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Abstract: A new decision rule based on net benefit per capita is proposed and exemplified with
the aim of assisting policymakers in deciding whether to lockdown or reopen an economy—fully
or partially—amidst a pandemic. Bayesian econometric models using Markov chain Monte Carlo
algorithms are used to quantify this rule, which is illustrated via several sensitivity analyses. While
we use COVID-19 data from the United States to demonstrate the ideas, our approach is invariant to
the choice of pandemic and/or country. The actions suggested by our decision rule are consistent
with the closing and reopening of the economies made by policymakers in Florida, Texas, and New
York; these states were selected to exemplify the methodology since they capture the broad spectrum
of COVID-19 outcomes in the U.S.
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JEL Classification: D10; D60; I10; I18

1. Introduction

The aim of this research is to develop a simple and useful decision rule to better
assist policymakers amidst a pandemic so they can decide whether to open all or parts of
an economy. COVID-19 data from the U.S. are used to illustrate the rule. We employ a
Bayesian simulation-based decision analysis approach.

Our contributions are four-fold. First, decision rules are generally predicated on
uncertain events. Using modern Bayesian methodological tools [1], we quantify our de-
cision rule via probability distributions. This approach in the decision analysis literature
is also in line with what [2] advocate. They recommend that the principles of decision
analysis should play a more prominent role in actual political, decision-making processes.
Additionally, they also note that Bayesian statistics should be better employed to sup-
port the public understanding of societal issues. Second, unlike other recent pandemics,
COVID-19 presents unique challenges to policymakers; reliable data are one of those
challenges. We note at the outset that our approach is invariant to the choice of country
or pandemic type. Third, the methodology lends itself to performing several “what if”
analyses based on credible input assumptions that different policymakers may want to
evaluate. Finally, while this paper’s decision rule (stated below) may be viewed as the
outcome of a cost–benefit analysis, its modelling is innovative, based on an econometric
setup that considers some of the key aspects of pandemics. These include infection and
death rates, employment and income impacts of pandemic suppression, and treatment and
fatality costs of a pandemic.

Within the context of pandemics, we now briefly describe the intuition underlying
our contributions. We define the phrase, “decremental suppression” to mean reopening
the economy—partially or fully— after it has been closed due to public health reasons.
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Thus, the aim is to develop a decision rule for a government to determine on day d if
decremental suppression should occur given the information available on that day. This
probabilistic rule is formulated by first defining the net benefit per capita based on a
standard benefit–cost analysis:

Net benefit per capita = per capita income increase − per capita fatality cost increase − per capita medical
cost increase

For convenience, we denote the left-hand side of the above formulation ∆NB to mean
change in household net benefit. Then, our main recommendation to public officials may
be stated as a Decision Rule: decremental suppression should occur when ∆NB > 0 and P
(∆NB > 0) ≥ T. The choice of the threshold probability T is deliberately left unspecified
since it is, typically, made by an individual decision-maker or a body collective, i.e., the
selection of T is a standard of judgment that can only be arrived at subjectively, based
on the analytics. Intuitively, suppose T > 0.9; then, a decremental suppression decision
can be thought of as having a very low risk. Later, via several sensitivity analyses, we
demonstrate various judgments about T for the COVID-19 pandemic in the U.S. The
important point to be made is that, given the data, we can quantify the decision rule via
probability distributions.

To develop the probability distributions, we propose and implement two econometric
specifications: one for consumption and another for fatality rate. The output from the
former quantifies the benefit element while the latter estimates the cost elements via the
pandemic’s impact on the health of a population.

Our empirical work showcases our methodology for COVID-19, which was de-
clared a pandemic by WHO in 2020 (https://www.who.int/emergencies/diseases/novel-
coronavirus-2019/situation-reports, accessed on 10 July 2020). While COVID-19′s spread
had peaked in China by mid-February 2020, it sharply surged in March 2020 in the U.S.
In response, federal, state, and local officials in the U.S. adopted suppression measures
to curb economic activities that accelerate the spread of a viral disease [3–5], including
shelter-in-place, social distancing, mask wearing, travel restrictions, business and school
shutdowns, etc. Agüero and Beleche [6] discussed the merits of good hygiene during the
H1N1 pandemic in Mexico, while [7] compared social distancing measures and their effects
on dealing with pandemics. An interesting result was reported in [8], who found that, to
better control epidemics, treatment should be administered in regions with lower infections.
They noted that trying to equalize infections in two interconnected regions where one is
high and the other low is the worst possible strategy.

Sands et al. [9] argued that macroeconomic forecasting methodologies should incor-
porate the impact of pandemics in order to better model the negative consequences of
contagious diseases on the world economy. Karlsson et al. [10] modelled the impact of
mortality on earnings, capital returns, and populations living in poorhouse counties in
Sweden during the Spanish Flu.

In the realm of decision and risk analysis, [11,12] considered the economy-wide
impacts of an influenza pandemic using a large-scale modelling approach. They utilized
the interoperability input–output (I–O) model to analyse the impacts of an influenza
pandemic. The I–O framework captures the interactions among different sectors in an
economy and highlights the impacts on workforce disruption.

The cost of suppressing economic activity in this pandemic has received attention and
is ongoing. Prager et al. [13], using a computable general equilibrium model, found that,
without vaccines, a loss of $25.4 billion in GDP may occur due to a pandemic influenza
outbreak in the U.S. Scherbina [14] estimated that COVID-19′s total economic cost without
suppression in the US exceeds $9 trillion, comprising medical cost, value of lost productivity,
and fatality cost based on value-of-statistical-life (VSL). The total cost estimate for a 78-week
suppression period is, however, much lower at $15.8 billion. Ugarov [15] considered three
policy approaches to address COVID-19′s spread: (1) do nothing, (2) keep the number of
new cases via non-pharmaceutical suppression at the maximum of health care capacity,

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports
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and (3) reduce the number of new cases via non-pharmaceutical suppression plus extensive
testing and case isolation. Ugarov [15] found that (3) results in the lowest cost of $5.4 trillion,
comprising VSL, direct medical costs, employment losses, and mandatory shutdown costs.
Greenstone and Nigam [16] reported that the total benefit of social distancing based on VSL
is roughly $8 trillion. Pearson et al. [17] found that test-then-vaccinate improved health
care while reducing costs when administering dengue vaccines. In the interests of brevity,
we omit other cost studies similar to the above.

