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Abstract: Human mobility data are indispensable in modeling large-scale epidemics, especially
in predicting the spatial spread of diseases and in evaluating spatial heterogeneity intervention
strategies. However, statistical data that can accurately describe large-scale population migration are
often difficult to obtain. We propose an algorithm model based on the network science approach,
which estimates the travel flow data in mainland China by transforming location big data and
airline operation data into network structure information. In addition, we established a simplified
deterministic SEIR (Susceptible-Exposed-Infectious-Recovered)-metapopulation model to verify the
effectiveness of the estimated travel flow data in the study of predicting epidemic spread. The results
show that individual travel distance in mainland China is mainly within 100 km. There is far more
travel between prefectures within the same province than across provinces. The epidemic spatial
spread model incorporating estimated travel data accurately predicts the spread of COVID-19 in
mainland China. The results suggest that there are far more travelers than usual during the Spring
Festival in mainland China, and the number of travelers from Wuhan mainly determines the number
of confirmed cases of COVID-19 in each prefecture.

Keywords: human mobility; travel flow; infectious disease; COVID-19; epidemic model

1. Introduction

Human mobility has become a hot research topic in the scientific community in
recent years because of its application value in many fields [1–6]. In terms of theoretical
epidemiology, a large number of studies have shown that the transnational spread of
many infectious diseases is closely related to individuals’ international air travel, which
is considered to be the primary way of the spread of pathogens between continents [7].
Based on this, epidemiologists incorporate air travel data into epidemic spread models and
have achieved satisfactory results. However, the accuracy of the prediction is limited to
international spread [8–13] because international travel is dominated by air travel, and the
airline operation data are easily accessible. However, there is a lack of nationwide, accurate
and dynamic statistical data that describe the large-scale inter-area travel flows.

To cope with the lack of human mobility data, researchers have established spatial
interaction models to estimate travel flow by using local statistical survey data. The main
spatial interaction models are gravity models and radiation models [14,15], which were
the main research methods used for obtaining human mobility data in the past. Huang
and Mao et al. used publicly available airline operation history data to build a gravity
model and estimated the number of passengers between airports around the world [16,17].
Ajelli and Balcan et al. analyzed commuting flow data from multiple countries and found
a gravity model that can provide a worldwide description of commuting patterns [18–20].
However, spatial interaction models, such as gravity model, cannot describe the dynamic
changes of human mobility in the short term, and the establishment of the model depends
on the availability of historical data.
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Recently, some large-size Internet companies have integrated mobile device location
big data obtained from users and released a human mobility data product, opening up a
new situation for estimating travel flow data [21–23]. At the end of 2019, a new type of
coronavirus was discovered, which was later named SARS-CoV-2 [24]. The respiratory
disease that the virus causes seriously threatened global public health security. Many
epidemiological researchers used human mobility data products released by Internet
companies to evaluate the impact of travel on the spread of COVID-19 or to build scenario
models of COVID-19 [25]. We noticed that most of the data used in these studies are
relative index data (non-actual number of travelers) [26–28], and some data are travel flows
calculated based on the ratio of the number of mobile devices to the permanent census
population in the area [29–33]. However, the reality is that the actual population stock of an
area contains a large number of mobile people, which is quite different from the permanent
population and is very difficult to calculate. As a result, the travel flows calculated by using
mobile devices and census population data may not be sufficiently accurate.

In this study, we propose an algorithm model that combines mobile device location
big data with real airline operation data to estimate the dynamic travel flows because it is
difficult to collect the number of inter-prefecture travelers. In addition, we established a
simplified deterministic SEIR-metapopulation model based on the early spread of COVID-
19 in mainland China to demonstrate the use of estimated travel flows.

