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Abstract: In comparison with bioenzymes, nanozymes exhibit excellent robustness against extreme
conditions, a low production cost, and easy-to-adjust properties, as well as potential versatility. These
superiorities have attracted abundant interest in the last 15 years, to develop various nanozymes for
applications including analytical sensing, environmental engineering, and biomedicine. In particular,
for analytical sensing, a lot of nanozyme-involved principles and methods have been explored
and applied to clinical diagnosis, environmental monitoring, food safety detection, and forensic
analysis. Moreover, rational exploitation and use of nanozyme materials promote the performance of
analytical methods. To highlight the latest progress in this attractive field, recent design concepts
of nanozymes for advanced biochemical sensing are summarized. The development of single-atom
nanozymes, self-cascade nanozymes, structurally biomimetic nanozymes, molecularly imprinted
nanozymes, nanozymes breaking the pH limit, and multifunctional nanozymes is discussed in detail,
to enhance detection sensitivity and selectivity, as well as expand application scenarios. Finally, some
challenges and trends related to nanozyme-based sensors are reported, to satisfy the increasing needs
of biochemical analysis with nanozymes.

Keywords: nanozyme; rational design; biochemical detection; sensitivity; selectivity; application
scenario

1. Introduction

Nanozymes are defined as a class of nanoscale materials that are able to exhibit
enzyme-like catalytic behaviors, kinetics, and mechanisms [1–3]. As an emerging member
of artificial enzymes, nanozymes have experienced a period of explosive development
in the past 15 years [4]. In contrast to natural bioenzymes, they show several attractive
characteristics and benefits, including an excellent stability, even under harsh conditions,
easy scale production, low cost, and easy-to-regulate catalytic performance. Compared
to the previously developed organic artificial enzymes (cyclodextrins, porphyins, super-
molecules, et al.), the unique feature of an inorganic nanostructures can endow nanozymes
with potential versatility [5]. These advantages are drawing more and more interest, to
explore nanozymes for various applications, such as analytical sensing, environmental
engineering, and biomedicine. In the analytical sensing field, the signal amplification
offered by catalytic reactions makes nanozymes promising enzyme alternatives for de-
veloping a number of analytical principles and methods [6]. Commonly, nanozymes are
used as catalysts to trigger a series of chromogenic, fluorescence, or chemiluminescence
reactions, thus providing optical signals for the qualitative and quantitative determina-
tion of targets. They can replace horseradish peroxidase (HRP) or alkaline phosphatase
(ALP) as catalytic labels to fabricate immunoassays [7]. In addition, the conjugation of
nanozymes with other sensing elements (DNA chains, aptamers, bioenzymes, et al.) en-
ables the development of multifarious sensors [8]. In addition, interactions between certain
species and nanozyme surfaces make it possible to realize the detection of the former [9].
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These principles and methods have given nanozymes intensive use in clinical diagnosis,
biochemical measurement, environmental monitoring, food safety analysis, and forensic
detection [10–12].

Undoubtedly, the introduction of nanozymes opens a new path to obtaining high-
performance sensing. A variety of chemosensors and biosensors have been fabricated based
on nanozyme catalysis in the last decade [13]. Even so, in this field some issues remain that
seriously hinder the further development of nanozyme-based biochemical sensing and need
to be addressed. For instance, a large number of the nanozymes explored currently lack
catalytic specificity, and achieving selective detection with nanozymes becomes a crucial
problem [14]. The catalytic activity of nanozymes is still far lower than that of corresponding
natural enzymes, and how to utilize nanozymes for a highly sensitive analysis, particularly
for ultratrace targets, is challenging. Furthermore, expanding the applicability of nanozyme-
based analytical methods in complex scenarios is always desirable.

To solve the above issues, the rational design of nanozymes, based on deeply un-
derstanding their structures and mechanisms, to gain the desired catalytic features is
necessary [15]. To date, several emerging material strategies have been demonstrated as
successful for significantly accelerating the development of chemosensors and biosensors.
To highlight the progress in this interesting field, here we aimed at summarizing recent
nanozyme concepts for promoting biochemical sensing (Figure 1). The rational design
of single-atom nanozymes with extraordinary activity, as well as self-cascade nanozymes
with multiple signal amplifications, was reviewed, to enhance detection sensitivity. For
selectivity improvement, structurally biomimetic nanozymes and molecularly imprinted
nanozymes are introduced in detail. To expand the application scenarios, the development
of nanozymes breaking the pH limit, as well as multifunctional nanozymes with lumi-
nescent properties, is discussed. At the end of this review, to attract more efforts toward
meeting increasing analytical requirements, some challenges and trends in the designing
and development of nanozymes for advanced biochemical sensing are presented.
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2. Rational Design of Nanozymes for Enhancing Detection Sensitivity

Sensitivity is considered one of the most important analytical parameters for a sensor.
In nanozyme-based chemosensors and biosensors, the detection sensitivity closely relies
on the catalytic activity of the materials used. Although the signal amplification provided
by a nanozyme catalysis is able to offer acceptable sensitivity for conventional sensing,
detecting ultratrace analytes requires exploring enzyme mimics with the desired activity.
However, the catalytic activity of most nanozymes developed currently is far lower than
that of the corresponding bioenzymes. Designing and developing high-activity nanozymes
has become a vital topic in the community. To date, several strategies, including structural
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engineering [16], size regulation [17–19], surface modification [9,20], doping effect [21–23],
and material compositing [24] have been explored to improve the catalytic activity of
nanozymes. Given that these traditional strategies have been summarized in some other
publications [25,26], we will not repeat these nanozyme activity enhancement methods
here. Instead, two emerging material strategies, namely single-atom nanozymes and
self-cascade nanozymes, are discussed for improving the detection sensitivity of nanozyme-
involved sensors.

