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Abstract: Convolutional neural networks (CNNs) are inspired by the visual cortex of the brain. In
this work, CNNs, are applied to classify ground truth samples as positive or negative for ignitable
liquid residue (ILR+ and ILR−, respectively). Known ground truth samples included laboratory-
generated fire debris samples, neat ignitable liquids (ILs), single-substrate (SUB) burned samples
and computationally generated (in silico) training samples. The images were generated from the
total ion spectra for both training and test datasets by applying a wavelet transformation. The
training set consisted of 50,000 in silico-generated fire debris samples. The probabilities generated
from the CNN are used to calculate the likelihood ratios. These likelihood ratios were calibrated
using logistic regression and the empirical cross-entropy (ECE) plots were used to investigate the
calibration of the probabilities of the presence of ILRs (i.e., probability of belonging to class ILR+). The
performance of the model was evaluated by the area under the receiver operating characteristic plots
(ROC AUC). The ROC AUC for the laboratory-generated fire debris samples and the combined IL
and SUB samples was 0.87 and 0.99, respectively. The CNNs trained on in silico data did significantly
better predicting the classification of the pure IL (ILR+) and SUB (ILR−) samples. Nonetheless, the
classification performance for laboratory-generated samples was sufficient to aid forensic analysts in
the classification of casework samples.

Keywords: convolutional neural networks; fire debris analysis; likelihood ratios; machine learning

1. Introduction

Fire debris analysis involves the search for traces of ignitable liquid residue in samples
collected from a fire scene. The presence of ignitable liquid residue can be an indication that
a substance was added to aid in starting the fire. Fire debris samples are analyzed by gas
chromatography–mass spectrometry, the “gold standard” for these analyses. The total ion
chromatograms (TICs), the extracted ion profiles (EIPs) for alkane, alkene, alcohol, aromatic,
cycloalkane, ester, ketone and polynuclear aromatic compounds [1,2], the identification of
individual compounds, and visual pattern recognition are utilized to determine whether
the sample is positive or negative for ignitable liquid residues (ILRs). Data analysis and in-
terpretation are performed following the standard method described in ASTM E1618-01 [3].
Under this protocol, reporting guidelines require that a sample be designated as positive
or negative for ILRs and the protocol does not allow for assigning a strength or evidential
value to the sample. According to ASTM E1618, ignitable liquids are classified into eight
main classes based on their major organic compound profiles, processing (distillates) and
product use (gasoline) [3]. These classes are gasoline (GAS), petroleum distillates (PDs),
isoparaffinic (ISO), aromatic (AR), naphthenic paraffinic (NP), normal alkane (nA), oxy-
genates (OXYs) and miscellaneous (MISC) [3]. The designation of multiple classes of liquid
helps the analyst to organize their data analysis strategy and can help the investigator in
identifying products from each class. The final decision of whether the sample contains
ILRs or not is subjectively based on the individual analyst’s interpretation of the data with
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a case review by a second analyst or supervisor being common. If the original analysis
or review does not introduce the guardrails of linear sequential unmasking or related
protocols, the chances of bias being introduced into the process are increased [4–7]. Studies
have been performed in presenting the presence or absence of ILRs as a likelihood ratio that
has been calculated objectively by machine learning methods [8–13]. The work reported
here presents another likelihood ratio calculation method that uses probabilities generated
by convolutional neural networks.

Convolutional neural networks (CNNs) are a type of deep learning artificial neural
network (ANN) with convolutional feature extraction layers and multiple fully connected
layers. The CNN essentially learns to identify the features in a set of images that are
important for classifying the images into specific categories. The human brain inspires both
the less complicated ANN and CNN architectures, but specifically, the CNN is inspired by
the visual cortex of the human brain [14]. Deep learning is a subsection of machine learning
that can train a computer to perform human-like tasks, such as speech recognition, image
recognition, etc.

Deep learning is finding use as an assistant or partner to technicians in medical image
analysis [15–17], genomics [18–20] and dentistry [21–23]. In forensic science applications,
deep learning is used in facial recognition [24], exploring dental records [25] and cyber
security [26]. The purpose of this work is to apply convolutional neural networks for fire
debris classification. In this study, the model was used to calculate the probability of the
presence of ILRs in test samples.