Our goal is to better model the impact of a pandemic’s decremental suppression
on the net benefit per capita. For COVID-19, the importance of such a modelling effort
is underscored (a) by state government plans announced in late April 2020 to ease sup-
pression in May 2020, thereby reversing the sharp spike in unemployment triggered by
the pandemic (https://edition.cnn.com/2020/04/30/economy/unemployment-benefits-
coronavirus/index.html, accessed on 10 July 2020), and (b) by decisions faced by policy-
makers during the H1N1 pandemic based on the economic costs of suppression [2,18–20].

Official data show that state-by-state variations in COVID-19′s impact is substantial.
We demonstrate our methodology using Florida, New York, and Texas since, based on
publicly available reports and data, they capture the spectrum of COVID-19 outcomes
across the U.S.

The rest of the paper is organized as follows. The next section details the econometrics
underlying our estimation of the benefit component. This is followed by the description of
medical and fatality costs in Sections 2 and 3, respectively. An illustrative analysis leading
to the calculation of the decision rule is described in Section 4. A discussion in Section 5
concludes the paper.

2. Benefit Component and Its Econometric Representation

How should one model per capita income increase? A regression model for income,
conditioned on appropriate exogenous variables, could be constructed. The difficulty lies in
the time scale. Recent experience shows that the pandemic context is better served by using
weekly data since mortality and unemployment data evolve weekly. Moreover, state-level
income data is, typically, reported quarterly and often not at the same time. Converting
such data to weekly numbers, while possible, is inadvisable since the resulting estimation
of model parameters is exposed to considerable added noise in the data. Therefore, we use
weekly percent employed as the response variable to arrive at income. Below, we arrive
at weekly income by modelling weekly employment that is assumed to depend on the
pandemic’s weekly infection rate. Additionally, the periodicity and availability of percent
employed is the most granular and, hence, reliable. The predicted weekly employment
can be used to closely approximate changes to weekly income using most recent, publicly
available, median and/or per capita income figures. The labour input might change from
week to week due to paid leave. Such a leave may be more likely to occur during COVID-19
due to self-quarantine and sick leave measures. It could be argued that these factors may
not be captured in the employment variable. However, while labour usage may vary
weekly due to paid leave, the employment data measure workers who are on the payroll
of companies. By contrast, self-quarantine and layoff due to COVID-19 suppression reduce
employment and therefore income.

With t denoting week, for t = 1, . . . , T, consider the following econometric specification
for employment Et (the dependent variable) within a state in the U.S.:

Et = α0 + α1ct + α2dt+ φ1Et−1 + . . . + φpEt−l + εt. (1)

In Equation (1), ct is the total number of confirmed pandemic-related infections
divided by the total number tested: a priori, ceteris paribus, we would expect its coefficient,
α1, to be negative, i.e., an increase in the number of infected cases due to decremental
suppression could lead to a fall in income. (Although many may work from home, their
income likely declines due to employment and travel restrictions, such as shelter-in-place
and social distancing. Note, also, that employment data exclude those that are not in the

https://edition.cnn.com/2020/04/30/economy/unemployment-benefits-coronavirus/index.html
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labour force.) The variable dt is a regime shift dummy variable. We purposely use data
from 2007 so that we can include the impact of the 2008 recession. The economic downturn
in the current pandemic most closely resembles that time frame. This is one of the strengths
of the Bayesian approach, for it allows the model parameters to learn from past data. Hence,
having a dummy variable to capture the two regime shifts in the economy is useful; this
variable is coded 1 during the shifts and zero elsewhere. The employment rate time series
Et is likely to be autocorrelated; hence, we include an AR(l) process in (1). To determine
the optimal lag l for each state, in our analysis, we use a model selection procedure based
on Bayesian posterior probabilities. It is worth emphasizing that this order could differ
across states, depending on how a pandemic affects a state. The error term, εt, is normally
distributed with mean zero and unknown variance σ2. Following the selection of l and
given future values of ct, we can obtain the corresponding predictive distribution for Et
using Markov chain Monte Carlo (MCMC) methods [21–23]. Since the methodology is
well-known, we omit details.

To complete the Bayesian construction of Equation (1), proper prior distributions on all
of the unknown, random parameters are needed. Barnett et al. [23] noted that stationarity
requires −1 ≤ φ1 ≤ 1; hence, a uniform prior distribution on [−1, 1] was used. If necessary,
the same proper prior may be used for all of the other autoregressive parameters. For the
variance σ2, an inverse-gamma prior with hyperparameter values equal to 0.01 was used;
α0, α1, and α2 were assigned normal distributions with mean 0 and variance 100. All of the
hyperparameter prior choices reflect diffuse beliefs.

It is possible, in principle, to construct subjective, informative priors for the hyperpa-
rameters. However, this is quite involved; moreover, we wanted the data to dictate the
inference as much as possible, thereby mitigating bias in the empirical results. Another rea-
son for assigning large variances to the model parameters is that it lessens the dependency
on the prior choices.

Equation (1) is the benefits component of our pandemic welfare model. We prefer this
single equation model as we model the percent employed in each state. Later, we discuss
other modelling possibilities. It would appear that we assume that aggregate consumption
is purely a function of income. This is a fair criticism since government-mandated shutting
down of an economy could also potentially impact aggregate supply. However, we argue
that the downward shock to demand in the current pandemic was and still is very large;
this, we concede, has compromised the supply of many goods and services. However,
aggregate supply and supply chains were never entirely shut down since most essentials
were and are still very much in demand.