2.1. Single-Atom Nanozymes

Since the concept of single atomic catalysts (SACs) was first proposed by Qiao et al. to
promote CO oxidation with a high activity [27], it has attracted intensive attention and interest
from the academic community [28,29]. SACs consist of atomic active sites highly dispersed on
inert carriers and are generally regarded as the limit for the design of nanoscale materials at the
atomic level. When SACs are employed as enzyme mimics, namely single-atom nanozymes
(SANs), some interesting features and benefits appear [30]. First, the atomic active sites
of many SANs are very similar to those of metal-containing bioenzymes [31], and such a
structural similarity can inspire the design of nanozymes with high activity and substrate
specificity [32]. Second, SANs have well-defined geometric and electronic structures, which
help the study of the catalytic processes and mechanisms of nanozymes [33,34]. Third, it is
relatively easy to regulate the active site microenvironment of SANs, thus facilitating the study
of the structure–activity relationship [35]. Fourth, SANs have a maximum atomic utilization
efficiency and can be cycled for reuse, satisfying the green and economical principles of
materials. Last but not least, although SANs belong to the heterogeneous catalysts, the
high dispersion of active sites enables them to possess some characteristics of homogeneous
catalysts [30]. As a result, a number of SACs have been explored as artificial enzymes for
various applications in recent years [34,36–38], demonstrating that single atomization is an
efficient way to gain high-activity nanozymes [39].

With the above features, SANs not only provide ideal models for studying sensing
mechanisms, but also endow nanozyme-based sensors with the desired performance [40].
In this regard, several SANs with high activity have been explored and applied to analytical
sensing [41–45], and some of them can even provide higher sensitivity and lower limit of
detection (LOD) compared to bioenzymes [43]. Cheng et al. developed a CNT/FeNC SAN
with high peroxidase-like activity for ultrasensitive biosensing [41]. They first dispersed
oxidized carbon nanotubes (CNTs) in a pyrrole solution, where pyrrole could be adsorbed
onto CNTs because of the π–π interaction between the carbon planes of CNTs and the
pyrrole molecules (Figure 2A). Then, they triggered the polymerization of pyrrole adsorbed
on CNTs, to form polypyrrole (PPy), using (NH4)2S2O8 as an oxidant. After that, the
obtained CNT/PPy was impregnated in a mixture of Fe(NO3)3 and NaCl to adsorb metal
cations, followed by pyrolyzing the collected solid hybrid in N2 and NH3 atmospheres
successively, thus obtaining CNT/FeNC SAN. The gained SAN theoretically had 100%
atomic Fe–Nx–C moieties, exhibiting excellent peroxidase-mimicking catalytic activity to
trigger the oxidation of several chromogenic substrates in the presence of H2O2. With
the superior SAN, they developed paper-based bioassays for H2O2 and ascorbic acid
(AA). Detection of glucose was also achieved when combining the SAN with glucose
oxidase (GOx).
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Figure 2. (A) Preparation of CNT/FeNC SAN with a high peroxidase-mimetic activity (reprinted
with permission from Ref. [41]). (B) Fe-N-C SAN with prominent peroxidase-mimicking activity
for paper-based bioassay of BChE activity (reprinted with permission from Ref. [44]). (C) Design
of Cu-N-C SAN with rich Cu sites for organophosphorus sensing (reprinted with permission from
Ref. [46]).

Apart from the above synthetic strategy, calcination of metal–organic frameworks
(MOFs) is another widely used method to gain SANs with an outstanding catalytic ac-
tivity [44,45,47]. Our group synthesized a Fe-N-C SAN with single-atom Fe–Nx entities
stabilized by MOFs-derived carbon, which could present peroxidase-like activity almost
at the same level as natural HRP [44]. The Fe-N-C SAN was prepared by successively
pyrolyzing a FeZn MOF in different atmospheres, followed by washing off large metal
and metal oxide particles with acid. It was found that the obtained Fe-N-C SAN exhib-
ited both peroxidase- and oxidase-like catalytic activities in acidic media. By employing
3,3′,5,5′-tetramethylbenzidine (TMB) as a substrate, the catalytic activity of the Fe-N-C SAN
was carefully evaluated according to the standard protocol [48]. Consequently, the SAN
provided a specific peroxidase-like activity up to 57.76 U/mg, which was comparable to
natural HRP (Figure 2B). With this exceptional activity, we further fabricated a smartphone-
assisted paper-based bioassay for the monitoring of butyrylcholinesterase (BChE), a typical
biomarker of organophosphorus and carbamate pesticide residues. As a result, the bioassay
provided linear responses for BChE activity in the range of 2~40 U/L, with a detection
limit lower than most previous methods.

