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Abstract: There is a compelling need for a new form of head scanner to diagnose whether a patient
is experiencing a stroke. Crucially, the scanner must be quickly and safely deployable at the site
of the emergency to reduce the time between a diagnosis and treatment being commenced. That
will help to improve the long-term outlook for many patients, which in turn will help to reduce
the high cost of stroke to national economies. This paper describes a novel scanning method that
utilises low-intensity electromagnetic waves in the radio frequency/microwave band to detect a
stroke-affected region in the brain. This method has the potential to be low cost, portable, and widely
deployable, and it is intrinsically safe for the patient and operator. It requires no specialist shielding
or power supplies and, hence, can be rapidly deployed at the site of the emergency. That could be at
the patient’s bedside within a hospital, at the patient’s home or place of work, or in a community
setting such as a GP surgery or a nursing home. Results are presented from an extensive programme
of scans of inanimate test subjects that are materially valid representations of a human head. These
results confirm that the scanning method is indeed capable of detecting a stroke-affected region in
these subjects. The significance of these results is discussed, as well as ways in which the efficacy of
the scanning methodology could be further improved.

Keywords: stroke detection; portable head scanner; low-intensity EM waves; intrinsically safe; low
carbon footprint

1. Introduction

Strokes are the 4th most prevalent cause of death and the leading cause of long-term
invalidity in the UK [1]. Globally, the statistics are considerably worse with strokes being
the 2nd most prevalent cause of death, although they are only the 3rd leading cause of
long-term invalidity [2]. In the UK, around 110,000 people experience a stroke each year
and around 1.2 M survivors are living with the consequences today. The treatment and
rehabilitation for these patients, including the loss of productivity in the workplace and
the high volume of benefit claims, costs the UK economy around GBP 26bn annually [1].
That figure is projected to reach GBP 75bn by 2035 if the current trajectory is sustained.

Given that the total healthcare expenditure in the UK for 2018 was GBP 214.4bn, which
accounted for about 10.0% of GDP that year [3], it is clear that the cost of stroke alone
is a significant percentage. That cost is intimately linked to the survivability of stroke
patients and the proportion who require protracted treatment and long-term rehabilita-
tion. The percentage figure for that proportion is influenced by the time between the
occurrence of their stroke and treatment being commenced. The often-quoted mantra in
medical circles, “time is brain”, perfectly sums up the criticality of stroke patients receiving
treatment promptly in order to save as much healthy brain tissue as possible and lessen
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the long-term consequences. Stroke patients who receive treatment within the first hour
following their stroke—the so called “golden hour”—have the highest probability of a
good recovery requiring little, if any, rehabilitation (assuming there are no pre-existing
underlying health issues that dominate the outcome). However, once past the golden hour,
the long-term outlook for surviving patients begins to decline, and beyond around 3–4 h the
outlook rapidly diminishes, with some degree of long-term invalidity becoming inevitable.
Typically, around 66% of these patients leave hospital with a long-term disability [1].

The current pathway for stroke patients requires them to be transported from the
site of the emergency, which in many cases is their own home or place of work, to the
nearest acute stroke unit to receive a CT and/or MRI scan. Only then can a conclusive
diagnosis be made on whether the patient has indeed experienced a stroke and about
which type of stroke they experienced (ischaemic: i.e., a clot, haemorrhagic: i.e., a bleed).
Only then can the appropriate treatment be administered. Delays, sometimes significant,
can occur at several points in the pathway, between the emergency call being made and
treatment commencing. In the UK, thrombolysis treatment for ischaemic strokes, which
are about 85% of all cases [1], is only licensed to be administered to patients within 4.5 h
from the onset of their symptoms [1]. If the time when symptoms began is unknown,
or it is known that more than 4.5 h have elapsed since symptoms began, the treatment
cannot be provided. The outlook for those patients is inevitably compromised given that
thrombolysis reportedly increases the chance of a good outcome by 30% [1].

If a diagnosis can be made at the site of the emergency and the stroke is confirmed
to be ischaemic, there is the potential for many more patients to fall within the eligibility
window for thrombolysis if it can be administered at that location. That will help to increase
the proportion of stroke survivors who require little or perhaps even no long-term care and
rehabilitation. Statistics show that the number of patients who survive a stroke and are
able to return to their normal lives without any added assistance increases by 2% when
thrombolysis is given within 3 h [1]. Besides that being of huge benefit to those patients, it
will also help to reduce the enormous cost of stroke to the nation. However, administering
thrombolysis at the site of the emergency is not yet approved in the UK. Furthermore, there
is not yet a widely available capability to determine the type of stroke at the site of the
emergency. Trials are underway in some countries with specially adapted ambulances
that contain a CT scanner to deliver a diagnostic capability for stroke at the site of the
emergency [4,5]. These vehicles will always be extremely few in number due to their high
cost, and hence, they will only be available to an extremely small number of cases that
happen to arise in a favourable location. This resource, although of immense benefit to the
few stroke patients involved, will nevertheless have a negligible impact on the national
statistics for stroke.