2. Materials and Methods
2.1. Data

The original data used in the study were obtained from the migration big data plat-
form developed by Baidu and Tencent. Baidu and Tencent are the two largest Internet
companies in China and have more than 500 million active users, covering almost all
mobile phone users in the country. They provide location services in their applications,
and the collected location big data can fully and truly reflect the status of human mobility.
The Baidu Map Migration Big Data Platform calculates and processes hundreds of billions
of positioning data collected every day and releases the migration proportion data from
the provincial and prefecture levels in mainland China [34]. A detailed description of
China’s administrative divisions is described in Appendix A. Tencent location big data
analyzes massive user location data to calculate the proportion of different transportation
modes on each arrival/departure route between all cities [35]. In this study, we obtained
the migration proportion data from 1 January 2020 to 31 January 2020 from the Baidu
Map Migration Big Data Platform, covering 337 administrative regions, including 333
prefectures and four municipalities. The proportion of different transportation modes on
each of the 10 routes arriving and departing from Beijing was obtained from the Tencent
location big data platform.

The daily airline operation data of all civil airports in mainland China were obtained
from VariFlight Company [36], including airport information, the three-character codes of
departure and arrival airports, and the actual number of passengers on each route (only
some of the data are the number of seats).

In order to reconstruct the spread of COVID-19 in mainland China using a mathemati-
cal model, we obtained COVID-19-related data from the National Health Commission of
China [37], including the number of daily cumulative confirmed cases of all prefectures
from 24 January 2020 to 16 February 2020.

All the data mentioned above are anonymous aggregated data and do not involve
personal information.

2.2. Estimating Human Mobility Patterns in Mainland China
2.2.1. Overview of the Methodology

In order to estimate the human mobility patterns in mainland China and build a hu-
man mobility network (directed network) between all prefectures, we propose a data fusion
algorithm model based on the network science approach, which can estimate travel flow
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data in mainland China. Here, we use the network adjacency matrix A =
(

Aij
)

to describe
the travel flow, and the matrix element Aij represents the estimated number of travelers
from prefecture i to the other prefecture j. Figure 1 gives an overview of the data and
algorithm steps of the modeling framework for estimating the human mobility network.
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The modeling is mainly carried out in three steps. First, the relationship between
the daily total departure/arrival population of different prefectures is obtained from the
migration proportion data and converted into a bipartite network. Here, the total departure
population of a prefecture indicates the number of all individuals leaving this prefecture
on one day, and the total arrival population of a prefecture indicates the number of all
individuals entering this prefecture on one day. This bipartite network is undirected and
weighted and we can estimate the total departure/arrival population of all prefectures
by using it if the total departure/arrival population of an arbitrary prefecture is known.
Second, the total departure/arrival population of an arbitrary prefecture (such as the total
departure population of Beijing) is estimated using the ratio estimation method combined
with airline operation data and the proportions of transportation modes. Lastly, using the
breadth-first traversal algorithm, the total departure/arrival population of all prefectures
is estimated. Furthermore, the travel flows between any two prefectures are estimated.
More details about the model algorithm are described in Section 2.2.2.

2.2.2. Model

Step 1: Generate star structure network. All prefectures are coded and sorted, and the
migration proportion data of each prefecture are sequentially converted into a star network
of arrival type and a star network of departure type. Specifically, the migration proportion
data of a prefecture list 100 sources, 100 destinations, and the proportion of people on each
route out of the total people entering (or leaving) the prefecture. A detailed description of
the migration proportion data is available in Appendix B. For each prefecture, the central
node of the star network of arrival type (or departure type) corresponds to the prefecture,
and the nodes connected only to the central node correspond to the sources (destinations)
listed in the migration proportion data. The weight of the edge in the network is the
migration proportion. The schematic diagram of converting the migration proportion data
of prefecture into a star network is shown in Figure A1.
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Here, the star network of arrival type can be expressed as Gin
i
(
Vin

i , Ein
i
)
, where Vin

i
represents the node set of the star network, including the central node i and its 100 neighbor
nodes; Ein

i represents the edge set of the star-structure network, including 100 weighted
directed edges pointing to the central node i, and the weight of ein

ji , the edge connected

from j to i, is set to pin
ji . Similarly, the star network of departure type can be expressed as