In addition to data difficulties, issues of the type discussed above are other reasons as
to why we do not model income or consumption directly.

3. Pandemic Costs and Their Econometric Framework

During a pandemic, the cost component in calculating NB comprises expected medical
and expected mortality costs. The former cost includes three elements: (1) an uninfected
person with symptoms, (2) an infected patient who recovers, and (3) an infected person
who despite medical treatment eventually dies. Details of the calculation of all of the costs
are described later. Here, we merely note that a critical input needed in those calculations
is the predicted death (also known as fatality) rate that depends on the infection rate, ct. In
the following, we model the fatality rate exactly as Et in Equation (1) with one noteworthy
difference. In Equation (1), we used weekly employment data starting in 2007; hence, the
COVID-19 infection rate exogenous variable, ct, is recorded as zero until sometime in 2020
when data for it began to be collected in the U.S. Thus, for any COVID-19 mortality rate
estimation/prediction in the U.S., state-level data only begins in late February or early
March of 2020. Hence, a weekly mortality model suffers from sample size limitations.
Using observed daily data obviates this issue. This, of course, does not adversely impact
the eventual calculation of P(∆NB) in our decision rule.
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Let wt denote the death rate on day t in a given state where wt is defined as the total
number of deaths on day t divided by the cumulative number of confirmed cases on day
t− 7, with t = 8, . . . , T. This ratio is consistent with what is reported by government/health
agencies; additionally, fatalities on any given day result from past infections since it takes
time for the virus to turn lethal in some individuals.

We use the exogenous variable ct as in Equation (1) but replace the weekly infection
rates with daily rates instead. Thus, ct links the benefit and cost components of our
econometric models. Given the serial correlation in wt, we also add a general autoregressive
process, AR(m), to model each state’s fatality time series and write:

wt = γ0 + γ1ct + φ1wt−1 + . . . + φpwt−m + εt, (2)

where εt is normally distributed with mean zero and unknown variance σ2. The rest of the
modelling process, including prior distribution selections, resembles what was detailed
earlier. Note that the rationale for associating the death rate with the infection rate is
because a COVID-19 related death cannot occur unless the dead person is an infected
patient in the first place. Moreover, deaths on a given day can occur for COVID-19 patients
infected during prior days, which can straddle adjacent months. For example, a patient
may survive many days after first being hooked-up to a respirator and then moved to an
ICU ward. Hence, we link the death rate with the infection rate based on cumulative cases.

Taken together, Equations (1) and (2) constitute our pandemic econometric models.
However, to reiterate, the specific forms for the relationships between the endogenous
and exogenous variables in (1) and (2) could be changed, either by adding different
exogenous factors and/or different representations such as panel data models. However,
such changes do not change the overall methodological framework. As long as (Bayesian)
predictive income and cost distributions are available via Equations (1) and (2), the rule
P(∆NB > 0) ≥ T can be adequately quantified.

4. Empirical and Decision Analysis

The aim is to obtain a probability distribution for ∆NB. To reach our goal, we need to
complete the analysis of Equations (1) and (2).

To illustrate our ideas, we use data from Florida (FL), New York (NY), and Texas (TX).
NY was hit the hardest. FL was one of the first states to recognize that COVID-19 affected
seniors (greater than 65 years of age) the most and took measures to curb the fatality rate
in that group, leading to markedly fewer casualties. TX lies somewhere in the middle and
is most representative of several states.

To model Equation (1), our weekly percent employed data starting in January 2007 and
ending on 30 April 2020. (The weekly percent employed data are available at www.bls.gov
accessed on 10 July 2020). As noted earlier, we chose to include the recession years 2008
through early 2010. This is because that time frame covers a sharp downward trend in
economic activity, somewhat consistent with what is going on now. Even though the H1N1
pandemic started in 2009, its impact was quickly brought under control by the end of
that year due to new vaccines and the mutation of the virus itself into milder forms. As
such, despite its negative impact on the economy, H1N1 did not materially affect the U.S.
economy as much as the 2008 financial crisis. There is “information” in the numbers from
that crisis that is worth using in the current calamity. (We also performed our analysis
without the 2008–2011 data. While the overall conclusions were qualitatively similar when
starting with data from 2012, the variability in the parameter estimates and the predictive
distributions were much smaller. We felt that they underestimated the truth of what
is going on currently. Therefore, we used the larger dataset to model employment in
Equation (1).) Hence, we used a dummy variable in Equation (1) to capture the 2008 and
2020 regime shifts in the employment time series.

To model Equation (2), we used data from the day that the first death was recorded
in each state; hence, the start date varies for the three states, but the end date was
set to 30 June 2020 for all three states to reflect the latest data available at the time of

www.bls.gov
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our writing. (The daily COVID-19 data were provided by the COVID Tracking Project
(https://covidtracking.com/) launched from The Atlantic.)

Consider Figure 1. The top (bottom) three panels show the weekly (daily) time series
for percent employed (death rate) for the three states. To assess the autocorrelation in
the data, consider Figure 2. The top (bottom) three panels show the ACF plots for the
employment (death rate) series from Figure 1. Clearly, as expected, there is considerable
autocorrelation in these data.

Figure 1. Weekly employment rates (2006–2020) and daily COVID-19 death rates (2020) by states.

In the following, we provide details only for the Florida model since the other
two states were similarly handled. However, where appropriate, we contrast the key
takeaways for all three states via tables and/or graphs.

Software and convergence notes: STATA was employed to perform the calculations,
where we set the number of iterations to 20,000 with a burn-in of 10,000 in each MCMC
chain. The algorithms converged quite quickly with two chains, but nonetheless, we
tested them with multiple MCMC chains. We followed the recommendations on the
convergence diagnostics discussed, for example, in [1,24]; these diagnostics are provided
in a Supplementary Materials Table S1 and Figures S1–S4 for the FL model since the NY
and TX models are similar. All results are based on two MCMC chains.

https://covidtracking.com/
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Figure 2. ACF plots for the employment and death rate series by state.

