
sensors. A series of comparative experiments proved that the g-C3N4/SnSe2 composite
sensor demonstrated an excellent response, strong reversibility and good selectivity for
ppm-level SO2 gas detection. In this paper, two innovative two-dimensional materials,
g-C3N4 and SnSe2, were used to discuss in detail the mechanisms that may improve the
SO2 sensing performance, such as the synergistic interaction between g-C3N4 and SnSe2,
and the effective structural features.

2. Experimental Section
2.1. Materials

Tin chloride dihydrate (SnCl2·2H2O), hydrazine hydrate (N2H4·H2O), selenium diox-
ide (SeO2), ethanol (CH3CH2OH) and graphitic carbon nitride (g-C3N4) were all supplied
by Sinopharm Chemical Reagent Co. Ltd. (Shanghai, China).

2.2. Material Synthesis and Sensor Fabrication

The preparation process of the materials is shown in Figure 1. The SnSe2 was prepared
by a hydrothermal reduction method. A total of 0.01 mol SnCl2·2H2O and 0.02 mol SeO2
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were added into 70 mL deionized water and stirred for 30 min. A total of 10 mL of
hydrazine hydrate was added into the above mixture solution, and then transferred to a
100 mL Teflon-lined stainless-steel autoclave, and hydrothermally treated at 180 ◦C for 24 h.
The resulting precipitate was filtered, washed and dried at 60 ◦C for 8 h to obtain a black
tin diselenide product.
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Figure 1. Synthesis process of g-C3N4/SnSe2 nanomaterials.

A total of 280 mg of SnSe2 powder and 120 mg of g-C3N4 powder were dissolved in
20 mL of DI water. After vigorously stirring for 1 h, the g-C3N4 was effectively anchored
on the surface of SnSe2. The resulting product was dried at 60 ◦C for overnight. Finally,
the g-C3N4/SnSe2 composite was obtained. The composite materials with different ratios
(0, 20, 30, and 50%) of g-C3N4 and SnSe2 were prepared by adjusting the quality ratio
of g-C3N4 and SnSe2. In addition, the two materials were dispersed in deionized water
in a certain proportion, and after a period of ultrasonic treatment, they were effectively
combined through strong physical effects and interactions between charges.

2.3. Gas Sensor Fabrication

The structure illustration of the ceramic tube based SO2 gas sensor is shown in Figure 2.
It consisted of an Al2O3 ceramic tube and a base. The ceramic tube was 4 mm long and
1.2 mm in diameter, and its surface was equipped with gold electrodes and two pairs of
platinum wires for electrical signals. The heating resistor of the Ni–Cr alloy coil passed
through a hollow ceramic tube for heating. The sensing layer materials were coated on the
surface of the ceramic tube, and the electrodes were led out to complete the preparation
of the sensor. After preparing the sensing film, the sensor was dried at 60 ◦C for 6 h and
then aged at 200 ◦C for 24 h before the test to obtain good resistance stability. The SO2-
sensing measurement was performed in a home-made gas sensing detection system [25] as
shown in Figure 3. The sensor was placed in a home-made chamber, and the SO2 gas with
different concentrations of 1–200 ppm was obtained by diluting 1000 ppm SO2 standard
gas with high-purity air. The sensor resistance was measured with an Agilent 34970A
digital multimeter and connected with a computer through RS-232 for data acquisition.
The operation temperature of the sensor was controlled by an applied voltage to the Ni–Cr
heating resistor. A steady power supply of GPD-4303S was employed for applying voltage
for heating. The response of the sensor is defined as S = (RA − RG)/RA × 100% (RA:
resistance in air; RG: resistance in SO2 gas).
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3. Results and Discussion
3.1. Structure Characterization

The crystal structures of the SnSe2, g-C3N4 and g-C3N4/SnSe2 were characterized
by X-ray powder diffraction (XRD, Rigaku D/Max-2550, Rigaku, Japan) with Cu Kα

radiation (λ = 0.15418 nm). X-ray photoelectron spectroscopy (XPS, Thermo Scientific
K-Alpha XPS spectrometer, Thermo Scientific, Waltham, MA, USA) was used to detect the
chemical composition of the samples, and the morphology of pristine SnSe2, g-C3N4 and
g-C3N4/SnSe2 nanocomposites were observed by a scanning electron microscope (SEM,
Hitachi S-4800, Hitachi, Japan). The g-C3N4/SnSe2 sample with a ratio of 30% g-C3N4 was
used for characterization.