In many SACs and SANs, the content of single metal atoms acting as catalytic active
sites is very low (less than 1.5 wt%), seriously hindering their mass activity and advanced
applications [49]. To further improve the activity of SANs and their sensing sensitivity,
exploring effective methods to fabricate SANs with high metal loading is required. In this
regard, Zhu’s group designed a Cu-based SAN with abundant Cu sites (up to 5.1 wt%)
loaded on carbon nanosheets using a salt-template strategy (Figure 2C), which exhibited
excellent enzyme-like activity and enhanced biosensing performance [46]. It should be
noted that the obtained Cu-N-C SAN only exhibited peroxidase-like catalytic activity, but
no oxidase-like activity. This feature could effectively avoid the background brought by the
oxidase-mimetic activity during biosensing. By integrating the Cu-N-C SAN with natural
acetylcholinesterase (AChE) and choline oxidase (ChO), they fabricated a triple-enzyme
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cascade reaction system for the colorimetric determination of acetylcholine (ACh) and
organophosphorus (OP) with enhanced sensitivity.

2.2. Self-Cascade Nanozymes

Cascade biocatalysis commonly occurs in living organisms, to control the metabolism
and signal transduction. In a cascade biocatalytic system, multiple bioenzymes are often
involved in triggering two or more reactions, where each subsequent reaction begins after
the previous one is completed. Given multi-enzyme-driven cascade reactions can provide
superior activity and selectivity, a lot of systems have been developed as biomimetic
reactors for biosensing and biomedical applications [50,51]. With increasing materials being
found to exhibit multiple enzyme-like activities [52–55], instead of using several enzyme
mimics to fabricate a cascade catalytic system, it is preferable to design nanozymes with
self-cascade catalytic properties, where cascade reactions occur on the surface of a single
nanozyme. As a result, the proximity effect of different active sites, as well as the shortened
intermediate diffusion, can provide a higher catalytic efficiency [56,57]. With this attractive
feature, self-cascade nanozymes have found promising use in biomedicine [58–62].

For analytical sensing, self-cascade catalytic reactions are able to offer multiple ampli-
fications of signals (Figure 3A). Correspondingly, a higher detection sensitivity is supposed
to be obtained in comparison with sensors based on single catalysis. As a common ex-
ample, several Cu-based materials have been explored as self-cascade nanozymes for
biosensing [63–67], where their oxidase- and peroxidase-like activities are mainly em-
ployed. We designed a Cu-based MOF material (CuBDC) that acted as a self-cascade
nanozyme with cysteine oxidase- and peroxidase-mimetic catalytic activities [63]. In this
material, the Cu–O clusters not only showed the capacity for catalyzing the oxidation of
cysteine with the help of dissolved O2 to produce cystine and H2O2, but also provided the
peroxidase-mimetic ability for catalyzing the generated H2O2 to produce radicals under
the same conditions. Given that the terephthalic acid (TA) ligand of the MOF could be
oxidized to fluorescent 2-hydroxyterephthalic acid (TAOH) by the produced radicals, the
CuBDC presented a remarkable fluorescence when cysteine was fed (Figure 3B). Such a
system catalyzed by the self-cascade nanozyme offered an efficient method to sensitively
detect the cysteine substrate.
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cascade system based on CuO NPs with GSH oxidase- and peroxidase-like activities (reprinted with
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Similar enzyme-like activities were also found in CuO NPs by Liu’s group [64]. The
single-component CuO NPs not only acted as a glutathione (GSH) oxidase mimic, to oxidize
GSH in the solution containing dissolved O2, where H2O2 was produced, but also played a
peroxidase-like role in inducing the oxidation of the TA substrate by the produced H2O2,
with a high local concentration near CuO NPs. The dual enzyme-like activities of the Cu
NPs produced a self-organized cascade reaction (Figure 3C), enabling the determination
of GSH with good performance. By using the strong coordination interaction of GSH
and metal ions, highly sensitive detection of Ag+ was also achieved with the self-cascade
nanozyme, providing a LOD down to 0.037 nM.

According to the above examples, the construction of self-cascade catalytic systems
depends on the multi-activity features of a single nanozyme. Although, in recent years,
increasing materials with more than one enzyme-mimetic activity have been explored to
promote analytical applications, their use might also lead to some negative impacts [52]. For
instance, both peroxidase- and oxidase-like activities are able to trigger the oxidation of sub-
strates, even in the same environment. As a result, the oxidase-like catalytic reaction would
affect the measurement of a target that originally relied only on the peroxidase-mimicking
activity [46]. Therefore, more attention is required to rationally design nanozymes with
the desired self-cascade catalytic activities, without introducing other irrelevant activities
and interference.