CNNs consist of three types of layers: convolutional, pooling and fully connected
(or dense) layers. The output of this network is a probability of the sample to belong to a
specific class. In this work, the CNN provides the probability that a sample contains ILRs
and, therefore, belongs to the class ILR+ with a probability P(ILR+|E), or that ILRs are
absent, and the sample belongs to the class ILR− with a probability P(ILR−|E). These two
posterior probabilities are conditioned on the evidence E. The two posterior probabilities
must sum to a value of 1, as the two classes are exclusive and comprehensive (i.e., a
sample may contain ILRs or not, there is no alternative classification). The likelihood
ratio is calculated from the odds form of Bayes’ theorem, Equation (1), and a knowledge
of the prior odds. The likelihood ratio is the ratio of the probabilities of observing the
evidence under the two hypotheses of class membership: P(E|ILR+)/P(E|ILR−). The prior
odds, P(ILR+)/P(ILR−), are taken to be equal to the ratio of probabilities of samples in
the machine learning training set belonging to class ILR+ or ILR−. These are probabilities
that we control when the training set is generated. When the prior odds are equal to 1, the
posterior odds are equal to the likelihood ratio, Equation (1). All the programming for this
work was performed using kerasR [27] and tensorflow [28].

P(ILR+|E)
P(ILR−|E) =

P(E|ILR+)

P(E|ILR−) ×
P(ILR+)

P(ILR−) (1)

In the neural network, the first layer is the input layer, which carries the input image’s
dimension (number of pixels and channels). The main building blocks of the network are
the convolutional layers which contain kernels that spread entirely through the input that
generates an activation map [29,30]. These convolutional layers are followed by pooling
layers. In addition, a rectified linear unit activation (ReLU) was applied in convolutional
layers to increase the nonlinearity of the network, Equation (2).

f (x) =
{

0
x

f or x ≤ 0
f or x > 0

= max{0, x} (2)

When the ReLU function is applied, if value x > 0 it will return x, whereas if x ≤ 0,
then it will return 0. Detailed information about the network used in this work will be
discussed in the Materials and Methods section.
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In the convolution process, the kernel (or filter) overlaps the image to compute the
product between the numbers at each location in the kernel and the corresponding location
within the overlapped portion of the input image. The sum of these products generates
the output of this process, and the output is assigned to the image cell corresponding to
the location of the central unit in the filter. The filter is then shifted by one pixel/unit to
the right. When the filter reaches the end of the row of pixels, it returns to the left side
of the image and drops down one pixel. The kernel starts on the top left corner of the
image, and the process is continued until the kernel reaches the bottom right corner of the
input image [31]. This computation is repeated for each kernel in the convolutional layer,
followed by ReLu activation.

The pooling layers reduce the dimensionality of the image and the complexity of the
computational model by downsampling the feature maps. In the model used in this work,
max-pooling was applied after each convolutional layer. In max-pooling, the maximum
value in each section from the convolution output is selected based on the size of the
pooling matrix. The selected unit’s value is then placed in the corresponding pixel of the
pooling output. In this work, the size of the pooling matrix was 2 × 2. The single largest
value is selected and placed in a cell in the pooling output. Therefore, the entries from a
2 × 2 set of cells are replaced by a single cell and this process reduces the dimension of the
convolution layer output by half.

The convolution and pooling were followed by layer flattening, where the final output
matrix from the convolution and subsequent pooling was unfolded into a single column.
This output is then fed into a set of fully connected layers analogous to those found in
a simple artificial neural network. When the final pooling layer is flattened, the output
corresponds to a set of features that feed into the fully connected portion of the network. The
combined convolution and pooling layers perform feature selection. The fully connected
layers contain neurons that provide the final result from the model. Dropout layers are
included between the fully connected layers to prevent the overfitting of the model.

The final dense layer of the network uses softmax activation, which generates the
posterior probabilities. The softmax function operates on the input vector to produce an
output vector of real numbers that sum to 1, which is provided in Equation (3) [32].

σ
(→

z
)

i
=

ezi

∑K
j=1 ezj

(3)

The term
→
z is the input vector of the softmax function and zi is the element in the input

vector, whereas ezi is the exponential of zi. The symbol K is the number of classes in the
problem; in this case, 2. The normalization factor is given by ∑K

j=1 ezj . The softmax function
calculates the posterior probabilities of the samples that determine the classification. In this
work, these posterior probabilities were used to assess if the sample belongs to class ILR+
or ILR−.