The crystal phases of the as-prepared materials were identified by XRD analysis. As
shown in Figure 4a, the peaks of SnSe2 (JCPDS card number 23-0602) located at 14.38◦,
26.98◦, 30.88◦, 40.17◦, 47.77◦, 50.19◦, 52.58◦, 57.92◦, 60.34◦, 63.96◦ and 78.22◦ corresponded
to the (001), (100), (011), (012), (110), (111), (103), (201), (004), (202) and (121) diffraction
planes of the orthorhombic-phase SnSe2 structures, respectively [26]. The XRD pattern
of g-C3N4 was well in accordance with the hexagonal crystal g-C3N4 (JCPDS Card no.
36-1451) [27]. The formation of the two diffraction peaks of (100) and (002) can be attributed
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to the in-plane structure stacking of the tri-s-triazine part and the in-plane stacking of the
conjugated aromatic hydrocarbon system, respectively. There were corresponding charac-
teristic peaks of g-C3N4 and SnSe2 in the XRD pattern of the g-C3N4/SnSe2 nanocomposite,
and there were no other characteristic peaks, indicating the successful preparation of the
SnSe2/g-C3N4 composite.
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product: (b) full spectrum, (c) Se 3d, (d) Sn 3d, (e) N 1s and (f) C 1s.

XPS is a measurement technique for detecting the elemental composition and chemical
valence of materials. Figure 4b is the total spectrum of the g-C3N4/SnSe2 composite,
and the existence of the four elements Se, Sn, C and N was confirmed from the peak
positions in the figure. The Se 3D spectrum shown in Figure 4c is represented by two
peaks with binding energies of 53.4 and 52.2 eV, corresponding to Se 3d5/2 and Se 3d3/2,
respectively [28–30]. The Sn 3d spectrum shown in Figure 4d shows two distinctive peaks
at energies of 486.3 and 495.2 eV, which correspond to Sn 3d5/2 and 3d3/2, respectively.
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Since there was an energy difference of 8.4 eV between the two peaks, the Sn4+ state can
be confirmed [31]. Figure 4e is the characteristic peak of N 1s. Three asymmetric peaks
at 398.3, 400.0 and 401.0 eV were attributed to C=N-C, N-(C)3 and C-N-H, respectively.
Figure 4f shows the XPS spectrum of C 1s, where the characteristic peak at 284.6 eV was
due to the formation of indefinite carbon absorption on the surface of the material, and the
diffraction peak at 287.8 eV may be formed by N=C-N coordination [32].

SEM is a detection technology used to observe the micro-morphology of nanomaterials.
Figure 5 shows the SEM characterization of the g-C3N4/SnSe2-sensitive material. Figure 5a
shows the SEM characterization of the intrinsic SnSe2. The SnSe2 nanorods were composed
of numerous nanoparticles, the cross-sectional radius and the length of which were about
300−500 nm and 3−5 µm, respectively. Figure 5b shows the SEM characterization image of
the graphite-like-phase carbon nitride. The exfoliated g-C3N4 nanosheets had a 2D layered
morphology, which was manifested as multiple thin layers stacking together. Figure 5c,d
show the surface morphology of the g-C3N4/SnSe2 composite. It can be clearly observed
that the nanorod-shaped SnSe2 and multilayer g-C3N4 grew and aggregated together well,
which show s that the g-C3N4/SnSe2 composite was successfully synthesized.
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3.2. SO2-Sensing Properties