However, there is also the potential for time to be saved elsewhere in the patient
pathway, specifically, by shortening the door-to-needle time (i.e., the time between the
patient arriving at the hospital door and treatment being commenced). Although this
is not as profound a saving of time compared with commencing treatment at the site of
the emergency, shortening the door-to-needle time is readily implementable within the
current pathway procedures and will make an important contribution to increasing the
proportion of ischaemic stroke patients who are eligible to receive thrombolysis. Figure 1
illustrates how this can be achieved by equipping the attending paramedics at the site of
the emergency with a new form of head scanner that is capable of reliably determining
whether the patient is or is not experiencing a stroke, regardless of the type. This is the
motivation for the authors’ research reported in this paper. If the diagnosis is positive, the
attending paramedics can alert the acute stroke unit’s clinicians that a confirmed case of
a stroke is now in transit. In addition, diagnostic data and images could be shared with
these clinicians in real time during the journey via 4G/5G mobile connections, enabling
the stroke unit to be more fully prepared to fast track the patient upon arrival. To quote
a seminal review of this topic published in The Lancet [6], “Stroke physicians should be
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engaged not only in the in-hospital phase, but also in the pre-hospital phase of acute stroke
management”.

Figure 1. Reducing delay in the patient pathway for stroke.

Clearly there is a compelling need and significant benefits to be gained from a new
form of head scanner for stroke diagnosis that can be carried in all present-day ambu-
lances and other first response vehicles and quickly and safely deployed at the site of
the emergency. The authors are researching a new method of scanning that has the po-
tential to meet this challenge. It uses low-intensity electromagnetic waves in the radio
frequency/microwave band to detect the presence of a stroke-affected region in the brain.
No specialist shielding or bespoke high-voltage power supply are required, which enables
the new scanning modality to be operated almost anywhere with no prior planning. The
use of low-cost COTS devices throughout the experimental apparatus and a compact,
lightweight, portable construction provides a credible blueprint for a future commercially
developed scanner that could be carried in ambulances and first response vehicles and
operated on-scene in complete safety. Such a scanner could also be widely deployed in
hospitals on crash trolleys and operated at the bedside in emergency departments and
high-dependency wards, and similarly in nursing and care homes where there is a localised
elderly population at an increased risk of stroke. The material and operational carbon
footprint of the scanner would be intrinsically low, and the absence of any form of ionizing
radiation and toxic materials avoids costly end-of-life disposal directives.

In this paper, the authors describe their research into the new scanning modality
and report the latest results from a comprehensive programme of scans of inanimate
test subjects that are materially valid representations of a human head. The results are
presented in a visual format that illustrates how a diagnosis could be displayed to the
scanner operator. This serves to highlight the simplicity in interpreting these images, which
enables the operator to quickly form a diagnosis. It is clear from these results that the
new modality is indeed capable of detecting the presence and location of a stroke-affected
region in the test subjects. At this stage of development, it is not yet known whether
the new modality has the ability to reliably determine the type of stoke—ischaemic or
haemorrhagic. However, discussions with stroke specialists have revealed that the ability
to reliably confirm a stroke/no-stroke diagnosis at the site of the emergency, and then to
alert the acute stroke unit ahead of arrival, would be a significant and welcome advance
over the current protocols. That is the focus of the authors’ current research and the results
reported in this paper.
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2. Related Work in This Field

Methods of scanning and imaging human anatomy with low-intensity radio frequen-
cies/microwaves are being researched by other institutions across the world. For example,
researchers at the University of Queensland at Brisbane, Australia [7–9], are investigating
a scanning modality for stroke diagnosis that has some similarities with that reported in
this paper. Their scanning apparatus acquires data across a similar range of frequencies,
although they use a different approach to reconstruct an image of a stroke inclusion in
their test subjects. They have also avoided the need for mechanical movements in their
scanning apparatus by implementing a ring of stationary antennas encircling the subject
that electronically translate the scanning beam in a circular path. Their results demonstrate
that a stroke inclusion can be detected using their particular scanning modality, which is
consistent with the findings from the different scanning modality reported in this paper.

Other institutions have taken their research in this area to commercialisation. Medfield
Diagnostics (Gothenburg, Sweden) is commercialising in their Strokefinder product [10,11]
with work undertaken by researchers at the Chalmers University of Technology in Gothen-
burg, Sweden and partner institutions [12,13]. They are also targeting stroke diagnosis
using low-intensity radio/microwave frequencies; however, their approach differs from
the authors of this study in several key areas. Firstly, their scanning modality uses a pulsed
beam and the acquired data from the scanning chamber contains time-of-flight information,
akin to radar. Secondly, their scanning beam does not translate around the phantom in
a circular orbit. Instead, an array of stationary antennas is arranged in a bowl-shaped
geometry that fits over the patient’s head. One antenna is assigned as the pulse transmitter
at any moment while the others are receivers, then a different antenna is assigned as the
transmitter while the others are receivers. That sequence progresses around all of the
antennas in a defined but noncircular sequence.

Micrima (Bristol, UK) is commercialising in their Maria product [14] work that was
originally undertaken at the University of Bristol [15,16]. Maria also uses low-intensity ra-
dio/microwave frequencies in a radar-like modality; however, its application is exclusively
breast screening. It also uses an array of stationary antennas arranged in a bowl-shaped
geometry but designed to accommodate a woman’s breast. The scanning modality and
the manner in which it has been implemented in Maria affords a number of advantages
over conventional breast screening, in particular, a greatly increased degree of safety for
the patient and operators through the absence of X-rays, and a much-improved degree of
comfort for the patient during the examination. These and other advantages are described
in the referenced articles.