4.1. Analysis of Equation (1)

The first step is to determine how many lags to use in Equation (1). The PACF values
(not shown here) corresponding to the ACF plots in Figure 2 suggested that the model
might require up to seven lags. Therefore, we used a Bayesian model selection procedure
that calculates the marginal likelihood for seven models, where each model also includes
the exogenous variable, ct, and the dummy variable dt.

From the first column of Table 1, it is evident that a model with four lags is best for
the Florida employment data. That is, in Equation (1), l = 4.

Table 1. Posterior probabilities of models with different number of lags.

Employment Fatality Rates
FL NY TX FL NY TX

1 lag 0 0 0 0 0.9998 0.9999
2 lags 0 0.9998 0 0.9998 0.0002 0.0001
3 lags 0.0017 0.0002 0 0.0001 0 0
4 lags 0.9983 0 1 0 0 0
5 lags 0 0 0 0 0 0
6 lags 0 0 0 0 0 0
7 lags 0 0 0 0 0 0

Now, for any given infection rate and the value of Et on 30 April 2020, we can obtain
the predictive distributions Et+1 after estimating the following:

Et = α0 + α1ct + α2dt + φ1Et−1 + φ2Et−2 + φ3Et−3 + φ4Et−4 + εt. (3)
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Finally, for each household, under each infection rate assumption, we can obtain the
corresponding annual personal income distribution from the Et+1 distribution since the
income distribution is merely a function of Et+1. To obtain this distribution, we use publicly
available 2019 per capita personal income from Florida ($52,426). In a “what if” analysis,
we also consider the unemployment benefit provided by the U.S. government and adjust
the 2019 Florida income to $58,371; this type of adjustment stems from the Coronavirus Aid,
Relief, and Economic Security (CARES) Act. To convert the percent employed predictions
into annual figures, we multiply Et+1/100 by the income measures.

The key point in all of the above is that we can obtain the probability distribution
for the predicted personal income since, at each MCMC iteration, values from these
distributions are merely functions of the samples from the posterior distributions of the
parameters given in Equation (3).

The summaries—mean, standard deviations, and 95% highest probability density
(HPD) intervals—of the posterior distributions of the regression parameters, α0, α1, α2, φ1,
φ2, φ3, and φ4 and the variance σ2 are shown in Panel A of Table 2. The parameters α1 and
α2, corresponding to infection rate and the regime change dummy variable, are of particular
interest. Their 95% HPD intervals cover negative values. That is, when weekly infection
rate increases, ceteris paribus, weekly employment declines. Likewise, both in the 2008
recession and the 2020 pandemic periods, employment declines, as evidenced by the HPD
for α2. This “learning from experience” (past data) is a strength of the Bayesian approach.

Table 2. Summary statistics for the posterior distributions of the parameters from the Florida
employment and fatality rate models.

Mean S.D. 95% HPD Interval

Panel A: Employment Equation
α0 0.6016 0.5895 −0.5086 1.8175
α1 −5.6685 0.5572 −6.7189 −4.5371
α2 −0.0511 0.0195 −0.0914 −0.0154
φ1 0.3174 0.0391 0.2357 0.3896
φ2 0.9884 0.0111 0.9643 1.0000
φ3 −0.0559 0.0645 −0.1797 0.0755
φ4 −0.2559 0.0564 −0.3616 −0.1413
σ2 0.0239 0.0013 0.0214 0.0265

Panel B: Fatality Rate Equation
γ0 0.0008 0.0057 −0.0102 0.0118
γ1 0.0467 0.0859 −0.1253 0.2058
φ1 0.8693 0.0628 0.7543 0.9902
φ2 0.0282 0.0261 −0.0238 0.0785
σ2 0.0004 0.0001 0.0003 0.0005

Consider Figures 3 and 4. For four different values of infection rate, 10%, 15%, 20%,
and 25%, we plot the corresponding predictive distributions of the personal income and the
CARES Act adjusted personal income, respectively. The corresponding means, standard
deviations, and 95% probability intervals appear below each graph.

At this stage, we quantified the benefit component of the NB calculation. In essence,
we quantified the benefit for an individual within a household. To convert the values
in Figures 3 and 4 into household income figures, we could multiply each value in the
distribution by the average household size in Florida. We prefer not to do this since it might
inflate benefits. There is considerable anecdotal and relevant official evidence that at least
one employed person in many homes was laid off, furloughed, or forced to work part-time.



Healthcare 2021, 9, 1023 9 of 20

Figure 3. Predictive distributions of Florida unadjusted personal income in dollars.

Figure 4. Predictive distributions of Florida adjusted personal income in dollars.

4.2. Analysis of Equation (2)

The predictive distribution of wt from Equation (2) serves as a key input in calculating
the second component of NB, namely expected medical cost and fatality cost. We tackle
each in turn. (These costs are for an individual. For a household, we could once again
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multiply the final cost values by the average size of households in a state, similar to what
that for the benefit values.)

Medical and fatality costs. There are three types of medical costs due to decremental
suppression: (1) ∆λS1 for an uninfected person with COVID-19 symptoms (e.g., fever,
coughing, and sore throat), (2) ∆λS2 for an infected patient who recovers, and (3) ∆λS3
for an infected person who despite medical treatment eventually dies. We formulate the
cost equation for each type, followed by ∆λD for the expected fatality cost increase due to
decremental suppression.

(1) On day t, let ∆λS1= (1 − wt ct) CS1 − (1 − w0 c0) CS1 = (w0 c0 − wt ct) CS1. We assume
CS1 = $2000 per uninfected person for testing and treatment; w0 and c0 are 3.48% and
7.84%, the respective death and infection rates on 30 June 2020 in Florida.