The working temperature is an important key variable related to the sensing char-
acteristics of the g-C3N4/SnSe2 sensor [33–35]. It affects the chemical adsorption and
surface reaction of gas molecules. Therefore, to determine the optimal operating tem-
perature as well as the optimum ratio of the two materials, we studied the responses of
pristine g-C3N4, pristine SnSe2 and the x% g-C3N4/SnSe2 (x = 0, 20, 30, 50) film sensors
to 20 ppm SO2 gas at different operating temperatures. As shown in Figure 6a, the op-
erating temperatures and responses of the sensors presented a “triangular” shape. The
optimal temperatures of g-C3N4, SnSe2 and g-C3N4/SnSe2 were 250 ◦C, 200 ◦C and 200 ◦C,
respectively. When the g-C3N4 ratio was 30%, the response (28.9%) of g-C3N4/SnSe2 at
200 ◦C was the highest, which was much higher than those of the pristine g-C3N4 and
SnSe2. The gas-sensing properties of the SnSe2, g-C3N4 and 30% g-C3N4/SnSe2 sensors
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were investigated by recording the changes in resistance when they were exposed to dif-
ferent concentrations (1−200 ppm) of SO2 gas at 200 ◦C, as shown in Figure 6b. When
switched to air, the resistances of the three sensors returned to the base value in air. The
response values of 30% g-C3N4/SnSe2 towards 1, 5, 10, 20, 50, 100, 200 ppm SO2 gas were,
respectively, 8.82%, 15.59%, 20.22%, 28.52%, 35.09%, 41.54% and 44.34%, higher than those
of the pristine SnSe2 and g-C3N4. Figure 6c shows the fitting curves of the three sensors
between sensitivity (Y) and concentration of SO2 (X). The fitting functions of g-C3N4, SnSe2
and g-C3N4/SnSe2 sensors were Y = 14.89 − 11.82 × 0.98X, Y = 22.76 − 17.85 × 0.95X and
Y = 42.16 − 33.15 × 0.96X, respectively. The R2 of the fitting curve of the g-C3N4/SnSe2
sensor was 0.975. Figure 6d shows the response/recovery curves of the g-C3N4/SnSe2
sensor toward the desired concentrations of SO2 gas. The sensor exhibited stable response
and recovery behaviors.
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gas at various temperatures. (b) Sensing properties of pristine g-C3N4, SnSe2 and g-C3N4/SnSe2
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three sensors versus SO2 concentration at 200 ◦C. (d) Typical response–recovery curves for various
concentrations of SO2 gas at 200 ◦C.

The repeatability of the g-C3N4/SnSe2 composite sensor against a gas with a concen-
tration of 50 ppm SO2 at 200 ◦C is examined in Figure 7a. For each run, the resistance
could fully recover its initial state and changes from 4.5 MΩ to 2.9 MΩ, showing a good
reproducibility. Figure 7b shows the response/recovery curves of the g-C3N4, SnSe2, and
g-C3N4/SnSe2 composite sensors exposed to 50 ppm SO2 gas. The response/recovery time
of the g-C3N4/SnSe2 sensor was 22/24 s, while the values of the pristine g-C3N4 and SnSe2
sensors were 46/55 s and 26/82 s, respectively, suggesting that the g-C3N4/SnSe2 sensor
had a faster detection rate towards SO2 gas compared with the pristine g-C3N4 and SnSe2
sensors at 200 ◦C. Excellent selectivity is also an important factor for nanomaterial-based
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gas sensors [36,37]. Therefore, we further studied the SO2 selectivity of the g-C3N4/SnSe2
composite sensor at 200 ◦C. The sensor was exposed to 50 ppm of various interfering gases,
such as LPG, CO, CH4, H2S and H2. As shown in Figure 7c, the g-C3N4/SnSe2 composite
sensor had the highest response to SO2 gas, indicating that the selectivity to SO2 gas was
excellent. Additionally, the long-term stability of the g-C3N4/SnSe2 composite sensor for
various SO2 gas concentrations (1, 10 and 50 ppm) at a working temperature of 200 ◦C
was examined. The sensor’s response had no obvious changes in a period under the same
experimental conditions and exhibited a good stability, as shown in Figure 7d.
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Numerous studies have described the detection of SO2 gases utilizing a variety of
sensitive materials up to this point. As far as we know, there have been no studies using
g-C3N4/SnSe2 for SO2 gas detection. Table 1 lists the comparison of this work with
previously reported works. The different SO2 gas sensors are compared in terms of sensing
environment, response value and gas concentration. The comparison results showed
that the as-prepared g-C3N4/SnSe2 sensor featured a higher response value and a lower
operating temperature.

Table 1. Comparison of the SO2-sensing performance between the present work and previous
reported studies.

Sensing Material Sensing Environment Response Concentration Ref.

AlGaN/ZnO/rGO RT 2.5% 120 ppb [38]
SnO2/rGO RT/UV 1.7% 5 ppm [39]

Pt/rGO 120 ◦C 5% 100 ppm [40]
g-C3N4/rGO RT 3.2% 100 ppm [41]

SnO2/MWCNT 60 ◦C 6 500 ppm [42]
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Table 1. Cont.

Sensing Material Sensing Environment Response Concentration Ref.