A common thread running through these examples and the authors’ work reported
in this paper is the intrinsic safety of the scanning modalities as well as the potential for
some of the scanners to be portable and deployed at the patient’s location with no prior
planning. This is a profound departure from their equivalents that use X-rays or intense
magnetic fields.

3. Materials and Methods
3.1. Considerations in Computed Tomography

In X-ray CT, the scanning beam is arranged to penetrate the whole subject, from front
to back, then detected as it emerges on the far side. Information about the scanned subject
is contained within the characteristics of the detected signal. That form of propagation and
detection is labelled S21 according to scattering parameters convention (S-parameters) [17].
The extremely short wavelength of X-rays (0.01–10 nm) and the intensity of the beam
ensure that the projection (i.e., shadow) cast by the subject on the detectors has a well-
defined outline with little diffusion around the edges. An image of the scanned subject is
reconstructed from the data delivered by the detectors using an algorithm based on the
Inverse Radon Transform [18], which is well suited to the sharply defined edges of the
projection and the low level of diffusion.
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Initially the authors adopted the S21 configuration in their new scanning modality in
deference to the well-established convention in X-ray CT. However, it was found that the
Inverse Radon Transform is not suited to the new implementation because the wavelength
of the scanning beam is many orders of magnitude longer than that of X-rays. In addition,
the beam undergoes significantly more attenuation, diffusion, and scatter during its passage
through the scanned subject. Consequently, the outline of the projection is highly blurred
and feint against the naturally occurring background noise. Reconstructing an image from
the acquired data is therefore significantly more challenging than the case with X-rays.

Attention is now being given to the data acquired from the reflected portion of the
scanning beam, labelled S11 in the S-parameters convention. Although the scanning beam
is still subjected to attenuation, diffusion, and scatter, the typically shorter path length that
the reflected portion undergoes ensures that data quality is improved, particularly if the
stroke-affected region in the brain happens to be close to the surface. In addition, whereas
S21 requires two antennas to translate around the subject multiple times in a co-ordinated
pattern, S11 requires only one antenna to orbit the subject just once. Consequently, S11
facilitates a shorter scanning duration as well as a simpler construction of scanning chamber
that surrounds the subject. Details are given in the next section.

It is important to note that S11 data, although derived from the reflected portion of
the scanning beam, are not the same as pulsed radar in which discrete pulses are emitted
from an antenna and the reflected signals are detected. S11 data in the context of the new
scanning modality derive from a continuous-wave signal—not a pulsed signal, and S11
data characterise the dielectric properties of the static environment in close proximity to
the antenna—not the round-trip propagation time of pulses.

S11 data are implicit in all of the experimental results reported in this paper.

3.2. Experimental Scanning Apparatus

To ensure that the experimental scanning apparatus affords maximum flexibility and
ease of modification, its construction employs readily available materials and devices, and
a simple mechanical movement. Figure 2 shows the totality of the apparatus. It comprises
a scanning chamber in which an antenna, labelled Tx, mechanically translates around the
test subject, labelled phantom, under the action of a stepper motor. While the antenna is in
motion, the phantom is stationary. This is the same convention used in CT. The antenna
employs a compact Vivaldi design that is rated to operate across 5–18 GHz, although in
reality, the operating range extends down to 1 GHz.

Figure 2. Components of the experimental scanning apparatus.
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The antenna is connected to a Vector Network Analyser (VNA model P9374A, manu-
factured and supplied by Keysight Technologies, Santa Rosa, CA, USA), which measures
S11 over a broad range of frequencies. The VNA, as well as the stepper motor, are under
the control of a bespoke script running on a laptop PC, which also stores and processes the
acquired data. It is evident that the scanning apparatus is minimalist, comprising only the
scanning chamber, a VNA, and a controller. This supports the view that, in due course, a
commercial version of the scanner could be compact, lightweight, and portable, as well
as relatively low cost, particularly if the full-featured benchtop VNA in the photograph is
replaced with a low-profile version that delivers only the required features. Preferably, the
mechanically translated single antenna would also be replaced with a ring of stationary,
electronically switched antennas.

During the scans reported in this paper, the antenna translates through 360 degrees in
100 equal steps (3.6 degrees per step), pausing for a brief moment at each step while the
VNA measures S11 at 1601 spot frequencies between 1 GHz and 20 GHz. At each frequency,
the S11 data include the magnitude and phase of the signal detected at the antenna.
Consequently, each scan acquires 320,200 data points. These data and the frequency
range are more than is needed for a reliable diagnosis; however, the current priority is to
acquire as much data as are available to facilitate later work on refining the operation and
performance of the scanner.

The use of a VNA ensures that the apparatus is highly immune to electromagnetic
interference (EMI) in the surrounding environment, from sources such as Wi-Fi hubs,
mobile phones, and masts, as well as other wireless services. This benefit stems from the
fact that the detector side of the VNA is internally locked in frequency and phase to the
transmitter side. Consequently, only the transmitted signal is recognised and accepted
by the receiver. All other sources are effectively ignored. It is plausible that a future
commercial development of this scanning apparatus would embed a low-profile VNA
in its construction, thereby ensuring a high degree of EMI immunity. In addition, the
scanning chamber that encloses the patient’s head and houses the antenna system would
be designed to function as an electromagnetic screen.