3. Rational Design of Nanozymes to Improve Sensing Selectivity

Selectivity is another important parameter for a sensor. It is widely recognized that
a lack of substrate specificity becomes the biggest challenge for nanozymes [26,68]. For
this reason, foreign recognition elements are often utilized in combination with nanozymes
to gain high-selectivity detection [14]. At present, a few means have been investigated
to realize the above goal, such as constructing natural enzyme-nanozyme cascade sen-
sors [51,69], combining nanozymes with DNA chains or aptamers [70–72], fabricating
nanozyme-linked immunosensors [7], and utilizing the specific interactions between cer-
tain nanozymes and analytes [73,74]. To fundamentally solve the selectivity problem,
rationally designing nanozymes that have intrinsic catalytic specificity is desirable. Here,
structurally biomimetic nanozymes and molecularly imprinted nanozymes are discussed
in detail, and their applications to achieve selective sensing are revealed.

3.1. Structurally Biomimetic Nanozymes

It is known that the majority of natural enzymes are able to offer excellent substrate
specificity. Such specificity mainly relies on their fine structures. In protein-based enzymes,
complex multi-level structures provide clearly defined channels and cavities, with shape,
size, and interactions well matching their corresponding substrates, thus endowing them
with accurate substrate recognition and catalysis. Differently from bioenzymes, inorganic
nanozyme materials inherently lack well-defined structures near active sites, leading to
the very poor catalytic specificity of nanozymes. Naturally, the structural bionic concept
inspires the design of nanozymes with surface microstructures similar to the corresponding
bioenzymes [68], to obtain inorganic enzyme mimics with the desired catalytic selectivity.

In this regard, several studies on designing and developing nanozymes that mimic
the fine structures of natural enzymes have been reported [75,76]. For instance, inspired
by the active site structure of natural catechol oxidase, Li et al. fabricated a MOF material
called MOF-818, which consisted of tri-nuclear copper centers (Figure 4A) [76]. In natural
catechol oxidase (PDB code 1BT1), a six-histidine-coordinated binuclear Cu metal center
plays the catalytic role in triggering the oxidation of o-diphenol. Correspondingly, the O2
molecule was reduced to H2O2 and further protonated via cleaving the HO–OH bond to
generate H2O. Similarly, with tri-nuclear copper centers, MOF-818 could induce the catalytic
oxidation of the substrate in the participation of dissolved O2, to finally generate H2O2
instead of H2O. This was because the designed MOF-818 did not have a peroxidase-like
activity. Unlike common CeO2 and Pt NPs as nanozymes to induce the catalytic oxidation of
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TMB or 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) with the presence or
absence of H2O2, the proposed MOF-818 only exhibited a catechol oxidase-mimetic activity
to trigger the oxidation of 3,5-di-tert-butylcatechol (3,5-DTBC). As a consequence, the MOF-
818 acting as a specific artificial catechol oxidase exhibited excellent catalytic selectivity.
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As mentioned above, the fine surface structures near active centers play an important
role in determining the selectivity of nanozymes toward substrates. This inspires the
adjustment of the specificity of nanozymes by tailoring their surface. Typically, chiral
catalysis can be obtained when some chiral ligands are anchored on an inorganic nanozyme
surface [77,79–81]. In general, amino acid ligands and small chiral molecules, as well as
DNA chains, are employed to modify the surface of inorganic materials to obtain chiral
nanozymes. For example, Qu’s group modified a series of D- or L-amino acids onto a ceria
surface, to realize the enantioselective catalysis of 3,4-dihydroxyphenylalanine (DOPA)
enantiomers [77], a commonly used drug for treating the Parkinson’s disease. By measuring
the reaction kinetics of ceria nanoparticles (CeNPs) decorated by eight different amino
acids (phenylalanine, alanine, tryptophan, histidine, glutamic acid, arginine, lysine, and
tyrosine), it was concluded that the phenylalanine (Phe)-coated CeNPs were optimal for
DOPA oxidation and provided excellent stereoselectivity toward its enantiomers. In detail,
L-Phe-decorated CeNPs offered a higher catalytic ability to oxidize D-DOPA, while D-Phe-
decorated CeNPs were more effective toward L-DOPA (Figure 4B). Theoretical calculations
indicated that both DOPA enantiomers could interact with the chiral Phe modifiers, mainly
by forming different hydrogen bonds. Three hydrogen bonds could be formed between
D-Phe and L-DOPA, compared to only one hydrogen bond formed between D-Phe and
D-DOPA. Moreover, the π–π aromatic packing interaction was able to further intensify the
interaction of D-Phe and L-DOPA. On the contrary, in comparison with the interplay of
L-Phe and L-DOPA, a stronger interaction could be obtained between L-Phe and D-DOPA
by forming two hydrogen bonds. This indicated that the modification of chiral amino acids
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on nanozyme surface could have a great impact on the stereoselectivity of the latter. These
fascinating results are inspiring increasing efforts in designing chiral nanozymes [80].