2. Materials and Methods

Three separate datasets were used for training and testing. A total of 50,000 in silico
fire debris samples were generated as the training dataset. This dataset was generated
using the samples in the Ignitable Liquid Reference Collection (ILRC) [33] and the Sub-
strate [34] Database from the National Center for Forensic Science. The training set con-
tained 25,000 ILSUB mixture samples (class ILR+) and 25,000 SUB mixture samples (class
ILR−). One testing set, referred to as ILSUB, included samples of 1050 neat ignitable liquids
in the ILRC (class ILR+) and 553 single-substrate samples from the Substrate Database
(class ILR−). The second testing dataset, referred to as GTFD, was composed of laboratory-
generated ground truth fire debris with 573 samples containing ignitable liquid residues
(class ILR+), and 345 samples composed of mixtures of substrates and no added ignitable
liquid (class ILR−) [13]. Laboratory-generated fire debris and in silico fire debris sample
generation procedures were previously reported [13]. The ASTM IL class distribution of
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in silico training and the ILSUB and GTFD testing datasets are given in Table 1. When
generating in silico data, the IL/SUB ratio in the in silico data distribution was made similar
to the laboratory-generated fire debris samples. The distribution of the base 10 logarithm of
IL/SUB ratios of ILR+ class samples from both in silico and GTFD are presented in Figure 1.

Table 1. IL class population and distribution fractional contribution in parenthesis for the training
and testing datasets.

Class Class Population and Fractional
Contribution: In Silico

Class Population and Fractional
Contribution:

GTFD

Class Population and Fractional
Contribution: ILSUB

SUB 25,000 0.5 345 0.376 553 0.345
ISO 3125 0.0625 62 0.068 84 0.052
OXY 3125 0.0625 55 0.060 171 0.107
MISC 3125 0.0625 68 0.074 194 0.121

AL 3125 0.0625 60 0.065 60 0.037
GAS 3125 0.0625 65 0.071 83 0.052
PD 3125 0.0625 146 0.159 329 0.205
AR 3125 0.0625 59 0.064 72 0.045
NP 3125 0.0625 58 0.063 57 0.036

Total 50,000 918 1603
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The TIS from the database and in silico samples were converted to images by wavelet
transform [35]. The transform was performed using a Morlet wavelet applied to the TISs,
which are treated as time series. The Morlet wavelet basis function is given by Equation (4),
where η is a nondimensional “time” parameter corresponding to the m/z in the TIS spectra
and ω0 is a nondimensional frequency. Following an analogous approach to Torrence
et al. [35], each TIS is treated as a time series xn of points evenly separated by δt where
n = 0 . . . N − 1, and N is the total number of values in the series. The TISs are composed
of 129 values, separated by 1 m/z. The continuous wavelet transform for the series of
xn points is given by their convolution with a scaled and translated Ψo(η), as given in
Equation (5). In Equation (5), s is the wavelet scale and the asterisk (*) indicates the complex
conjugate. The scales for the calculations were the default power 2 scales constructed by the
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wavScalogram software [36]. The 260 values of sj were calculated based on Equations (6)
and (7), where s0 is the smallest resolvable scale and J determines the largest scale. The
scales were calculated as a sequence from s0 = 1.936027 to sJ = 45. A smaller sj corresponds
to a more “compressed” wavelet (i.e., more compressed along the m/z axis of the TIS).

Ψo(η) = π−1/4eiω0ηe−η2/2 (4)

Wn(s) =
(

δt
s

)1/2 N−1

∑
n′=0

xn′Ψ
∗
0

[
(n′ − n)δt

s

]
(5)

sj = s02jδj, j = 0, 1, . . . , J (6)

J = δj−1log2(Nδt/s0) (7)