Gout
i
(
Vout

i , Eout
i
)
. Figure 2a shows a schematic diagram of a star network of arrival type

and a star network of departure type.
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Step 2: Generate a bipartite network. For any two prefectures i and j, the travel
flow from prefecture i to prefecture j is set to nij, the number of total people leaving the
prefecture i is set to Nout

i , and the number of total people entering the prefecture j is set to
Nin

j . Obviously, there is the following conservation relationship between the number of
migrants:

pout
ij ·Nout

i = nij = pin
ij ·Nin

j , (1)

Under the premise that there are data on the migration proportions pout
ij and pin

ji , if

Nout
i is known, Nin

j can be calculated according to the equation. Based on the conservation
relationship (Equation (1)), we hope to estimate the total arrival and total departure
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populations of each prefecture from the total arrival (or departure) population of an
arbitrary prefecture through multiple iterations.

In the model, we implemented this iterative estimation process by traversing the
bipartite network. First, in order to build a bipartite network, we generated a node of
arrival type and a node of departure type in the bipartite network that correspond to each
prefecture. For example, corresponding to prefecture i, iin represents the node of arrival
type and iout represents the node of departure type. In the bipartite network, if there is
the edge eiout jin between iout and jin, we can calculate Nout

i from Nin
j , or calculate Nin

j from

Nout
i . Whether there is an edge between iout and jin can be inferred from the structural

information of the star networks. Specifically, if the node j is in the star network Gout
i , and

the node i is in the star network Gin
j , nodes iout and jin are connected by the edge eiout jin

in the bipartite network, and the weight of the edge is set to pout
ij /pin

ij . After traversing

all the nodes, we built the bipartite network G = (Vin, Vout, E), where Vin =
{

iin, jin, · · ·
}

represents the set of all arrival type nodes, and Vout =
{

iout, jout, · · ·
}

represents the set of
all departure type nodes.

Step 3: Estimate the total departure/arrival population of all prefectures. To estimate
the total departure/arrival population of all prefectures, we need to input the state value
of an arbitrary node of the bipartite network G, that is, the total arrival or total departure
population of the prefecture corresponding to the node. Assume that total the depar-
ture/arrival population of prefecture i is input as the initial information. According to the
airline operation data, we can obtain the number of air passengers nair

ij from prefecture

i to prefecture j. Combining the proportion of air passengers pair
ij to all travelers from

prefecture i to prefecture j, we can estimate the number of travelers from the prefecture i to
the prefecture j:

nij = nair
ij /pair

ij , (2)

According to the estimation method introduced above, the number of travelers on
multiple departure routes of prefecture i can be estimated. Since the estimated number of
travelers nij on each route is proportional to migration proportion pout

ij ,

nij = Nout
i ·pout

ij , (3)

Furthermore, the ratio estimation method is used for estimating the total departure
population of prefecture i, namely

N̂out
i =

nij

pout
ij

=
∑j nij

∑j pout
ij

, (4)

After estimating the total departure population of prefecture i, the breadth-first traver-
sal algorithm is applied to the bipartite network G to traverse all nodes to estimate the total
arrival and total departure populations of all prefectures.

Step 4: Build the human mobility network. In this study, we describe the human
mobility pattern in mainland China in the form of a weighted directed network. The nodes
of the human mobility network are all prefectures in mainland China. Edges in the network
characterize the state of travel between the prefectures. Specifically, the matrix element
Aij of the network adjacency matrix A represents the estimated number of travelers from
prefecture i to the other prefecture j.

Here, we estimate the travel flows between prefectures using the estimation results of
the total departure/arrival population of all prefectures and the migration proportion data.
First, we use the estimation results of the total departure population of all prefectures. For
example, the estimated total departure population of prefecture i is N̂out

i . For all neighbor
nodes of i in the departure type star network Gout

i , such as the node j, the travel flow from
prefecture i to prefecture j is estimated to be N̂out

i ·pout
ij . Then, we use the estimation results

of the total arrival population of all prefectures. For example, the estimated total arrival
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population of prefecture i is N̂in
i . For all neighbor nodes of i in the arrival type star network

Gin
i , such as the node j, if the travel flow from prefecture j to prefecture i has not been

estimated, the flow is estimated to be N̂in
i ·pin

ji . For routes for which the travel flow cannot
be estimated, the travel flow on the route is set to 0. The above is the method for building
a human mobility network. The pseudocode of the algorithm used for generating the
bipartite network and estimating the total arrival and total departure population of each
prefecture is shown in the Supplementary Material.