A primary goal of the new scanning modality is that it must be fundamentally safe for
the patient and operators and requires no specialist shielding or other safety precautions.
To achieve that goal the intensity of the scanning beam must be very low. In the absence
of formal regulatory guidance on the approved beam intensity for the kind of scanning
modality being researched, the decision was taken early on to adopt a beam power of
only 1 mW, 0 dBm. That is 100× lower than the radiated power of domestic Wi-Fi hubs
(typically 100 mW, +20 dBm). At such low power levels, patients could be continuously
scanned on a 24/7 basis with no safety concerns. There is no practical reason for that to be
done, but it nevertheless serves to highlight the unparalleled safety margin that the new
scanning modality affords compared with X-ray CT. In due course, when guidance for the
new scanning modality is formally ratified by the regulatory authorities, it is reasonable
to expect that the approved beam intensity will be at least 100× or even 1000× greater
than the level being used because of the very short exposure period during a scan, while
still remaining within the guidance limits for non-scanning wireless applications such
as mobile telecommunications. However, for the time being, the authors’ research will
continue with a conservative power level of 1 mW, 0 dBm. That level is implicit in all of
the results reported in this paper.

3.3. Test Subjects (Phantoms)

The test subjects used in the scans, commonly referred to as phantoms, are constructed
using fluids that closely replicate the dielectric properties of the anatomical constituents
of a human head. These fluids are contained in the polycarbonate vessels shown in
Figure 3. That material is used because of its high transparency at the beam frequencies.
The phantoms have a cylindrical geometry in order to maintain a constant gap of 3–4 mm
between the antenna and the outer edge of the phantom while the antenna is in motion
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around the stationary phantom. The cylindrical geometry also simplifies data interpretation
by limiting the acquired data to a single slice in the horizontal X-Y plane, located at the
mid-point of the vertical Z axis. Future work will use ‘head-shaped’ phantoms and will
acquire data at multiple X-Y planes along the Z axis.

Figure 3. Polycarbonate vessels used in the construction of the phantoms.

The 175 mm diameter container in Figure 3 represents an adult head, while the 150 mm
diameter container represents an adolescent. Both containers have a 5–7 mm wide outer
compartment that is filled with a proxy fluid for skull bone. The large inner compartment
is filled with a proxy fluid for brain matter. Stroke-affected regions are implemented by
placing one of the inclusion containers in the brain proxy fluid, anchored to the top lid of
the outer container. The different diameters of the inclusion containers (11 mm, 21 mm,
30 mm, 44 mm) represent strokes of different severity and stage of progression, while their
fluid contents are selected to represent an ischaemic or haemorrhagic stroke. By moving
the top anchorage point of these containers along the slot in the top lid, strokes at different
depths within the brain are represented. The use of nylon bungs and fixings with these
containers ensures that they have minimal influence on the data acquired during scans.
The photograph at the left in Figure 3 shows an example fully populated 175 mm phantom
with the 44 mm stroke inclusion installed and located close to the surface of the brain. The
comprehensive program of scans that produced the results reported in this paper used
both phantom sizes and all four stroke inclusions at a variety of locations between the
surface of the brain and the centre.

The anatomical simplicity of these phantoms contrasts with the steps taken by some
of the other researchers in this field in the construction of their phantoms. For example, the
University of Queensland group elected to create discrete anatomical structures within their
phantoms, each with a distinct set of dielectric properties for that particular anatomical
element [19]. Similarly, Micrima employed phantoms that contained a degree of anatomical
geometry. Notwithstanding the undoubted validity of these approaches to phantom
construction, the authors of this paper decided instead to favour an intrinsically simpler
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construction for several important reasons. Firstly, the wavelength of the scanning beam
inside a phantom head (or a human head alike) ranges from several mm to several cm.
Consequently, fine structural details within the phantom are inherently smeared out in the
data, leaving just the macro-level details. It is therefore sufficient that the phantoms used in
this study incorporate a simple geometry while still being a materially valid representation
of a human subject. Secondly, for the purposes of a triage diagnosis at the site of the
emergency, fine detail of the kind displayed in CT images is not required. The priority
is firmly on determining whether the patient has or has not experienced a stroke. The
simplicity of the authors’ phantoms is consistent with that priority. Thirdly, in order to
physically assemble and sustain a detailed anatomical structure within a phantom, the
proxy materials must have a solid, or at least a semi-solid consistency. Consequently,
individual phantoms must be constructed from scratch for every different size/severity
and location of the stroke-affected region that needs to be studied. That could amount to a
great many phantoms if the study is wide ranging, as is the authors’ study reported herein.
In contrast, the simpler anatomy favoured by the authors coupled with the use of fluid
proxies enables a broad range of stroke size/severity and location to be represented with
ease in just a single construction of a phantom for each head size: one for an adult and one
for an adolescent.

Sourcing the correct proxy fluids is vital for the material validity of the phantoms. The
dielectric properties of the fluids, and particularly their relative permittivity as a function
of frequency, define how they interact with the scanning beam of the new modality. These
parameters are therefore central to selecting fluids that have a relative permittivity that is
closest to the human material(s) they represent. The proxy fluid selected for brain matter
is produced by the National Physical Laboratory [20] to an international standard and
supplied to the telecoms industry for use in specific absorption rate (SAR) tests associated
with the safety of mobile phones and the influence of their emissions on brain tissue [21]. Its
relative permittivity characterises that of grey and white matter and cranial fluids (blood,
CSF, ECF, ISF, etc.) in a single unified medium. This off-white opaque fluid is evident in
the fully populated phantom in Figure 3. Figure 4 shows plots of its relative permittivity
against frequency (measured by the supplier) and compares those plots with measured and
computed plots for the individual constituents of a human body that are widely available
in the literature and frequently referenced by researchers in this field [22–27]. Figure 4 also
includes a single data point for Ethylene Glycol, which serves as a proxy fluid for skull
bone. It too is a single unified medium that characterises cancellous and cortical bone and
marrow.