(2) On day t, let ∆λS2 = (1− wt ct) CS2 − (1− w0 c0) CS2 = (w0 c0 − wt ct) CS2. We assume
CS2 = $15,000 for an infected person’s treatment that includes hospitalization. These
cost estimates are consistent with that in [25]; they are linear in the infection rate, and
we adjusted the cost with the infection rate.

(3) On day t, let ∆λS3 = (1− wt ct) CS3 − (1− w0 c0) CS3 = (w0 c0 − wt ct) CS3. We assume
CS2 = CS3 since we do not accurately know whether a recovered patient has longer
hospitalization and more intense treatment than a dead patient.

(4) Let the change in expected fatality cost on day t be ∆λD = (wt ct − w0 c0) CD. We let
CD = $7 million, the age-dependent VSL-based fatality cost.

Hence, decremental suppression’s total cost on day t is (1) + (2) + (3) + (4) = (wt ct −
w0 c0) (CD − CS1 − CS2 − CS3) = (wt ct − w0 c0) × (7 million − 2K − 15K − 15K) = (wt ct
− w0 c0) × $6,968,000. It highlights (i) that a COVID-19 patient’s fatality cost dominates
medical costs when calculating ∆NB’s cost component; (ii) that imprecision in the medical
cost assumptions is unlikely to materially alter decremental suppression’s decision by a
state; and (iii) that excluding decremental suppression’s fatality cost impact would vastly,
though erroneously, overstate ∆NB.

Now, to complete the total cost calculation, we need estimates of the endogenous
quantity wt. The estimation and simulation of Equation (2) is similar to Equation (1)
(equivalently Equation (3)). For Florida, the only difference is that, instead of four lags of
the dependent variable in the employment model, the Bayesian model selection procedure
requires two lags of wt; see second column in Table 1. We omit other details, except to note
that the posterior summaries for the death rate model for Florida that appears in Panel B of
Table 2. In this table, consider the 95% HPD interval for the parameter, γ1, corresponding to
daily infection rates. This interval contains zero. This is consistent with the time series plot
of the death rate values shown in Figure 1 as well as media/governmental reports. During
the early-to-middle stages of the pandemic, while social distancing and other mitigating
measures were beginning to be enforced, death rates were on the rise with increasing
infections. However, once the measures began to take effect and Florida aggressively
quarantined the most vulnerable groups, death rates declined even though infections were
still on the rise, albeit at a decreasing rate. While forecasting is not the primary aim of this
paper, nonetheless, we tested the fatality model’s out-of-sample performance, which is the
gold standard in time-series models. For New York, the one-week ahead out-of-sample
root mean square error was less than eight percent, while for Florida and Texas, they were
less than five percent.

The resulting cost distributions with appropriate summaries under each of the four
infection rates, 10%, 15%, 20%, and 25%, are shown in Figure 5. Depending on the
infection rate, costs may be negative. This is to be expected since we drew random values
from various probability distributions; hence, for certain combinations of the components
comprising the overall cost distribution (detailed above), the costs could be negative. The
important point here is costs are and should be an increasing function of infection rates.
The predictive distributions shown in Figure 5 confirm this.
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Figure 5. Predictive distributions of medical and fatality costs in dollars.

4.3. Calculating ∆NB and P(∆NB > 0)

All that remains is to obtain the distribution of ∆NB. The benefit distributions in
Figures 3 and 4 and the cost distributions in Figure 5 are approximately normal. We
compute their MCMC-based means and standard deviations. Using those, under each
infection rate assumption, we randomly draw 5000 samples from the corresponding benefit
and cost distributions and subtract them. The resulting ∆NB distributions are shown in
Figure 6.

Consider Table 3, which provides the summary statistics for the distributions in
Figure 6. We are now ready to quantify our decision rule for Florida.

The Personal Income Probabilities: From the last row of Table 3 under Personal Income,
when ∆NB > 0, P(∆NB > 0) is equal to 0.9998, 0.8996, 0.6344, and 0.4104 corresponding to
infection rates 10%, 15%, 20%, and 25%, respectively.

The Adjusted Personal Income Probabilities: From the last row of Table 3 under Adjusted
Personal Income, P(∆NB > 0) is equal to 0.9998, 0.9394, 0.7072, and 0.4738.

Table 3. Summary statistics (in dollars) of the ∆NB distributions for Florida.

(1) (2) (3) (4)

Infection Rate 10% 15% 20% 25%
∆NB = Personal Income − Cost

Mean 42,964 27,295 9404 −8564
SD 13,186 20,877 28,086 36,438

2.5 Percentile 17,654 −13,685 −44,606 −80,608
97.5 Percentile 68,504 67,915 63,870 61,562

P(∆NB > 0) 0.9998 0.8996 0.6344 0.4104
∆NB = Adjusted Personal Income − Cost

Mean 48,666 32,982 15,066 −2914
SD 13,186 20,872 28,085 36,438

2.5 Percentile 23,256 −7920 −38,876 −75,048
97.5 Percentile 74,228 73,731 69,423 67,205

P(∆NB > 0) 0.9998 0.9394 0.7072 0.4738
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Figure 6. Predictive distributions of Florida ∆NB in dollars.

Tables 4 and 5 provide similar summaries for New York and Texas, respectively. We
now turn to the policy discussion of the above scenarios.
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Table 4. Summary statistics (in dollars) of the ∆NB distributions for New York.

(1) (2) (3) (4)

Infection Rate 10% 15% 20% 25%
∆NB = Personal Income − Cost

Mean 59,690 35,824 13,120 −11,278
SD 11,538 17,425 22,596 29,201

2.5 Percentile 37,325 1822 −31,848 −68,426
97.5 Percentile 82,021 70,879 57,320 44,885

P(∆NB > 0) 1.0000 0.9822 0.7222 0.3500
∆NB = Adjusted Personal Income − Cost

Mean 68,108 44,214 21,482 −2940
SD 11,542 17,427 22,598 29,201

2.5 Percentile 45,781 10,059 −23,415 −60,113
97.5 Percentile 90,523 79,261 65,652 53,279

P(∆NB > 0) 1.0000 0.9974 0.8322 0.4640

Table 5. Summary statistics (in dollars) of the ∆NB distributions for Texas.