Figure 2 shows the total ion spectrum for a gasoline sample (a) and the corresponding
“scalogram” (b) that was calculated using Equations (4)–(7). The shaded areas along the
sides and bottom of the scalogram indicate the areas where edge effects come into play
in the convolution. The abscissa scale for the TIS corresponds to the m/z values. The
abscissa scale in the scalogram is labeled as xlim, which has a 1:1 correspondence with m/z;
however, it is zero-based. At the smaller scales (top of the scalogram), the more compressed
wavelet is acting as a filter and picking out the more intense peaks and local clusters of
peaks in the TIS. As the scale increases, resulting in a less compressed wavelet, the higher
intensity in the scalogram begins to correspond to the lower frequency patterns in the TIS.
The resulting stacked set of wavelet power spectra, the scalogram, (Figure 2b) is presented
as a false color image where the color represents the wavelet intensity. The scalograms were
converted into a 50 × 50 grayscale image (Figure 2c, bottom panel) by sampling a 50 × 50
grid of points in proportion to the original dimensions of the scalogram. The intensity
patterns in the grayscale images correspond to intensity changes occurring at different
frequencies in the TIS. The 50 × 50 grayscale images were used for training the CNN.

The neural network used in this work consists of three convolutional layers, two
max-pooling layers and a fully connected layer. Two dropout layers were added to prevent
the overfitting of the model. These dropout layers randomly remove a portion of the total
weights. In this instance, 50% of the weights were removed in each dropout layer randomly.
The model was trained ten times and the average training and testing accuracies were
calculated. The structure of the model applied in this work is presented in Figure 3.

The total number of parameters in this network was 2,711,490. In this model, 150 epochs
were used to train the model fully and the batch size and cross-validation split were 500 and
0.2, respectively. For example, one epoch consists of 100 folds based on the batch number
and in each fold, 20% of the samples were randomly selected from a batch of 500 samples
for cross-validation. Finally, at the end of each epoch, the total validation and training
accuracy for the model were calculated.

The plot of training and validation accuracies and losses for the 10th model is presented
in Figure 4. The training and cross-validation accuracies of the model gradually increased
through the number of epochs and remained constant at 0.94 and the loss gradually
decreased and remained between 0.4 and 0.5. The loss for the cross-validation was not
as high as the loss for the training set; however, the accuracy of the prediction for cross-
validation closely paralleled the accuracy for the training set.
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3. Results
3.1. Generated Images for ILRC and Fire Debris Data

Examples of a TIS and the corresponding scalogram and grayscale image are shown
in Figure 2. The top panel shows the TIS for a gasoline sample. The most intense peaks
in the TIS correspond to m/z 91 and 105, which result from the fragmentation of aromatic
compounds in the sample. A set of less intense peaks can be seen around m/z 43 and 57.
These peaks result from the fragmentation of aliphatic compounds in the sample. The
middle panel shows the wavelet power spectrum. The smallest scales (top of the scalogram)
correspond to the most compressed wavelets, which upon convolution with the TIS, give
the largest coefficients (intensity) at xlim values corresponding to the areas of m/z 91, 105,
43 and 57. As the scale increases and the wavelet becomes less compressed, other areas
of TIS intensity appearing at lower frequencies can be observed. For example, at a scale
of approximately 15, two areas of intensity can be observed, one occurring in the lower
m/z range where the aliphatic-derived ions appear and the second at a higher m/z range
where the aromatic-derived ions appear. This example demonstrates how the wavelet
transform highlights different intensity and frequency patterns in the TIS. Computer
memory requirements limited the size of each image that could be used in training the
convolutional neural network. To accommodate the memory limitations, each scalogram
was reduced to a 50 × 50 grayscale image, as shown in the bottom panel in Figure 2. The
scalogram reduction was accomplished by sampling from the wavScalogram-generated
scalogram rows and columns corresponding to the ratio of input/output dimensions.

Additional images generated as examples from each neat IL class are shown in Figure 5
and have distinguishable features related to the corresponding TIS, as described in the
previous paragraph. Some images generated from the substrate samples (MRN 1: cotton
cloth, 33: hardwood, 63: olefin/nylon blend carpet) are also provided in Figure 5i–k. The
images corresponding to samples from the Substrate Database (class ILR−) appear, in
general, to have more complex structural features than the pure IL samples from different
ASTM classes. Due to the complex chemical nature of the pyrolysis products, it is not
possible to visibly select the features useful in leading to the correct classification of a
sample as ILR+ or ILR−. The point of this work is to test if a convolutional neural network
model can accomplish this task.