2.3. Modeling the Spread of Epidemics Using Human Mobility Data

The outbreak of COVID-19 in Wuhan coincided with the Spring Festival travel season
in China, and a large number of returnees left or passed through Wuhan. After clarifying
the infectiousness of COVID-19, the Chinese government adopted strict intervention
strategies, including locking down Wuhan and restricting travel across mainland China. In
order to verify the effectiveness of the travel flows estimated by our model in predicting
epidemics, understanding the early propagation dynamics of COVID-19, and evaluating
the effectiveness of intervention strategies, we established a simplified spatial mechanism
model of COVID-19 to simulate its spread in mainland China.

Based on the traditional SEIR compartment model we established a deterministic
SEIR-metapopulation model that incorporates human mobility factors and considers in-
tervention strategies such as quarantine and travel restrictions [38]. In detail, considering
the complexity of establishing a stochastic SEIR model on 337 prefectures, we divided
mainland China into 3 subpopulations, namely Wuhan City, Hubei Province (excluding
Wuhan), and mainland China (excluding Hubei Province). The estimated travel flows
between 337 prefectures were integrated into the travel flows between the three subpopula-
tions. The corresponding human mobility network is shown in Figure A2b. Individuals
within subpopulation i are divided into various compartments according to the infection
and isolation status, namely Si (i.e., susceptible individuals who are not isolated), Ei (i.e.,
infected individuals who are during the incubation period and not isolated), Ii (i.e., infected
individuals who are symptomatic and not isolated), Sq

i (i.e., susceptible individuals who
are isolated), Eq

i (i.e., infected individuals who are during the incubation period and are
isolated), and Ci (infected individuals who were diagnosed at hospital and isolated).

In the metapopulation model, travel flows on different dates are considered to be
independent of each other, that is, in each time step, the movement of the individuals in
the previous time step is not considered. The quantity of state of each compartment in
each subpopulation is updated according to the human mobility network adjacency matrix
M =

(
mij
)

3×3, where mij represents the travel flow from subpopulation i to subpopulation
j in a unit of time. The gist of the above assumptions is that we do not mark individuals
according to their original subpopulations (e.g., homes in the framework considering
commuting patterns), and at each time step, the same travel probability applies to all
individuals in the subpopulation without having to remember their source.

Considering that some infected persons with obvious symptoms cannot participate
in travel normally, the proportion of symptomatic infected individuals that can travel
normally is assumed to be kI(kI < 1) in the model. In addition, isolated individuals
cannot travel between subpopulations. Nm

i (t) represents the number of individuals in the
subpopulation i that can travel between subpopulations. At the start of each simulated
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day, travelers move to their destinations via the human mobility network, and the travel
process is represented by the following difference equations:

Nm
i (t) = Si(t) + Ei(t) + kI Ii(t) + Ri(t)

∆Si(t) =
N
∑

j= 1

Sj(t)mji(t)
Nm

j (t) −
Si(t)∑N

j= 1 mij(t)
Nm

i (t)

∆Ei(t) =
N
∑

j= 1

Ej(t)mji(t)
Nm

j (t) −
Ei(t)∑N

j= 1 mij(t)
Nm

i (t)

∆Ii(t) = kI

(
N
∑

j=1

Ij(t)mji(t)
Nm

j (t) −
Ii(t)∑N

j= 1 mij(t)
Nm

i (t)

)
∆Ri(t) =

N
∑

j= 1

Rj(t)mji(t)
Nm

j (t) −
Ri(t)∑N

j= 1 mij(t)
Nm

i (t)