Given SANs have clearly defined geometric and electronic structures and the mi-
croenvironment around active centers plays a significant role in determining their catalytic
performance, one can tailor the microenvironment of SANs to obtain enhanced substrate
selectivity [32]. As such, Wang et al. reported the development of several Mo-based
SANs (MoSA–Nx–C, x = 2, 3 or 4) [78], and it was observed that their peroxidase-mimetic
specificity could be adjusted by changing the coordination number of single-atom Mo
sites. Compared to MoSA–N2–C and MoSA–N4–C, the optimized MoSA–N3–C exhibited a
significantly oppressed oxidase-like activity, but a higher peroxidase-mimicking activity
was observed (Figure 4C). This study demonstrated the feasibility of rationally tailoring the
microenvironment of SACs to obtain high-specificity nanozymes. Currently, although there
have been very few cases of designing structurally biomimetic nanozymes for selective
analysis, it is believed that in the near future the structural bionic concept will draw more
and more attention to this topic.

3.2. Molecularly Imprinted Nanozymes

Molecularly imprinted polymers (MIPs) have artificial binding sites toward target
molecules. They are generally synthesized via the co-polymerization of template molecules
and functional monomers, with or without the addition of some cross-linking agents.
After the template molecules are removed, some recognition cavities remain in the formed
polymer matrix. The remaining cavities are complementary to the template molecules in
shape, size, and chemical functional groups, and can selectively bind the template molecules
again [82]. Combining MIPs with nanozymes provides a potential path to solve the poor
substrate selectivity problem of the latter. For example, Zhang fabricated molecularly
imprinted sites on peroxidase-like Fe3O4 surface by utilizing the commonly used enzymatic
substrates TMB and ABTS as template molecules [83]. In comparison with bare Fe3O4
nanoparticles, the explored molecularly imprinted nanozymes presented improved catalytic
kinetics toward the corresponding substrates. Importantly, the introduction of molecularly
imprinted sites endowed the nanozyme with significantly enhanced specific affinities
toward the substrates (Figure 5A). Similar phenomena have also been observed in other
molecularly imprinted nanozymes [84–87]. These studies provide the basis of introducing
artificial imprinting sites onto a nanozyme surface to solve the poor selectivity issue.

Instead of imprinting enzymatic substrates onto the nanozyme surface, one can use
analytes as the template molecules and fabricate molecularly imprinted nanozymes for
analytical applications [88–92]. As such, our group prepared molecularly imprinted sites
on a peroxidase-mimetic Fe3O4 nanoparticle surface through self-polymerizing dopamine
(DA) in a weak alkaline environment [88], and further fabricated a colorimetric sensor for
the high-selectivity determination of tetracycline (TC) (Figure 5B). The imprinted nanozyme
(Fe3O4@MIP) had abundant cavities and channels for substrates access to the peroxidase-
like Fe3O4 core. When TC was fed, it was selectively recognized and captured by the
MIP shell and masked the cavities and channels. Consequently, the catalyzed TMB color
reaction was suppressed. On the basis of such a principle, colorimetric sensing of TC
with good selectivity against some structural analogues (oxytetracycline, chlorotetracycline,
erythromycin, penicillin, et al.) was achieved. It should be stated that, although introducing
molecular imprinting sites onto a nanozyme surface can improve the substrate specificity
for selective detection, the imprinted layer introduced would significantly cover up the
active surface and sites of nanozymes, thus leading to a decrease in catalytic activity. Thus,
balancing the catalytic specificity and activity turns to be a vital issue. How to rationally
design molecularly imprinted nanozymes with good specificity and enough activity for
high-performance sensing is the current challenge.



Chemosensors 2022, 10, 386 9 of 19Chemosensors 2022, 10, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 5. (A) Molecularly imprinted layers grown on Fe3O4 NPs with substrate binding pockets for 
enhanced nanozyme specificity (reprinted with permission from Ref. [83]). (B) Molecular imprint-
ing on Fe3O4 particle surface to gain TC colorimetric detection with excellent selectivity (reprinted 
with permission from Ref. [88]). 

Instead of imprinting enzymatic substrates onto the nanozyme surface, one can use 
analytes as the template molecules and fabricate molecularly imprinted nanozymes for 
analytical applications [88–92]. As such, our group prepared molecularly imprinted sites 
on a peroxidase-mimetic Fe3O4 nanoparticle surface through self-polymerizing dopamine 
(DA) in a weak alkaline environment [88], and further fabricated a colorimetric sensor for 
the high-selectivity determination of tetracycline (TC) (Figure 5B). The imprinted 
nanozyme (Fe3O4@MIP) had abundant cavities and channels for substrates access to the 
peroxidase-like Fe3O4 core. When TC was fed, it was selectively recognized and captured 
by the MIP shell and masked the cavities and channels. Consequently, the catalyzed TMB 
color reaction was suppressed. On the basis of such a principle, colorimetric sensing of 
TC with good selectivity against some structural analogues (oxytetracycline, chlorotet-
racycline, erythromycin, penicillin, et al.) was achieved. It should be stated that, although 
introducing molecular imprinting sites onto a nanozyme surface can improve the sub-
strate specificity for selective detection, the imprinted layer introduced would signifi-
cantly cover up the active surface and sites of nanozymes, thus leading to a decrease in 
catalytic activity. Thus, balancing the catalytic specificity and activity turns to be a vital 
issue. How to rationally design molecularly imprinted nanozymes with good specificity 
and enough activity for high-performance sensing is the current challenge. 