(1) (2) (3) (4)

Infection Rate 10% 15% 20% 25%
∆NB = Personal Income − Cost

Mean 44,270 33,702 27,264 16,801
SD 11,651 18,150 23,519 31,388

2.5 Percentile 21,576 −2108 −19,513 −45,996
97.5 Percentile 66,718 69,842 74,158 76,993

P(∆NB > 0) 0.9998 0.9686 0.8782 0.7046
∆NB = Adjusted Personal Income − Cost

Mean 50,013 39,444 33,005 22,538
SD 11,653 18,150 23,524 31,386

2.5 Percentile 27,291 3547 −13,805 −40,205
97.5 Percentile 72,510 75,494 79,856 82,704

P(∆NB > 0) 0.9998 0.9850 0.9188 0.7670

4.4. Sensitivity Analyses via Probability Plots

Once the samples from the posterior distributions of the parameters are saved, then it
is straightforward to implement as many sensitivity analyses as one wants. The first part of
our decision rule requires that we consider only those scenarios for which ∆NB > 0. Given
this condition, we then examine the following scenarios for FL, NY, and TX. The metrics
used are per capita personal income (Bureau of Economic Analysis), median household
income (Census), per capita income (Census), and the CARES Act adjusted version of the
three measures.

As shown earlier, the infection rates considered in the sensitivity analysis are 10%,
15%, 20%, and 25%. It should be noted that, in the sample period used, the largest infection
rate in Florida was 12.4%. Thus, our analysis veers in the direction of extreme caution by
performing a sensitivity analysis with very large infection rates. Likewise, for Texas, the
largest infection rate was 9.6%. New York reached an infection rate of 38.8%. However,
as we see later on, based on our decision rule, even at 25%, a decision to segment and
isolate at least some population groups (e.g., elderly) would have been a prudent choice
for New York.

Another reason for varying the exogenous input infection rates is to indirectly assess
the impact of non-pharmaceutical interventions (NPIs) such as lockdowns, partial shut-
downs, social distancing, etc. on death rates and employment. At least 30 studies have
shown that NPIs have been ineffective (https://inproportion2.talkigy.com/do_lockdowns_
work_2021-01-15.html, accessed on 10 July 2020). Be that as it may, suppose one believes
masks could mitigate infection rates, whence death rates, then, ceteris paribus, it stands to
reason that higher infection rates might be the result of poor NPI protocols. Conversely,

https://inproportion2.talkigy.com/do_lockdowns_work_2021-01-15.html
https://inproportion2.talkigy.com/do_lockdowns_work_2021-01-15.html
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effective use of NPIs might lead to lower mortality. (We note that the jury is clearly out on
the value of NPIs in this pandemic; we discuss this in the final section.) For our purposes,
performing a “what if” analysis with different infection rates serves to illustrate the over-
all methodology and its value to policymakers, notwithstanding one’s beliefs about the
efficacy of NPIs.

Regardless of which income measure one uses, our decision rule states: If
P(∆NB > 0) ≥ T, decremental suppression should occur.

Consider Figure 7, Panel A. The values shown in this plot are from Tables 3–5 and
correspond to P(∆NB > 0) for FL, NY, and TX, respectively. The scale is therefore from 0%
to 100% (equivalently 0 to 1). Panel A plots the decision rule based on unadjusted incomes,
while Panel B plots the decision rule using adjusted incomes. The colour coding makes it
clear that, as the threshold probability approaches one, decremental suppression is viable;
likewise, when it approaches zero, the opposite is true. Therefore, how large should T be
for policymakers to decide on decremental suppression? It depends on the individual or
group’s attitude to risk; we provide more analysis on this point in the next subsection. Here,
suppose for the sake of discussion that decision-makers in all three states decide to base their
decision solely on the values shown in the Panel A top row plot; this corresponds to Per
Capita Personal Income measure. Clearly, for the scenario corresponding to infection rate 10%,
decremental suppression is viable since a positive net benefit can be had with near certainty,
likewise for 15%. At 25%, decremental suppression appears most viable for TX. For FL and
NY, perhaps, some form of decremental suppression of their respective economies seem
warranted. Indeed, that is precisely what FL did while NY was in a complete lockdown. To
be clear, in the latter state, infection rates were close 38%. Hence, the probability shown in the
plot under the 25% infection rate scenario is an overestimate for NY; in truth, the probability
is closer to the lightest red shaded area. The remaining plots in Panels A and B show the
Bayesian decision rule graphs for various sensitivity analyses based on different unadjusted
and adjusted incomes, respectively. It is interesting to note how the decision rule changes
depending on the income measure used when infection rates increase.

Figure 7. Cont.
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Figure 7. (a) Panel A—P(∆NB > 0) with Unadjusted Income Values. (b) Panel B—P(∆NB > 0) with
Adjusted Income Values.

4.5. Policy Decision Analyses and Discussion of Threshold Probability T

We can expand on the insights from the plots shown in Figure 7 to more “what
if” policy scenarios. In this subsection, we focus on the net benefits of a decremental
suppression policy that may range from being minor (e.g., expanding social gathering’s
size limit) to major (e.g., removing all suppression measures). Implementation of the policy
could cause additional infections, which can be characterized by Table 6 below. With data
on the probabilities{πjk} of incremental infection rates under each policy being absent, we
use decision analysis scenarios to set up a government’s policy choice. Note that this type
of a decision analysis is similar in spirit to a decision tree model; we prefer to present it in a
tabular form since we work with entire predictive distributions from the Bayesian models.

Table 6. Scenario 1: probabilities of incremental infection rates by policy type.