(5)

After updating the individual movements of all subpopulations, the transfer of individ-
uals between different compartments in each subpopulation based on the epidemiological
natural history of COVID-19 and the implementation of intervention strategies is modeled
by the following:

Ni(t) = Si(t) + Ei(t) + Ii(t) + Ri(t)
∆Si(t) = −(βc(t) + (1 − β)c(t)q(t)) Si(t)

Ni(t)
(Ii(t) + υEi(t)) + λSq

i (t)

∆Ei(t) = βc(t)(1 − q(t)) Si(t)
Ni(t)

(Ii(t) + υEi(t))− σEi(t)
∆Ii(t) = σEi(t)− (δI(t) + γI)Ii(t)

∆Sq
i (t) = (1 − β)c(t)q(t) Si(t)

Ni(t)
(Ii(t) + υEi(t))− λSq

i (t)

∆Eq
i (t) = βc(t)q(t) Si(t)

Ni(t)
(Ii(t) + υEi(t))− δq(t)Eq

i (t)
∆Ci(t) = δI Ii(t) + δqEq

i (t)

(6)

Medical researches show that individuals with no symptoms (during the incubation
period) infect others just like the symptomatic [39–41]. Thus, in this model, new infections
are mainly transformed from susceptible individuals who had contact with infected in-
dividuals who have not been isolated (Ii and Ei). In order to make the model as realistic
as possible, while avoiding making the model too complicated, we set several auxiliary
parameters. For instance, c(t) represents the average number of effective contacts between
Ii and Si in a day. Similarly, c(t)·υ represents the average number of effective contacts
between Ei and Si in a day. β represents the infection probability of each effective contact.
A proportion of close contacts are quarantined (isolated) due to contact tracking, and
the proportion is set to q(t). If the individuals are isolated during the incubation period,
they will be classified into the Eq

i compartment; otherwise (if they had close contact with
an infectious individual but have not been infected), they will be classified into the Sq

i
compartment. λ represents the rate of release from isolation. In other words, 1/λ is the
duration of isolation in Sq

i . Infected individuals who have not been quarantined (i.e., Ii) are
diagnosed at a rate of δI every day. According to the “Protocol on Prevention and Control
of COVID-19 (Edition 6)” issued by the National Health Commission of China [42], for
individuals isolated due to close contact tracing, their respiratory specimens or serum will
be detected as soon as they are isolated. This means that most of isolated infected people
will be detected positive for novel coronavirus nucleic acid or IgM in serum before they
have symptoms such as fever. These persons are called “asymptomatic infected persons
who have been discovered” in China. They will be diagnosed as a confirmed case as soon as
obvious symptoms appear on them. Correspondingly, we assume that infected individuals
who are during the incubation period and isolated (i.e.,Eq

i ) are diagnosed at a rate of δq.
σ represents the transformation rate from Ei to Ii. γI represents the rate of recovery of
infected individuals who have not been quarantined (i.e., Ii). The schematic diagram of the
SEIR compartment model is shown in Figure A2a.
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We simulated the spread of COVID-19 from 1 January 2020 and the simulation was
divided into two periods. The first period was from 1 January to 23 January (Wuhan
was in lockdown from 23 January), in which period, the estimated travel flow data were
used for modeling the spatial propagation of COVID-19 in mainland China. In order to
simplify the model, we set some parameters to be constants in the two periods. The average
number of daily effective contacts of individuals was set to c(t) = c1, the diagnosis rate
of symptomatic infected individuals (Ii) was set to δI(t) = δI1, and the diagnosis rate of
quarantined exposed individuals (Eq

i ) was set to δq(t) = δq1. The second period was from
24 January to 31 March. Due to strict quarantine and travel restrictions, in this period, the
travel between Wuhan and other prefectures of mainland China were cut off. Accordingly,
the average number of daily effective contacts of individuals was set to c(t) = c2, the
diagnosis rate of symptomatic infected individuals was set to δI(t) = δI2, and the diagnosis
rate of quarantined exposed individuals was set to δq(t) = δq2.