Figure 4. Relative permittivities of the proxy fluids obtained from NPL and published plots for other human anatomical
constituents.
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The proxy fluids for an ischaemic inclusion and a haemorrhagic inclusion are RS-I
fluid [28] and defibrinated sheep blood [29], respectively. Given that 85% of all diagnosed
strokes are ischaemic [1], this paper focusses on the results obtained with RS-I fluid
representing an ischaemic stroke. The results from defibrinated sheep blood representing a
haemorrhagic stroke will be reported in due course, together with the authors’ investigation
into whether the two types of stroke can be discriminated by the new scanning modality.

3.4. Data Processing

During a scan, the real and imaginary components of the detected S11 signal, denoted
Sr[tx,k] and Si[tx,k], respectively, are acquired by the VNA at each of 100 stationary locations
of the antenna tx as it steps around the phantom through 360 degrees. At each location,
the VNA measures Sr[tx,k] and Si[tx,k] at up to 1601 spot frequencies between 1 GHz and
20 GHz, where tx = 1:100 is the antenna location index and k = 1:1601 is an index that
corresponds to the spot frequencies actually used.

The signature of the stroke cannot be easily identified within this complex data for
several reasons, but principally the following:

• The beam intensity launched from the antenna is very low (1 mW, 0 dBm) for the rea-
sons given earlier. In addition, the attenuation of the beam as it propagates through the
phantom is significant, particularly towards the upper end of the range of frequencies.
Consequently, the signal-to-noise ratio of the acquired data is low.

• The beam undergoes significant scatter and diffusion during its passage through the
phantom. This greatly reduces the definition of the signature of the stroke in the data
against the naturally occurring background fluctuations and noise in the data.

To resolve these challenges several processes are performed on the dataset to facilitate
a more effective search for features in the data that signify a stroke. The complex S11 signal
Sc[tx,k] detected at the antenna at each measurement instant is thus expressed as follows:

Sc[tx, k] = Sr[tx, k] + jSi[tx, k] (1)

Using this expression, Figure 5a shows the magnitude of the totality of raw data
acquired from the antenna during a scan of the 175 mm phantom containing a 44 mm
stroke inclusion located close to the surface. The actual phantom is shown in the photo
in Figure 3 in the previous section. All of the results reported in this section derive from
a scan of that particular phantom, which is henceforth referred to as ‘scan #1’ for brevity.
The results from scans of a broad range of phantoms and inclusions of different sizes and
locations are presented in the next section.

Figure 5. Magnitude of the raw data acquired during scan #1: (a) with the stroke inclusion, (b) without the inclusion, and
(c) the absolute (ABS) of the difference between (a,b).

Interestingly, when the same scan is repeated with the stroke inclusion removed from
the phantom vessel, the resulting raw data in Figure 5b are superficially unchanged. This
highlights the challenge faced in extracting the signature of the stroke inclusion from the
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raw data. It is at an extremely low level relative to the surrounding data. One potential
solution explored by the authors involved subtracting the ‘no inclusion’ data from the ‘with
inclusion’ data to accentuate information about the stroke inclusion and its location. This
method was ultimately rejected for two primary reasons. Firstly, in a practical setting, it is
all but impossible to envisage a scenario when clinicians will have two recent scans of the
same patient: one taken shortly before the onset of their stroke and the other taken while
their stroke is occurring. Consideration was given to utilising publicly accessible libraries
of scans of healthy patients and developing a method to use those data as a generalised ‘no
inclusion’ scan. However, the challenges in ensuring that these scans not only accurately
represented a stroke patient prior to the onset of their stroke, but that they can also be
formatted in a way that precisely replicates the output of the new scanning modality had it
actually been used, were felt to be insurmountable. Secondly, subtracting the two scans
from each other produces the highly complex data field in Figure 5c. Reliably identifying
and extracting the low-intensity signature of the stroke inclusion from within a data field
containing such extreme variability is challenging, particularly for stroke inclusions that
are small in size and deeply seated within the brain. The decision was therefore taken to
develop the following robust and computationally efficient method that reliably extracts
the signature of a stroke inclusion in the raw data from just a single scan of the patient
while they are experiencing their stroke.

The Inverse Fast Fourier Transform (IFFT) is used to transform the dataset in Figure 5a
from the frequency domain to the time domain. Given that the S11 scanning modality that
underpins this paper uses only one antenna, the data acquired at each stationary location of
the antenna as it steps around the phantom are not influenced by a second nearby antenna,
as was the case in the previous S21 scanning modality that was briefly alluded to earlier. It
is therefore sufficient to perform a 1D IFFT on the complex signal Sc[tx,k] in Equation (1) at
each antenna location, which produces:

s[tx, n] =
1
N

N

∑
k=1

Sc[tx, k]ej2π(n−1)(k−1)/N (2)

where N = 1:1601, tx = 1:100, and n = 1:1601. If only real data are applied to the transforma-
tion, the output data are reflected around its centre. However, for the purposes of this study,
the real and imaginary components of the acquired data are applied to the transformation,
which yields values in just the first half (i.e., left half) of the transform domain, as is evident
in Figure 6.