Policy Type j
Incremental Infection Rate k (%)

Expected Value of k
10 15 20 25

Minor 0.5 0.3 0.1 0.1 14

Moderate 0.2 0.4 0.2 0.2 17

Major 0.1 0.2 0.4 0.3 19.5

The various assumed probabilities in Table 6 are specific to an incremental infection
rate scenario. For the minor policy, the probability of the 10% incremental rate is relatively
high at 0.5, exceeding those of the other rates. The moderate policy, however, makes the
incremental rate of 15% most likely. The major policy implies high probabilities for the 20%
and 25% rates. In summary, the last column of Table 6 highlights that the expected value of
infection rate k increases with a policy’s extent of decremental suppression.
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Varying the assumed probabilities in Table 6 generates different infection rate/policy
scenarios given in Tables 7 and 8, which portray higher expected values of k than those in
Table 6.

Table 7. Scenario 2: probabilities of incremental infection rates by policy type.

Policy Type j
Incremental Infection Rate k (%)

Expected Value of k
10 15 20 25

Minor 0.3 0.3 0.3 0.1 16

Moderate 0.2 0.3 0.3 0.2 17.5

Major 0.1 0.2 0.4 0.3 19.5

Table 8. Scenario 3: probabilities of incremental infection rates by policy type.

Policy Type j
Incremental Infection Rate k (%)

Expected Value of k
10 15 20 25

Minor 0.2 0.4 0.3 0.1 16.5

Moderate 0.1 0.2 0.4 0.3 19.5

Major 0.0 0.1 0.4 0.5 22

For notational simplicity, let Bjk = ∆NBjk denote the change in net benefit conditional
on infection rate k due to policy j’s implementation. A standard benefit–cost analysis
suggests that policy j should be considered if the policy’s implementation results in
E(Bj) = πk πjk E(Bjk) > 0. The goal of a risk-neutral government is to choose j* that re-
sults in E(Bj*) = max{E(Bj)}. For a risk-averse government, its goal is to choose j* so that
E(Bj*) = max{E(Bj)} and Pj = prob(Bj* > 0) > T.

The threshold T reflects a government’s attitude toward risk. Suppose T = 0.90. The
government is highly risk-averse and only chooses a policy with a positive net benefit that
can be attained with almost certainty. Recall from Figure 7 that, when the infection rate was
10%, P(∆NB > 0) was almost one for all three states; i.e., the Bayesian predictive distribution
of ∆NB indicated that a positive net benefit could be obtained with near certainty. When T
declines, the government is willing to take some risk in making its policy choice.

To make the decision process operational, we assume that a government prepares
a look-up table based on the information available on day d: (1) observed infection rate,
(2) incremental income forecast on day d, and (3) incremental cost for fatality and medical
treatment. Table 9 below is an example of the look-up table.

Table 9. E(Bj) and Pj by incremental infection rate scenarios in Florida.

Policy j
Scenario 1 Scenario 2 Scenario 3

E(Bj) Pj E(Bj) Pj E(Bj) Pj

Minor 29,754 0.9988 23,042 0.9726 21,475 0.953

Moderate 19,679 0.9372 17,890 0.913 10,948 0.7496

Major 10,948 0.7496 10,948 0.7496 2209 0.5464

Suppose that a government believes in Scenario 1. If the government is risk-neutral, it
selects the minor policy that has the highest net benefit estimate. When the government
is risk-averse with T = 0.90, it still chooses the minor policy. Using the same line of
reasoning for the other two scenarios leads to similar inferences. The overall finding that
the minor policy is preferable over the other two policies makes sense because changes in
the incremental infection rate does not materially affect the expected incremental income
but can greatly magnify the expected incremental cost of fatality and medical treatment.
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5. Discussion and Conclusions

Referring to Figure 7 and the policy analyses in Section 4.5, a decremental suppression
policy decision in Florida, New York, and Texas depends on several factors. First, it would
depend on which measure of income one chooses; for instance, the CARES Act package
provided by the federal government increases P(∆NB > 0). State local officials should
consider whether these aid packages are sustainable if the pandemic is prolonged. Second,
regardless of the income measure, should states close all counties or focus on those that have
the highest infection rates? Third, are these higher rates amidst vulnerable populations?
Fourth, among non-vulnerable groups, does the infection rate mostly affect people with
comorbid conditions? The answers to these and related questions must be considered
before deciding on decremental suppression. However, our decision rule also cautions
against sweeping closures of an entire economy based solely on rising infection rates. It
is important to emphasize that Florida officials actually took a very sensible approach by
isolating and locking down counties comprising the most vulnerable populations. Thus,
they had very low death rates compared with other states. Additionally, they opened parts
of the state where infections were not surging. By stating this, we do not discount the
relevance and potential dangers of infection; indeed, that is why we use the infection rate
as an exogenous factor in our models and sensitivity analyses. In this regard, it is worth
recalling eminent 19th century British epidemiologist William Farr’s Law: “The death rate
is a fact; anything beyond this is an inference.”

In addition to the economic value from decremental suppression, epidemiologically,
herd immunity can be attained with rising infections. (Using Sweden as a case study, Nobel-
laureate Michael Levitt discussed the latter point in the context of COVID-19. https://www.
stanforddaily.com/2020/05/04/qa-nobel-laureate-says-COVID-19-curve-could-be-naturally-
self-flattening/. https://twitter.com/mlevitt_np2013?lang=en, accessed on 10 July 2020) Note,
however, that fatality rate predictions from Equation (2) becoming alarmingly high due to
increased infections affects the P(∆NB > 0) estimates. Thus, our decision rule serves as a
useful standard of judgment when assessing the economic and health aspects of decremental
suppression. Indeed, we note that the decisions made by state officials in Florida, New
York, and Texas generally coincide with what our model-based output showed to be the
preferred decisions.