According to related research on social contact patterns, the average number of social
contacts in China has decreased significantly after the Chinese government clarifying
the infectiousness of COVID-19 [28,43]. Thus, we assumed that c2 was less than c1. In
addition, with the extensive use of testing reagents, the rate at which infected persons
were tested and diagnosed was also significantly faster in the second period. Accordingly,
we set that δI1 was less than δI2 and δq1 was less than δq2. Since the incubation period of
most infected individuals will not exceed 14 days, the isolation policy in China was that
quarantined individuals will be released if they are not diagnosed with the virus within 14
days. Therefore, λ was set to 1/14.

Some parameters in the model were unknown, and the set of unknown parameters
was denoted as Θ =

{
β, c1, c2, q, υ, σ, γI , δI1, δI2, δq1, δq2

}
. In order to simulate the early

spread of covid-19 in China as realistically as possible, we hope to obtain a set of parameters

so that the error (
N
∑

t=0

∣∣C(t)− Ĉ(t)
∣∣2) between the simulated number of confirmed cases and

the real number of confirmed cases is as small as possible. Just as f =
N
∑

t=0

∣∣C(t)− Ĉ(t)
∣∣2 is

nonlinear and the parameters are constrained, this kind of problem of finding the global
minimizer of f is called the constrained nonlinear programming problem (CNLP) [44].
Thus, the parameter estimation problem of the model can be expressed as the following
constrained nonlinear optimization problem:

P0 : min
Θ

N

∑
t=0

∣∣C(t)− Ĉ(t)
∣∣2s.t.


c1 > c2

δI1 < δI2
δq1 < δq2

ΘU ≥ Θ ≥ ΘL

(7)

3. Results

In order to accurately understand the human mobility patterns in mainland China,
we designed an inter-prefecture travel flow estimation model based on mobile device
location big data and airline operation data. Figure 3 shows the estimated inter-prefecture
human travel patterns in mainland China using the model. Figure 3a shows the human
mobility network of prefectures in mainland China during the Spring Festival. In order to
show the characteristics of travel in China, we used the infomap algorithm proposed by
Rosvall and Bergstrom to perform a simple community division on this human mobility
network [45]. The infomap algorithm is a method of identifying community structure in
directed and weighted networks (especially networks inherently characterized by flows). In
the picture, all prefectures are divided into 21 communities, and nodes with the same color
belong to the same division community. Nodes assigned to the same network community
indicates that the communication between these nodes is more frequent and closer than
those belonging to different communities. In the map, the areas separated by gray dotted
lines are different provinces. It is obvious that prefectures belonging to the same province
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are usually divided into the same network community, indicating that Chinese people are
more inclined to travel to prefectures in the province in which they were born.
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Figure 3b depicts the change in the number of net outflows (the total departure
population minus the total arrival population) of 10 cities in January 2020. As the matrix
element Aij represents the estimated number of travelers from city i to another city j in

one day, the net outflow of city i is equal to
N
∑

j=1
Aij −

N
∑

j=1
Aji. We selected the top five cities

for the net outflow population and the top five cities for the net inflow (the opposite of
net outflow) population. Each line represents a city. It can be clearly seen from the figure
that during the Spring Festival travel season, large cities, such as Beijing and Shanghai,
are dominated by population outflows (the total departure population is greater than the
total arrival population), especially during the peak period (Chinese Little New Year to
Chinese New Year), during which millions of people leave every day. In China, there will
be a large number of people going to work or study in big cities. The Spring Festival is
the most important festival in China. Before the Spring Festival, these people will leave
the big cities and return to their hometowns to celebrate the Spring Festival. Especially
in the days leading up to the Spring Festival, there will be a very large number of people
returning hometown. We guess that this pattern of human mobility will lead to the result
that it is easier for the epidemics that occurred in big cities during the Spring Festival to
spread to small cities than usual. After the Spring Festival, the situation reversed and
people began to return to these big cities to work. However, due to travel restrictions, the
scale was significantly smaller than during the Spring Festival. Figure 3c shows the density
distribution of individual travel distances. Obviously, the human mobility patterns are
dominated by short- and medium-distance trips, and the vast majority of travel takes place
within 100 km. In addition, the average travel distance during the Spring Festival travel
season (blue curve) is slightly larger than that of daily travel (purple curve), which may be
because, during the Spring Festival, more migrant workers return to remote hometowns.