  

Figure 5. (A) Molecularly imprinted layers grown on Fe3O4 NPs with substrate binding pockets for
enhanced nanozyme specificity (reprinted with permission from Ref. [83]). (B) Molecular imprinting
on Fe3O4 particle surface to gain TC colorimetric detection with excellent selectivity (reprinted with
permission from Ref. [88]).

4. Rational Design of Nanozymes to Expand Application Scenarios

In addition to sensitivity and selectivity, expanding the application scenarios of
nanozyme-based sensors is another research direction. This mainly includes how to design
and develop nanozymes applicable to different environments, as well as how to realize
high-performance detection using different sensing modes. Currently, although great
progress has been made to serve the analytical sensing field, some intrinsic shortcomings
still hinder the wide use of nanozymes. Here, we discuss the rational design of nanozymes
that can break the pH limit and multifunctional nanozymes, both of which can greatly
expand the applicability of enzyme mimics in analytical sensing.

4.1. Nanozymes Breaking the pH Limit

To date, many materials have been explored as peroxidase-mimetic nanozymes, while
the majority of them present their activity only in acidic conditions (pH 3.0~5.0). This is
because in acidic media, the H2O2 substrate prefers to undergo a homogeneous dissociation
process to form hydroxyl radicals and trigger further reactions, thus exhibiting a peroxidase-
like activity [93]. If the solution pH is expanded to the neutral medium, a very weak, or
even no, activity is gained. This characteristic greatly limits the wider use of peroxidase
mimics in biochemical analysis. Taking glucose detection as an example, two operation
steps are often employed, where a peroxidase-like nanozyme is combined with natural
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GOx. In detail, GOx is first used to trigger the oxidation of glucose in a neutral medium to
produce H2O2, and the produced H2O2 is then catalyzed by the peroxidase-like nanozyme
in a moderately acidic medium, to trigger some chromogenic reactions. Obviously, such a
two-step protocol results in some drawbacks: on the one hand, the H2O2 species produced
in the first step will spontaneously decompose, and its loss limits the detection sensitivity;
on the other hand, different pH conditions are required for the bioenzyme–nanozyme
cascade catalytic system, complicating the detection operation.

To solve the above dilemma, one can try to develop peroxidase-mimicking nanozymes
that are able to exhibit the desired activity in physiological environments. To sum up, there
mainly are two strategies used to expand the working pH of nanozymes (Figure 6A): one is
to explore nanozymes with intrinsically high activity in acidic environments, which can
also exhibit a certain activity in neutral media [94–99]; the other is to design the surface
of nanozymes, where special surface engineering (introducing surface charge, fabricating
acidic microenvironment, et al.) enables the extension of the working pH to neutral
conditions [100–104].
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aspartic acid to gain favorable peroxidase-mimetic activity at neutral pH (reprinted with permission
from Ref. [100]).

Thus, we designed a Co-based polyoxometalate nanozyme (CoPW11O39) that could
show good peroxidase-mimicking activity at neutral pH [96]. Zeta potential measurements
indicated that the surface of the obtained CoPW11O39 was negatively charged. As a result,
it exhibited a strong ability to catalyze the oxidation of positively charged TMB, even under
neutral conditions (Figure 6B). In contrast, no catalytic activity under the physiological
conditions was found when negatively charged ABTS was used as the substrate. Given
that the nanozyme and natural GOx had a similar working pH environment, they were
used to develop a one-pot colorimetric method for glucose detection.

Another efficient strategy to modulate the working pH of peroxidase mimics is to
modify charged ligands onto their surface. For example, Han et al. developed Au@Ag
nanorods (NRs) stabilized by positively charged poly(diallyldimethylammonium) (PDDA),
which exhibited a high activity level over a wide pH range (pH 4.0~6.5) when using ABTS
as the chromogenic substrate (Figure 6C) [101]. At pH 6.5, the peroxidase-like activity of
the Au@Ag NRs was stable, showing a strong affinity toward negatively charged ABTS.
Given this character, the detection of H2O2 at pH 6.5 was realized based on the PDDA-
modified Au@Ag NRs catalyzing the colorimetric reaction of H2O2 and ABTS. Similarly, we
engineered the charge of peroxidase-mimetic CuS via amino acid surface modification, to
achieve good catalytic activity in a neutral medium [100]. In detail, aspartic acid (Asp), an
acidic amino acid with an isoelectric point of 2.97, was used to decorate the surface of CuS
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during preparation. As the Asp modifier could be hydrolyzed to negatively charged species
in the neutral condition, rich negative charges were observed on the nanozyme surface,
which could prominently promote the diffusion and adsorption of the positively charged
substrate TMB onto the active surface for reaction. As a consequence, differently from
bare CuS that had little activity at neutral pH, the Asp modified CuS exhibited excellent
peroxidase-mimetic activity in the same environment (Figure 6D). As an application of this,
one-pot colorimetric determination of glucose was obtained by integrating GOx with the
engineered peroxidase-mimetic nanozyme.