Figure 6. IFFT transformed data acquired from scan #1.

The output of the IFFT, denoted s[tx,n] in Equation (2), comprises N complex 1D
sequences that are computed independently in accordance with the structure of the data
acquired during a scan. Therefore, at each antenna location as it steps around the phan-



Healthcare 2021, 9, 1170 11 of 20

tom, the average of the transformed sequence over the temporal domain is calculated by
averaging the sequence s[tx,n], and thus:

sav[tx] =
1
N

N

∑
n=1

s[tx, n] (3)

This 1D averaged data sav[tx] describes the S11 signal at the antenna for all frequencies
that are the input to the IFFT at each antenna location. However, for each antenna location,
sav[tx] does not yield a distinct unmistakable signature of the stroke inclusion because of
the strong influence of unwanted values on it. This is evident in Figure 7, which shows
multiple peaks and troughs computed from Equation (3), rather than a single distinct
signature.

Figure 7. Magnitude values computed from Equation (3).

Further study of the transformed series s[tx,n] in Figure 6 using scans of several
different phantoms in which the inclusion is present in some while is absent in others,
reveals that the position of n = N/4 is dominant when the inclusion is present but not
when the inclusion is absent. The data sequence around the n = N/4 index can therefore be
summed to resolve a more distinct signature of the stroke inclusion. Equation (3) can then
be rewritten as:

ŝav[tx] =
1

2a + 1

N
4 +a

∑
n= N

4 −a

s[tx, n] (4)

where a ≥ 0 represents the width of the span centred on n = N/4. The value of a is selected
in accordance with the strength of the signature of the inclusion. For example, in instances
when the strength is high, the value of a is not critical, whereas when the strength is low,
studies have found that a = 2 returns optimum results. Throughout the results presented in
this paper, a is assumed to be 2. The real and imaginary components of the complex data
sequence represented by Equation (4) are shown in Figure 9.
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Both components carry vital information about the presence and location of the stroke
inclusion. It is therefore prudent to use both. They can be combined by computing the
absolute value of the averaged data sequence in Equation (4), expressed thus as:

sMag[tx] = |ŝav[tx]| (5)

Figure 8 shows the data computed by Equation (5). The signature of the stroke
inclusion is visible in the form of a distinctive peak, the location of which corresponds with
the location of the inclusion on the horizontal axis.

Figure 8. sMag[tx] computed from Equation (5) for scan #1.

To reduce the intensity of the data on either side of the peak in Figure 8, and thereby
increase the distinctiveness of the signature, sMag[tx] in Equation (5) can be differentiated
as follows:

sd[tx] = sMag[tx + 1]− sMag[tx] (6)

Figure 10 shows the differentiated data computed by Equation (6). The presence of
the stroke inclusion is evidenced by the distinctive double peak, while the location of the
inclusion on the horizontal axis coincides with the zero crossing between the two peaks.

Figure 9. Real (left) and imaginary (right) values of ŝav[tx] for scan #1.
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Figure 10. sd[tx] computed from Equation (6) for scan #1.

The above results confirm that the method of data analysis devised for this study
successfully extracts the signature of a stroke inclusion from the raw data acquired during
a scan. The next section presents the results from a comprehensive programme of scans of
phantoms of different sizes and inclusions of different sizes and locations. In this way, the
results are representative of a population of adults and adolescents who are experiencing
strokes of different severity and depth within the brain.

4. Results and Analysis

To ensure consistency across the scans reported in this paper, the majority were carried
out with the stroke inclusion at the 9 o’clock position on a clock face, as illustrated in
Figure 11 for the 44 mm inclusion in the 175 mm phantom.

Figure 11. Signature of a 44 mm inclusion in the 175 mm phantom.
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The antenna begins and ends every scan at the 6 o’clock position and translates
anticlockwise around the phantom. The 6 o’clock position can therefore be designated
0 degrees, as shown, in which case the inclusion is located at 270 degrees. As the antenna
translates around the phantom, the signature of the stroke inclusion is highly visible as the
double peak (i.e., differentiated pulse) first observed in Figure 10. The middle zero crossing
between the two peaks corresponds to the location of the inclusion. This result and those
that follow confirm that the new scanning modality is indeed capable of detecting the
presence and location of a stroke inclusion.

The data plots in Figure 12 show that progressively smaller inclusions in the 175 mm
phantom are detectable down to 22 mm in size; however, the smallest 11 mm inclusion
is beyond the sensitivity threshold of the apparatus. However, Figure 13 shows that the
smallest 11 mm inclusion is detectable in the 150 mm phantom, which indicates that the
sensitivity threshold of the apparatus is in fact at or close to 11 mm for both phantom sizes.

Figure 12. Data from scans of the 175 mm phantom with inclusion sizes of 44 mm (left), 30 mm, 21 mm, 11 mm (right).

Figure 13. Data from scans of the 150 mm phantom with inclusion sizes of 44 mm (left), 30 mm, 21 mm, and 11 mm (right).