In images of GTFD samples from class ILR+, the pattern attributable to the IL becomes
less obvious as the IL/SUB ratio decreases. This is demonstrated in Figure 6 for a sample
containing ILRs from the ASTM AR solvent class and the substrate pyrolysis (see Figure 5a
for IL scalogram). As the IL/SUB ratio decreases, the signal from the IL becomes weaker.
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Table 2. Training and testing accuracies of the ten CNN models. 

  Testing Accuracy 
Model Training Accuracy ILSUB FDIL 

1 0.943 0.986 0.775 
2 0.940 0.986 0.798 
3 0.942 0.990 0.797 
4 0.932 0.984 0.776 
5 0.939 0.989 0.786 
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Figure 6. Images of fire debris samples containing aromatic (AR) ignitable liquid residue from the
same liquid and the same substrate material mixture (cork plank vinyl flooring and ceiling tile),
(a) IL/SUB = 1.37, (b) IL/SUB = 0.25.

3.2. Likelihood Ratio Calculations

The average training accuracy from the cross-validation based on in silico data for the
10 models was 0.939 ± 0.003 and the average testing validation accuracies of GTFD and
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ILSUB across the same 10 models were 0.788 ± 0.011 and 0.988 ± 0.002, respectively. The
accuracies are based on the ILR+ class assignment if the CNN posterior probability of ILR+
membership was greater than or equal to 0.5. The training and testing accuracies of the
ten models are presented in Table 2. The log base 10 likelihood ratios for the test data were
calculated using the posterior probabilities provided by the CNN using the rearranged
odds form of the Bayes equation, Equation (8).

LLR = log10

(
P(ILR+|E)
P(ILR−|E) ×

P(ILR−)
P(ILR+)

)
(8)

Table 2. Training and testing accuracies of the ten CNN models.

Testing Accuracy
Model Training Accuracy ILSUB FDIL

1 0.943 0.986 0.775
2 0.940 0.986 0.798
3 0.942 0.990 0.797
4 0.932 0.984 0.776
5 0.939 0.989 0.786
6 0.941 0.986 0.783
7 0.938 0.988 0.775
8 0.941 0.988 0.790
9 0.938 0.989 0.800
10 0.940 0.991 0.801

The probabilities generated from model 10 were selected for further calculations based
on the testing accuracies for GTFD and ILSUB datasets. In this case, to calculate likelihood
ratios, the prior odds were set to 1 since the number of samples belonging to the ILR+ and
ILR− classes in the training model are equal. These uncalibrated LLRs were calibrated by
logistic regression. Empirical cross-entropy (ECE) plots (Figure 7a,b) illustrate the LLR
calibration for GTFD and ILSUB. The LLR following logistic regression calibration (solid
red line) and the LLR resulting from pooled adjacent violator calibration (dashed blue line)
indicate how well the posterior probabilities are calibrated [33]. The smaller the separation
between these two lines, the better the logistic regression calibration. LLRs calculated
by the posterior probabilities are used to generate receiver operating characteristic (ROC)
curves to provide an evaluation of the performance of the model as a function of LLR
decision thresholds. An ROC curve is defined by a plot between the true positive rate and
false positive rate as a function of the decision threshold, and the area under the curve
(AUC) serves as the performance metric for a classifier. The magnitude of calculated LLRs
was not always directly proportional to the IL/SUB ratio in these GTFD samples containing
ILRs (graphs not shown).

The average AUC for the 918 GTFD samples and 1603 ILSUB samples was 0.857 ± 0.007
(Figure 8a) and 0.993 ± 0.003 (Figure 8b), respectively. This indicates that the discrimination
of neat ignitable liquids and single-substrate samples is higher than the substrate mixtures
with and without ILRs.

Before reporting a categorical statement about the presence or absence of ILRs, the
selection of a decision threshold is required [13]. This threshold value can be obtained by
an iso-performance line with a defined slope which is tangent to the ROC convex hull (ROC
CHULL) and maximizes the y-intercept. The optimal threshold is determined by where the
iso-performance line intersects the ROC CHULL. The slope of the iso-performance line is
determined by Equation (9) [37].