4.2. Multifunctional Nanozymes

Intrinsically, nanozymes are a class of nanoscale materials. When the size of a material
is conditioned to the nanometer level, a series of interesting properties emerge. In fact,
apart from enzyme-like catalytic features, many materials also possess some attractive
optical [105–107], magnetic [108–110], and electrical [111] properties or act as promis-
ing carriers [112–114] for biochemical analysis. These multiple properties of nanozymes
offer biochemical sensing unparalleled benefits in practical applications. For instance,
nanozymes with responsive fluorescence can be employed to self-output signals without
introducing external substrates or labels. By combining the catalytic feature of nanozymes
with their additional properties, multifunctional nanozymes have huge potential in the
biochemical sensing area [115]. In this work, materials with both enzyme-like catalytic
activity and luminescent properties are discussed.

Currently, several classes of materials with luminescent properties have been explored,
including MOFs [116–127], coordination compounds [128,129], metal clusters [130], car-
bon dots [131,132], and C3N4-based materials [133]. These multifunctional nanozymes
enable “turn-on” fluorescence, “turn-off” fluorescence, bimodal fluorescence/colorimetric,
and ratiometric fluorescence measurements of analytes (Figure 7A). As a typical method,
multifunctional nanozymes with fluorescent properties can be obtained by integrating TA
with active metal nodes, to fabricate MOFs-based nanozymes, where TA acts as an organic
ligand to bind Fe3+ or Cu2+ and exhibits a remarkable fluorescence when it is catalytically
oxidized to TAOH. Thus, Ye’s group prepared a dual-functional MIL-53(Fe) material with
peroxidase-like activity via the self-assembly of Fe3+ and TA, to enable the label-free “turn-
on” fluorescence detection of H2O2 and glucose [117]. Once H2O2 was fed, the MIL-53(Fe)
could provide a notable peroxidase-mimetic catalytic ability for decomposing H2O2 to
produce hydroxyl radicals, and the latter oxidized the ligand TA in the MIL-53(Fe) to
TAOH, which presented a remarkable fluorescence at approximately 440 nm (Figure 7B).
As a result, a self-reporting fluorescence sensor based on the MIL-53(Fe) was fabricated
for H2O2 sensing, free of the addition of any other substrate or label. By integrating the
bi-functional nanozyme with GOx, convenient detection of glucose was also gained.

Recently, we designed a FeZr bimetal–organic framework material (UiO-66(Fe/Zr)-
NH2) with multiple roles (luminescent property, peroxidase-like activity, and target recog-
nition) to construct a ratiometric fluorescence sensor for the high-performance sensing of
phosphate ions (Pi) [119]. The employment of a fluorescent ligand (2-aminoterephthalic
acid) made the MOF show a strong fluorescence at 435 nm (Figure 7C). The Fe3+/Fe2+

nodes offered a good enzyme-mimicking ability for catalyzing the o-phenylenediamine
(OPD) substrate to a fluorescent product (OPDox) at 555 nm, which could quench the
fluorescence (435 nm) of UiO-66(Fe/Zr)-NH2 because of the inner filter effect. The Zr4+

nodes in the material acted as sites for Pi recognition and capture. When Pi existed, it was
specifically adsorbed onto the UiO-66(Fe/Zr)-NH2 and decreased the latter’s peroxidase-
mimicking activity. Consequently, the fluorescence of UiO-66(Fe/Zr)-NH2 at 435 nm was
restored, but the fluorescence at 555 nm was reduced. Based on the ratiometric sensing
principle, efficient detection of Pi with favorable selectivity and sensitivity was gained. In
another work, we developed a bimodal fluorescence/colorimetric approach for sensing
pesticides, by coupling stimulus-triggered luminescence with oxidase-mimetic activity
in Ce-based coordination polymer nanoparticles (CPNs(IV)) [128]. The CPNs(IV) offered
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an oxidase-mimicking ability to catalyze the oxidation of colorless TMB to blue TMBox,
offering a colorimetric signal at around 652 nm (Figure 7D); when ascorbic acid 2-phosphate
(AAP) was utilized as an enzymatic substrate of acid phosphatase (ACP) to be hydrolyzed,
the AA produced with a certain reducibility could induce the chemical reduction of Ce4+

in the CPNs(IV) to Ce3+, leading to the production of CPNs(III). In comparison with
CPNs(IV), the produced CPNs(III) exhibited a greatly reduced oxidase-mimicking activity,
leading to a remarkable suppression of the TMB color reaction. In addition, the produced
CPNs(III) offered a fluorescence peak at 356 nm; with the addition of OP or carbamate
pesticides, the activity of ACP was inhibited. As a consequence, the hydrolytic procedure
of AAP to AA was suppressed, and the conversion of CPNs(IV) to CPNs(III) was also
blocked, thus resulting in the recovery of the TMB color reaction; however, the fluorescence
signal of CPNs(III) was inhibited. On the basis of this sensing principle, bimodal fluo-
rescence/colorimetric sensing of malathion, a typical OP, was demonstrated. In addition,
the satisfactory interference-tolerance reliability and practicability of the method were
confirmed.
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5. Conclusions and Perspectives