It is important to remember that the power level in the scanning beam is only 1 mW,
0 dBm, for the reasons outlined earlier. Had these scans been carried out at a higher beam
intensity of the magnitude that could be approved by regulatory authorities in due course,
it is reasonable to assume that the 11 mm inclusion, and perhaps even smaller, would be
consistently detectable.

During the scans in Figures 12 and 13, the inclusion is located close to the surface of
the proxy brain. The scans in Figure 14 show the impact of locating the inclusion more
deeply within the proxy brain of the 175 mm phantom. Scans of the 150 mm phantom
reveal the same trend, so they need not be included. It is clear that the scanning beam is
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unable to penetrate to a depth approximately half-way between the surface and centre of
the proxy brain. Again, it is important to note the low intensity of the scanning beam and
the likelihood that an approved higher intensity will penetrate more deeply and be more
detectable by the apparatus.

Figure 14. Data from scans of progressively deeper 44 mm inclusions in the 175 mm phantom.

The data plots reported thus far all derive from scans in which the stroke inclusion
is located at 9 o’clock on a clock face. As stated at the start of this section, that was done
to ensure consistency across those data plots and to facilitate valid comparisons between
the plots. However, in order to confirm that the signature is indeed caused by the stroke
inclusion and is not an artefact of the scanning apparatus or the surrounding environment
that just happens to be at the correct location, the additional scans in Figure 15 were carried
out with the inclusion located at 12 o’clock and 3 o’clock. The resulting data plots confirm
that the location of the signature correctly tracks the actual location of the inclusion.

Figure 15. Data from scans in which the 44 mm inclusion is at different locations relative to the start of each scan.

Scans were also carried out in which there is no stroke inclusion in the phantom, as
well as scans in which there is no phantom present in the scanning apparatus. The data from
some of these scans are shown in Figure 16. The absence of any form of signature provides
further confirmation that neither the framework of the phantom (i.e., the structural vessel
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excluding any inclusion) nor the scanning apparatus and the surrounding environment
influenced the results reported throughout this paper.

Figure 16. Data from scans of the 175 mm and 150 mm phantoms with no stroke inclusion present, and a scan of just the
scanning apparatus.

5. Discussion

The results confirm that the new scanning modality is capable of detecting the presence
and location of a proxy for an ischaemic stroke. The clarity of the signature of the stroke
in the data is testament to the efficacy of the analytical procedure devised specifically
for this application. Besides being computationally efficient, which helps to minimise
the time to display a diagnosis, the simplicity of the signature it produces lends itself to
rapid, unambiguous interpretation with minimal training. It should, however, be noted
that the phantoms used in the scans are simplified, idealised versions of a human subject.
Notwithstanding that the phantoms were constructed from proxy materials that closely
replicate the dielectric properties of human tissue, fluids, and bone, the complexities of
a vascular structure and the anatomy of different tissue types and fluid-filled cavities
are absent in the phantoms. In justification of that, the simplification of the phantoms
should be viewed as an ‘averaged’ human subject in which the boundaries between
different anatomical regions are blurred to the point of completely merging into one
medium. Indeed, the proxy medium used in the phantoms for brain matter is a single fluid
specifically manufactured by NPL [20] to a materially valid formula that represents the
unified dielectric properties of white and grey matter and all brain fluids. Furthermore,
given that the wavelength of the beam inside a phantom or a human subject alike ranges
from several mm to several cm, fine structural details present in the subject are inherently
smeared out in the data, leaving just the macro-level details, which are manifest in the
signature of the stroke. It is therefore consequential, as well as beneficial, that the phantoms
used in this study need only incorporate a simple geometry while still being a valid
representation of a human subject.

The long wavelength of the scanning beam also speaks to an important distinction
between the new scanning modality and X-ray CT. For the purposes of a triage diagnosis
at the site of the emergency, the fine detail in CT images is not required. Indeed, even the
location of the stroke is not essential. The priority is firmly on determining whether the
patient is or is not experiencing a stroke. The new scanning modality has demonstrated its
suitability in that role. The fact that it also indicates the location of the stroke is an added
benefit.

In a further simplification of the anatomy of the stroke inclusion, the authors assumed
that any previous or non-vascular cerebral lesions that the patient might have experienced
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are closely co-located with the stroke-affected region itself. Consequently, the anomalous
region that is detected is assumed to be a singular amorphous mass. However, in practical
settings that assumption is not always valid. Previous or non-vascular cerebral lesions
could be present in locations removed from the stroke-affected region. To take account of
this, the next phase of the study will include phantoms that contain multiple inclusions to
represent stroke patients whose ongoing stroke and previous cerebral lesions are dispersed
throughout the brain.

Beam intensity has been shown to be a critical factor in the ability to detect a deeply
seated stroke inclusion. Striking the optimum balance between having sufficient intensity
to penetrate the patient’s brain to a useful depth while remaining safe to the patient and
scanner operator is a fundamental objective of the new scanning methodology promoted
in this paper. It is creditable that the current experimental apparatus, despite using a
very low-beam intensity, is achieving sufficient penetration for stroke inclusions close
to the surface to be detected, even for inclusions as small as 11 mm. However, given
that the current beam intensity of 1 mW (0 dBm) is some 100× lower than that emitted
by a domestic Wi-Fi hub, there is scope to increase the beam intensity by 100× or even
1000× while still remaining within the guidance limits for non-scanning applications
such as mobile telecommunications. In due course, it is reasonable to expect that medical
regulatory authorities will approve beam powers significantly higher than those used in
this study given the very short exposure period. The next phases of the project will employ
higher powers to assess the performance of the new scanning modality under more realistic
conditions.