TP2 − TP1

FP2 − FP1
=

p(n)c(p, n)
p(p)c(n, p)

= m (9)



Chemosensors 2022, 10, 377 10 of 15

Chemosensors 2022, 10, x  5 of 5 
 

 

smaller the separation between these two lines, the better the logistic regression calibra-

tion. LLRs calculated by the posterior probabilities are used to generate receiver operating 

characteristic (ROC) curves to provide an evaluation of the performance of the model as 

a function of LLR decision thresholds. An ROC curve is defined by a plot between the true 

positive rate and false positive rate as a function of the decision threshold, and the area 

under the curve (AUC) serves as the performance metric for a classifier. The magnitude 

of calculated LLRs was not always directly proportional to the IL/SUB ratio in these GTFD 

samples containing ILRs (graphs not shown). 

 

Figure 7. Empirical cross-entropy (ECE) plots generated for (a) GTFD and (b) ILSUB data for prob-

abilities generated from model 10. 

The average AUC for the 918 GTFD samples and 1603 ILSUB samples was 0.857 ± 

0.007 (Figure 8a) and 0.993 ± 0.003 (Figure 8b), respectively. This indicates that the dis-

crimination of neat ignitable liquids and single-substrate samples is higher than the sub-

strate mixtures with and without ILRs. 

  

Figure 7. Empirical cross-entropy (ECE) plots generated for (a) GTFD and (b) ILSUB data for
probabilities generated from model 10.

Chemosensors 2022, 10, x  5 of 5 
 

 

smaller the separation between these two lines, the better the logistic regression calibra-
tion. LLRs calculated by the posterior probabilities are used to generate receiver operating 
characteristic (ROC) curves to provide an evaluation of the performance of the model as 
a function of LLR decision thresholds. An ROC curve is defined by a plot between the true 
positive rate and false positive rate as a function of the decision threshold, and the area 
under the curve (AUC) serves as the performance metric for a classifier. The magnitude 
of calculated LLRs was not always directly proportional to the IL/SUB ratio in these GTFD 
samples containing ILRs (graphs not shown). 

 
Figure 7. Empirical cross-entropy (ECE) plots generated for (a) GTFD and (b) ILSUB data for prob-
abilities generated from model 10. 

The average AUC for the 918 GTFD samples and 1603 ILSUB samples was 0.857 ± 
0.007 (Figure 8a) and 0.993 ± 0.003 (Figure 8b), respectively. This indicates that the dis-
crimination of neat ignitable liquids and single-substrate samples is higher than the sub-
strate mixtures with and without ILRs. 

 
Figure 8. (a) Receiver operating characteristic (ROC) plots for calibrated log-likelihood ratios calcu-
lated for GTFD data with and without ILRs; (b) ILSUB data (solid black curve indicates the average 
ROC curve for all 10 models, whereas the grey indicates the ROC curves from all 10 models). 
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In this equation, (TP2, FP2) and (TP1, FP1) are points in ROC space on the iso-
performance line. The prior probabilities of positive and negative samples are given
by p(p) and p(n), respectively. The costs of classifying a positive sample as negative can be
given by c(p, n), whereas the costs of classifying a negative sample as positive are c(n, p).
Since the prior odds are defined as 1 in the training dataset, the cost ratio is equal to the
slope of the iso-performance line, which must be determined as acceptable by the laboratory.
The ROC plots with iso-performance lines generated for ground truth fire debris data are
presented in Figure 9. These plots were created from the LLRs that were calculated from the
probabilities generated from model 10. The calculated optimal LLRs (decision thresholds)
for slopes 10, 5 and 2.5 are 0.78, 0.78 and 0.22, respectively.
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The sample classifications at LLRs 0.78 and 0.22 in GTFD are summarized in the confu-
sion matrices provided in Table 3. In general, the true positive rate (correct classification as
ILR+ in the presence of ILs) increased from 45% to 71% as the slope decreased; subsequently,
the false positive rate (incorrect classification as ILR+ in the absence of ILRs) also increased
from 3% to 11%.

Table 3. Confusion matrices for GTFD sample classifications at LLRs 0.78 and 0.22.