Compared to natural bioenzymes, the attractive benefits of nanozymes have motivated
the exploration of the abundant inorganic nanomaterials with enzyme-like properties, espe-
cially for sensing applications. On the other side of the coin, several obvious shortcomings
have also been exposed in artificial enzyme mimics, including a low catalytic activity and
poor substrate selectivity. To overcome these shortcomings and to better serve analytical
sensing, the rational design of nanozymes is required. Great progress has been made in this
field in the past few years. SANs with a comparable activity have been developed to pro-
vide higher sensitivity for nanozyme-based sensors. In addition, self-cascade nanozymes
have been designed to fabricate tandem catalytic systems with multistage amplifications
for ultrasensitive detection. For selective detection, some efficient strategies, including
molecular imprinting and structurally bionic design, have been validated, to make up for
the deficiency of catalytic specificity in nanozymes. Moreover, multifunctional nanozymes
with luminescent properties, as well as nanozymes that can break the pH limit, have also
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been applied in advanced analytical sensing. The design of these emerging nanozymes
greatly promotes the creation of analytical principles, methods, technologies, and devices.
Furthermore, an effectively enhanced analytical performance has been gained by using
these nanozymes.

The trend of rationally designing nanozymes for biochemical detection is evident [134].
It is believed that in the near future more interesting nanozymes will be designed and
developed, thus bringing extended methods and improved performance for biochemical
sensing: (1) more material design strategies are expected to be explored to enhance the
analytical performance of nanozyme-based sensors. The design concepts discussed above
indeed solve some problems of the nanozymes used in analytical chemistry, while these
are not sufficient to meet the increasing demands of modern measurement. As mentioned
above, the nanozymes developed currently still have various challenges, including a low
catalytic activity, poor substrate specificity, limited catalytic environment, and complex
bioconjugation [135]. Thus, exploring new designs of nanozymes is necessary, to compen-
sate for these shortcomings for advanced biochemical sensing. For instance, combining the
bioenzyme-inspired design of SANs with the precise regulation of their active sites, as well
as increasing the site density may be a promising way to improve the catalytic activity and
specificity of nanozymes [46,78]. In order to further expand the applications of nanozymes,
designing more nanozymes with multiple functions (e.g., nanozymes with fluorescent,
chemiluminescent, Raman, magnetic, or/and electrical properties) is promising; (2) in
addition to sensitivity, selectivity, and application scenarios, other analytical parameters
should not be overlooked. Advanced sensing requires not only high selectivity, excellent
selectivity, and good applicability, but also a rapid response, smart sensing, and simple
operation. Although several nanozyme strategies have been demonstrated as efficient
for enhancing the first three parameters, the improvement of response speed, detection
operation, and smart sensing is still urgently needed, which requires future efforts from the
community. For example, fabricating portable detection devices by integrating nanozyme
sensing with 3D-printed accessories and smartphone-based sensing technology would
enable the on-site rapid analysis of targets [136]. Ingenious integration of nanozymes and
their reaction substrates, as well as other sensing elements (such as bioenzymes) in one
carrier, makes it possible to simplify the detection operation [56]; (3) effective combination
of nanozyme materials and analytical methods is expected. For a sensor, its analytical
performance relies on both the sensing material used and the sensing principle and method.
Only the rational combination of sensing materials and analytical methods will result in sen-
sors with the desired detection performance. Therefore, more attention should be focused
on integrating sensing methods with efficient nanozyme materials for better biochemical
analysis, including exploring new nanozyme categories, developing new sensing modes,
and expanding the detectable targets.

Author Contributions: Conceptualization, X.N.; methodology, J.L.; software, J.L.; resources, J.L.,
X.N.; writing—original draft preparation, J.L.; writing—review and editing, X.N. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge the support from the Start-up Research
Fund of University of South China. The work was also supported by the Faculty of Agricultural
Equipment of Jiangsu University.

Conflicts of Interest: The authors declare no conflict of interest.



Chemosensors 2022, 10, 386 14 of 19

Abbreviations

AA Ascorbic acid
AAP Ascorbic acid 2-phosphate
ABTS 2,2′-Azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)
ACh Acetylcholine
AChE Acetylcholinesterase
ACP Acid phosphatase
ALP Alkaline phosphatase
Asp Aspartic acid
BChE Butyrylcholinesterase
CeNPs Ceria nanoparticles
ChO Choline oxidase
CNTs Carbon nanotubes
CPNs(IV) Ce-based coordination polymer nanoparticles
DA Dopamine
DOPA 3,4-Dihydroxyphenylalanine
GOx Glucose oxidase
GSH Glutathione
HRP Horseradish peroxidase
LOD Limit of detection
MIPs Molecularly imprinted polymers
MOFs Metal-organic frameworks
OP Organophosphorus
OPD o-Phenylenediamine
PDDA Poly(diallyldimethylammonium)
Phe Phenylalanine
Pi Phosphate ion
PPy Polypyrrole
SACs Single atomic catalysts
SANs Single-atom nanozymes
TA Terephthalic acid
TAOH 2-Hydroxyterephthalic acid
TC Tetracycline
TMB 3,3′,5,5′-Tetramethylbenzidine
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