It is important to emphasise that the new scanning modality will not replace nor
displace X-ray CT or MRI; quite the contrary. Its purpose is to add a valuable new capability
for stroke diagnosis that complements X-ray CT and MRI in settings where they are
unsuited, particularly when the scanner needs to be brought to the patient’s location.

The whole life cost is a further important consideration that favours the new scanning
modality. The end-of-service disposal costs of X-ray CT and MRI scanners can be a
significant proportion of their whole life cost. In contrast, the scanning modality described
in this paper does not use radioactive devices nor does it produce any form of toxic long-
term contamination. In addition, its energy carbon footprint is significantly lower since it
does not require a specialist high-voltage power supply and, indeed, has the potential to
be battery operated.

It should be noted that all of the results presented in this paper relate to an ischaemic
stroke. Approximately 85% of all strokes are ischaemic [1], hence, why it was prioritised
in this paper. The authors also carried out preliminary scans of phantoms with the proxy
fluid for the inclusion is defibrinated blood to represent a haemorrhagic stroke. The results
are very similar to those in this paper for an ischaemic stroke, which is to be expected since,
as is evident in Figure 4, the relative permittivity of blood and CSF are very similar. It has
yet to be determined whether the new scanning modality in its current experimental form
is able to reliably distinguish between both types of stroke. Without that determination
the correct treatment for the particular stroke cannot be commenced. Consequently, an
on-scene diagnosis can only be a stroke or no-stroke determination. Nevertheless, as
mentioned earlier, discussions with stroke specialists revealed that the ability to reliably
confirm a stroke/no-stroke diagnosis at the site of the emergency, and then to alert the
acute stroke unit ahead of arrival, would be a significant and welcome advance over
the current protocol. Notwithstanding that trials are underway in some countries with
specialist ambulances that contain a mobile CT unit [4,5] that can differentiate the two
types of stroke, these units will always be extremely few in number due to their high
cost and are therefore not a scalable solution. The hope is that new scanning modalities,
such as the modality described in this paper, which have the potential to be carried in all
ambulances and first response vehicles and used in complete safety, will pave the way for
on-scene diagnosis and treatment if the ability to differentiate the two types of stroke can
be developed and proven. Meeting that challenge is a priority supported by The Lancet
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article [6], which states, “The strategy of treatment directly at the emergency site (mobile
stroke unit concept), could contribute to more efficient use of resources and reduce the
time taken to instigate treatment to within 60 min—the golden hour—of the onset of the
symptoms of stroke”. The authors’ work towards differentiating the two types of stroke
will be reported in due course.

6. Conclusions

The results presented in this paper conclusively show that low-intensity electro-
magnetic waves in the radio frequency/microwave band can detect the presence of a
stroke-affected region in a materially valid phantom of a human head. A key step in
achieving that outcome is the computationally efficient method of data analysis devised for
the purposes of this study, which makes the signature of a stroke inclusion highly visible in
the raw data from the experimental scanning apparatus. The performance of this method
will continue to be improved as the project progresses. Alternative methods that show
good promise will also be investigated.

There is scope in the next development phases of the project to increase the intensity
of the scanning beam used in this study by 100× or even 1000× and still remain within the
safety guidelines for mobile communications and other non-scanning applications. That
is certain to enable smaller and more deeply seated stroke inclusions to be detected. The
results from that work will be reported in due course.

The next development phases will also employ more complex phantoms that represent
patients who have multiple anomalous regions in their brain caused by previous or non-
vascular cerebral lesions in addition to the stroke that is occurring at that moment.

It is certain that being able to administer stroke treatment at the site of the emergency
has the potential to reduce the time expired from the occurrence of a stroke to the absolute
minimum. However, for that fundamental departure from the current patient pathway to
be approved by all of the relevant regulatory authorities and clinical and patient advisory
groups, it is vital that the scanning methodology deployed at the site of the emergency
is proven to be capable of reliably differentiating between ischaemic and haemorrhagic
strokes. Achieving that with the scanning modality described in this paper in its current
form has been shown to be challenging due to the very similar dielectric properties of
the fluids involved in both types of stroke. However, given that this scanning modality
undoubtedly has the potential to deliver a reliable stroke/no-stroke diagnosis at the site
of the emergency, that alone will help to shorten the time to treatment by enabling the
acute stroke unit to be alerted that a confirmed stroke patient is in transit. That patient
can then be fast tracked upon arrival to shorten the door-to-needle time. That will make
a valuable contribution towards minimising the overall time from the occurrence of the
stroke to treatment being administered in hospital. That will be a highly beneficial interim
measure for stroke patients until such a time in the future when new scanning modalities
of the kind reported in this paper are able to reliably discriminate between both types of
stroke, and treatment is approved to be administered at the site of the emergency.

There is no doubt that the new scanning modality has the potential to be simple and
low cost to implement, and it is therefore suited to manufacture at scale. Such scanners
could be carried in all first response emergency vehicles and be in situ in hospitals and
acute stroke units, GP surgeries, and residential care homes. It is that kind of coverage that
is needed to transform the outlook for stroke patients and have a significant positive impact
on the current stroke statistics and the enormous cost of stroke to national economies.
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