V2O5/WO3/TiO2 400 ◦C 5% 20 ppm [43]
WO3 350 ◦C 5% 1 ppm [44]

Cu–SnO2 400 ◦C 1.1% 20 ppm [45]
SnO2–PANI RT 3.1% 4 ppm [46]
TiO2/rGO RT 11.14% 5 ppm [47]
NiO–SnO2 180 ◦C 8.3% 50 ppm [48]

TiO2 200 ◦C 11% 10 ppm [49]
ZnO RT 0.2% 100 ppm [50]

WO3–PANI RT 4.3% 5 ppm [51]
Ni–MoS2 RT 7.4% 5 ppm [52]

V2O5/SnO2 350 ◦C 45% 5 ppm [53]
V-doped TiO2 400 ◦C 10% 10 ppm [54]

GO RT 6% 5 ppm [55]
PANI RT 4.2% 10 ppm [56]

g-C3N4/SnSe2 200 ◦C 28.9% 20 ppm This work

3.3. SO2 Gas-Sensing Mechanism

The sensing mechanism has been widely explained using the surface charge caused by
adsorbed oxygen. For the pristine SnSe2 gas sensor, when exposed to air, oxygen molecules
in air adsorb on the surface of the sensing material to form adsorbed oxygen molecules. The
adsorbed oxygen molecules extract electrons from the conduction band of SnSe2 to form
chemically adsorbed oxygen O− at 200 ◦C. On the surface of the g-C3N4/SnSe2 sensing
material, an electron depletion layer consequently forms. The following is a description of
the reactions [57,58]:

O2 (gas)→ O2 (ads) (1)

O2 (ads) + 2e− → 2O− (ads) (2)

When the reducing gas SO2 is introduced, the SO2 molecules adsorbed on the sur-
face of the sensing material will further react with O− ions and release electrons to the
SnSe2 conduction band to form SO3, thereby increasing the number of charge carriers
and reducing the resistance of the sensor. The specific reaction process is illustrated as
follows [59]:

SO2 (ads) + O− (ads)→ SO3 + e− (3)

In our experiment, it is worth noting that the g-C3N4/SnSe2 sensor exhibited an im-
proved response to SO2 gas than the pristine C3N4 and SnSe2 sensors. This phenomenon
could be explained by two positive factors of g-C3N4 decoration. Firstly, the morphology,
specific surface area and electrical properties of the material are important factors affecting
its gas-sensing performance [60]. The addition of the layered two-dimensional structure
of g-C3N4 increases the specific surface area of the composite material and provides more
active sites, increasing the production of adsorbed oxygen. Another factor influencing the
effectiveness of the gas sensing system is the n-n heterojunction created between g-C3N4
and SnSe2 [61–63]. Figure 8a shows the energy band structure of the heterojunction formed
by the n-type SnSe2 nanorods and n-type g-C3N4 layered nanosheets in air, where the
band gaps of SnSe2 and g-C3N4 were 1.37 and 2.7 eV, respectively. Their Fermi levels
were different, and the work function (4.3 eV) of SnSe2 was lower than that (4.67 eV) of
g-C3N4 [64]. When the two materials contact with different work functions, electrons will
transfer from SnSe2 to g-C3N4 to reach a Fermi energy balance. Therefore, the n-n hetero-
junction is formed at the interface between SnSe2 and g-C3N4 in air [65]. When exposed to
SO2 gas, SO2 molecules absorbed on the surface of the composite material react with O− to
generate electrons [66]. Therefore, the carrier concentration in the heterojunction increases
by receiving electrons, resulting in a narrowing of the depletion layer at the interface of the
two materials [61,67,68], which reduces the resistance of the sensor (Figure 8b). The built-
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in electric field generated by the nano-scale heterojunction can accelerate the separation
process of electrons and facilitate electron transfer.
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4. Conclusions

In this paper, a g-C3N4 functionalized SnSe2 composite thin film sensor was success-
fully prepared. XRD, XPS and SEM techniques were used to characterize the elements and
structure of the g-C3N4/SnSe2 composite material. The optimal temperature (200 ◦C) of the
g-C3N4/SnSe2 composite sensor was determined through gas-sensing experiments under
different working temperatures. The SO2 gas-sensing performance for the g-C3N4/SnSe2
composite sensor was investigated at the optimal temperature. The experimental results
showed that under the optimal temperature, the 30% g-C3N4/SnSe2 composite sensor
gained the highest sensitivity to SO2 gas. The two-dimensional layered structure of the
g-C3N4-modified n-type SnSe2 nanorods not only increased the specific surface area and
the gas adsorption site of the g-C3N4/SnSe2 sensor, but also formed an n-n heterojunc-
tion between the g-C3N4 nanosheets and SnSe2 nanorods, which improved the sensing
performance of the g-C3N4/SnSe2 sensor toward SO2 gas.
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