LLR = 0.78 Predicted class

Correct class IL SUB
IL TP = 258 (45%) FN = 315

SUB FP = 9 (3%) TN = 336

LLR = 0.22 Predicted class

Correct class IL SUB
IL TP = 404 (71%) FN = 169

SUB FP = 38 (11%) TN = 307

The GTFD samples containing ILRs were further examined to identify the true positive
and false positive rates of each ASTM E1618 IL class based on the optimal LLR decision
threshold. TPR and FPR were calculated using Equations (10) and (11), given below. The
results of these calculations are presented in Table 4.

TPR % =
Number of samples where LLR > decision threshold in each class

Total number of samples in each class
× 100 (10)

FPR % =
Number of samples where LLR > decision threshold in substrates

Total number of substrate samples
× 100 (11)
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Table 4. True positive rates (TPRs) for each IL class for substrate mixtures (GTFD) containing ILRs
and neat ILs from ILSUB data based on optimal decision threshold LLR values for slopes 10, 5 and 2.5.

IL Class
LLR = 0.78

(Slope = 10 and 5)
LLR = 0.22

(Slope = 2.5)

TPR (%) (GTFD) TPR (%) (GTFD)

AR 55.9 74.6
GAS 41.5 64.6
ISO 61.3 82.3

MISC 32.4 75
NAL 46.7 68.3
NP 56.9 74.1

OXY 21.8 45.5
PD 44.5 73.3

In the GTFD samples, LLRs ranged from 8.41 to −1.02 in the samples with ILRs.
From this dataset, 474 samples had positive LLRs, and 99 samples had negative LLRs. In
substrate mixture samples (those without ILRs), the LLRs ranged from 3.69 to −2.77.

The iso-performance lines were also created for the ROC curve generated for the ILSUB
data using the LLRs calculated from the probabilities obtained from model 10 (Figure 10).
In this, for slopes 10, 5 and 2.5, the TPR was 98%. The FPR and optimal LLR were 0.0% and
−0.33, respectively. For these samples, changing the slope in the range of 2.5 to 10 did not
affect the magnitude of the parameters.
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The true positive rate (TPR) for neat ILs in the ILSUB data was also calculated using
Equation (10) and are presented in Table 5.
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Table 5. True positive rates (TPRs) for each IL class for neat ILs from ILSUB data based on optimal
decision threshold LLR values for slopes 10, 5 and 2.5.

IL Class
LLR = −0.33

(Slope = 10, 5 and 2.5)
TPR (%) (ILSUB)

AR 100
GAS 100
ISO 100

MISC 94.3
NAL 100
NP 100

OXY 93
PD 99

In substrate mixtures from GTFD (those without ILRs), 84 samples had positive
LLRs. Most of these substrate mixtures contained carpet (nylon, triexta or olefin), flooring
(vinyl/linoleum or laminate), adhesive, roofing and plastic products. Although these
samples do not contain ignitable liquid residues, the pyrolysis products may include
chemicals typically present in some ASTM E1618 classes of ignitable liquid. For example,
adhesives may contain compounds present in PD and AR liquids. Some vinyl materials
pyrolyze to produce aromatic compounds.

The LLR range for the single-component ILSUB samples was 15.95 to −8.71, whereas
the LLR range for the multi-component GTFD samples was only 8.41 to −2.77. The larger
range of LLR values for ILSUB samples reflects a greater evidentiary value at the extremes.
The compressed LLR range for the GTFD samples reflects the decrease in evidentiary value
resulting from the mixture of ignitable liquid residue and multiple substrates. The larger
ROC AUC for the ILSUB samples demonstrates a greater class separation than observed
for the GTFD mixed samples.

4. Conclusions

Based on the AUC of ROC plots, it is evident that the application of CNNs trained
on in silico samples works better for neat ILs and single-substrate samples (ILSUB) than
the substrate mixtures with and without ILRs (GTFD). Although the ROC AUC for the
GTFD samples was high (0.86), the TPRs (0.45 and 0.71) at the optimal operational points
(0.78 and 0.22, respectively) are somewhat low for use in casework. An increase in the ROC
AUC is required to overcome this challenge. Possible ways of achieving an increased ROC
AUC include increasing the number of samples in the in silico training set by adding more
variations of mixtures of substrates and ignitable liquids, varying the wavelet function, and
further optimizing the CNN. In future work, the determination of epistemic uncertainty
in the model will also be discussed to provide a more accurate depiction of the model
estimations of sample classifications.
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