In order to verify the effectiveness of the travel flow data estimated by our model in
predicting epidemics, first, we conducted a correlation analysis on the cumulative number
of confirmed cases of COVID-19 and the number of travelers from Wuhan. Figure 4a shows
that the cumulative number of confirmed cases in each prefecture is highly correlated with
the number of travelers from Wuhan, with a Pearson correlation coefficient value of 0.98,
and a significance level of P < 2.2 × 10−16. This is consistent with the conclusion that the
spatial transmission of epidemics is mainly affected by human mobility.

Furthermore, we established a deterministic SEIR-metapopulation model that repro-
duces the spread of COVID-19 in mainland China to demonstrate the significance of the
estimated travel flow data for the spatial spread mechanism model of epidemics. In the
early stage of the epidemic, the health department had insufficient knowledge of the new
virus and a lack of diagnostic programs, which resulted in a large difference between the
number of reported confirmed cases and the actual number of infections in Wuhan. On the
other hand, infection cases of other prefectures appeared late, so the reported case data
are more accurate. Based on the above considerations, we used the cumulative number
of confirmed cases in mainland China (excluding Hubei Province) from January 24 to
February 17 for model parameter fitting. We solved this nonlinear optimization using the
fmincon function in MATLAB. A set of possible values of the parameters were obtained,
which are shown in the Table A2. Then, we simulated the early spread of COVID-19 in
mainland China used these possible parameters. Figure 4b shows the officially released
data of confirmed cases and the epidemic development curve predicted by the model.
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confirmed cases and the number of travelers from Wuhan; (b) development curve of COVID-19
predicted by the model.

4. Discussion

In this study, considering the availability and accuracy of airline operation data and the
large sample size of the mobile device location big data, we designed an algorithm model
to estimate the inter-prefecture human travel flow in mainland China. The data required
for the model are mainly the proportion of migration and the proportion of transportation
modes. In other areas where such data are available, the human mobility pattern can also
be estimated by this model. Our estimated human mobility pattern in mainland China
shows that individuals’ travel distances are subject to long-tailed distribution, which is
consistent with the general conclusions of human mobility in other studies. In addition,
individuals in China are more inclined to travel between prefectures of the same province.
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Compared to traditional statistical survey data, mobile device location big data can provide
detailed and dynamic personnel location changes in real time, and the large-scale human
mobility patterns estimated using mobile device location big data can better reveal the
characteristics of human social activities.

The use value of travel flow data estimated by our model is demonstrated in the
work reproducing the spread of COVID-19. The cumulative number of confirmed cases in
each prefecture is highly correlated with the estimated number of travelers from Wuhan.
Moreover, in the established spatial spread mechanism model, the predicted curve fits the
real confirmed case data well. However, there are several limitations in epidemic simulation
modeling. First, it should be pointed out that we did not consider the stochasticity factor
in the simulation and we simply established a deterministic epidemic model. Second, we
fitted the epidemic parameters via using just one time series data. When solving nonlinear
programming problems, what we want to do most is to calculate a global minimizer.
However, this is very difficult, and finding a local minimizer through numerical algorithms
is the best attempt we can do. Thus, it is difficult to guarantee that a unique set of values of
parameters that gives the best fit can be obtained. Therefore, the uncertainty of the solution
will cause that we cannot guarantee that the obtained parameters fit reality because the
values of the parameters have certain realistic epidemiological significance. Our simulated
epidemiological transmission may only guarantee that the number of confirmed cases
fit reality, while the dynamics of other compartments may be different from the real
scenario. We hope that the public health department will release more anonymized cases
data, and that researchers with these data will carry out more in-depth studies on the
epidemiological parameters.

In addition, considering the complexity of establishing a stochastic SEIR model on 337
prefectures, we simply divided mainland China into three subpopulations in this study.
Follow-up work can establish metapopulation models for all prefectures to obtain higher
resolution simulation results. Furthermore, researchers can obtain the proportional data of
transportation modes among all prefectures in mainland China, based on which number of
inter-prefecture travelers with different transportation modes can be calculated. Therefore,
researchers can model and study the spread of infectious diseases with different means
of transportation.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/healthcare9091224/s1, Figure S1: Pseudocode of the algorithm used for generating bipartite
network and estimating total arrival and total departure population of each administrative.
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Appendix A

The administrative division system of China can be described as “Province–Prefecture–
County”. Specifically, as for the first-level division, the Constitution clearly states that
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China is divided into 23 provinces, five autonomous regions, four centrally-administered
municipalities (i.e., Beijing, Shanghai, Tianjin, Chongqing), and two special administrative
regions (i.e., Hong Kong, Macau). These 34 regions are provincial-level administrative
regions. The subdivision of the provincial-level administrative region is the prefecture. The
subdivision of the prefecture is the county. In this study, we estimated human mobility
networks composed of 333 prefectures and four municipalities (metropolises) in mainland
China. In order to avoid confusion, four municipalities were treated as prefectures in
this study.

Appendix B

Table A1 shows the example of the migration proportion data obtained from the
Baidu Map Migration Big Data Platform. For instance, one source/destination prefecture
of Beijing is Langfang and the move type is ‘move in’, which indicates that there are
individuals who move from Langfang to Beijing. One source/destination prefecture
of Beijing is Baoding and the move type is ‘move out’, which indicates that there are
individuals who move from Beijing to Baoding. The data lists 100 source prefectures
and 100 destination prefectures for each prefecture every day, and it is sorted by the
migration proportion.

Table A1. Example table of the migration proportion data.

Order Number Prefecture Code Prefecture Name Source/Destination
Prefecture Proportion (%) Date Move Type

1 110000 Beijing Langfang 13.74 2020-01-02 Move in

2 110000 Beijing Baoding 7.83 2020-01-02 Move in

. . .

100 110000 Beijing Foshan 0.16 2020-01-02 Move in

1 110000 Beijing Langfang 9.27 2020-01-02 Move out

2 110000 Beijing Baoding 7.12 2020-01-02 Move out

. . .

100 110000 Beijing Mudanjiang 0.19 2020-01-02 Move outHealthcare 2021, 9, x  14 of 16 
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Figure A2. Schematic diagram of epidemic simulation model. (a) Schematic diagram of compartment
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Table A2. Definition of the parameters and possible values obtained by solving optimization problem.

Parameters Notation Values Source Interpretations

probability of transmission β 0.028964 CNLP probability of transmission per effective contact

number of contacts
c1 21.332 CNLP number of effective contacts in 1st period

c2 7.3657 CNLP number of effective contacts in 2nd period

proportion of isolation:
q(t) = 1

1+ea−b·(t−23)

a 3.6818 CNLP coefficient of Sigmoid function

b 0.63232 CNLP coefficient of Sigmoid function

coefficient of difference ν 0.25175 CNLP coefficient of difference between E and I

rate of transformation
between compartments

λ 0.071429 [44] rate at which the quarantined uninfected were released

σ 0.20000 [46] rate at which the infected from E to I

δI1 0.073912 CNLP rate at which person from I to C in 1st period

δI2 0.18210 CNLP rate at which person from I to C in 2nd period

δq1 0.017459 CNLP rate at which person from Eq to C in 1st period

δq2 0.42601 CNLP rate at which person from Eq to C in 2nd period

γ 0.095992 CNLP rate at which the infected from I to R

proportion κ 0.51317 CNLP proportion of symptomatic infected individuals that can
travel normally

Min(P0) 7.9 × 104 CNLP local minimum of error
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