We now turn our attention to the econometric specifications used in
Equations (1) and (2). First, it may be tempting to use cross-sectional regressions to
model (1) and (2). We do not recommend this for a few reasons, not the least of which
is that the data collection process varies considerably. Some states never closed, while
others did so partially. Some closed earlier than others. There was and is considerable
variation in social distancing measures adopted by states. However, above all, even within
a state, the employment and mortality rates vary considerably. At best, one might want
to consider panel data models for states that were affected similarly by the pandemic; for
example, New York, New Jersey, Pennsylvania, and Michigan. Rather than panel data
models, we suggest using our approach to model employment data by state and fatality
data by county. Furthermore, it is useful to consider modelling the latter data to account
for age, race, and comorbid health conditions. Indeed, one could replace the continuous
mortality model in Equation (2) by a binary logistic regression where the observed response
is dead or alive, with age, gender, comorbidities, and race serving as covariates. To this
end, consider Figure 8, which shows the number of deaths from the contagion in New York
City classified by risk groups. (The data are available at the NYC health data archive.
https://www1.nyc.gov/site/doh/COVID/COVID-19-data-archive.page, accessed on 10
July 2020) It is evident that age is a significant factor in the number of deaths. If New
York, like Florida, had taken measures to curb infections in the most vulnerable population
groups, perhaps its death rates would have been lower. Another striking inference from
Figure 8 is the impact of the pandemic on those with comorbid conditions.

https://www.stanforddaily.com/2020/05/04/qa-nobel-laureate-says-COVID-19-curve-could-be-naturally-self-flattening/
https://www.stanforddaily.com/2020/05/04/qa-nobel-laureate-says-COVID-19-curve-could-be-naturally-self-flattening/
https://www.stanforddaily.com/2020/05/04/qa-nobel-laureate-says-COVID-19-curve-could-be-naturally-self-flattening/
https://www1.nyc.gov/site/doh/COVID/COVID-19-data-archive.page
https://www1.nyc.gov/site/doh/COVID/COVID-19-data-archive.page
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Figure 8. New York City COVID-19 deaths by age as of 12 May 2020. Note: Underlying conditions
include diabetes, lung disease, cancer, immunodeficiency, heart disease, hypertension, asthma, kidney
disease, GI/liver disease, and obesity.

There is growing evidence that many of the decisions made by governments based
on COVID-19 epidemiological models were highly questionable. A recent Newsweek
report discussed why lockdowns were ineffective compared with other voluntary mea-
sures (https://www.newsweek.com/COVID-lockdowns-have-no-clear-benefit-vs-other-
voluntary-measures-international-study-shows-, accessed on 10 July 2020). Addition-
ally, there are at least 30 papers that show lockdowns were generally ineffective (https:
//inproportion2.talkigy.com/do_lockdowns_work_2021-01-15.html, accessed on 10 July
2020) in sharp contrast to Alveda et al. [26], who argued otherwise. Other NPIs have
also come under scrutiny, as have the epidemiological aspects of how the disease spreads.
Marks et al. [27] “did not find any association between mask use and reduced risk [of infec-
tions]”. Indeed, MacIntyre et al. [28], in a related context, found that cloth masks increased
infection rates. Governmental lockdowns and other NPI mandates during this pandemic,
based on epidemiological models, will be researched and debated (as should be) long after
COVID-19 is a distant memory. For now, it becomes even more important to focus on the
economic impacts of the pandemic, especially since several pharmaceutical interventions
(example, vaccines) are reaching the masses. In our Bayesian decision rule analysis, the
observed infection rate serves as a credible proxy to quantify the overall health (due to the
pandemic) in each state’s population. That is, our model recognizes the importance of both
health effects and economic ones, which is why infection rates appear in both the economic
and fatality models. However, to be sure, there is a trade-off between the economic and
health impacts. Specifically, based on [26], countries (e.g., France, Germany, Italy, and the
U.K.) that sacrificed their economies to save lives have suffered greater economic losses
than those that did not (e.g., China, Indonesia, Bulgaria, and Sweden).

Using risk simulations, Rice et al. [29] showed that, no matter the country, the demo-
graphic attack profile of this particular virus is that it disproportionately harms those who
are already not working and not “producing”, and those with comorbid conditions; see,
also, Figure 8 above. The trade-off between health and economic impacts is also relevant
while examining death rates. Reports on mortality from COVID-19 glaringly omit the
deaths from lockdowns or projected deaths to come over the years from slamming the
breaks on society (cancer screenings, mental health, etc.).

One of our conclusions coincide with that of [29], albeit in a somewhat different
manner. Our analysis points to a position of compromise—use Bayesian decision analysis

https://www.newsweek.com/COVID-lockdowns-have-no-clear-benefit-vs-other-voluntary-measures-international-study-shows-
https://www.newsweek.com/COVID-lockdowns-have-no-clear-benefit-vs-other-voluntary-measures-international-study-shows-
https://inproportion2.talkigy.com/do_lockdowns_work_2021-01-15.html
https://inproportion2.talkigy.com/do_lockdowns_work_2021-01-15.html
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to model health effects (via the fatality model) and economic effects (via the employment
model). Unlike [29], we do not model age explicitly, but it is implicit in our formulation. We
too find that a segmentation approach to decremental suppression could be the best course
of action in many instances; see the discussion in Section 4. Additionally, that is precisely
what Florida and Texas’s successful segmented strategies accomplished, confirmed by the
decision rule in our paper.

Above all, using our Bayesian methodology, we are able to perform valuable sensitivity
analyses that indirectly accounts for various factors that may impact infection rates such as
mask wearing, social distancing, etc. Additionally, there are several data issues of particular
relevance to the COVID-19 pandemic. For instance, the fraud from the CARES Act is in
the millions of dollars. Tracking these by state is impossible. Unemployment insurance
scams are also in the millions of dollars. These also vary by state and regions within states.
Government pay-outs are eventually paid by taxpayers. It is not clear how and when the
taxation changes will be imposed. How all of this plays out in the future remains unknown
and uncertain. However, the probabilistic construction explicit in the Bayesian approach
encapsulates structural uncertainties and data deficits. This is one of many reasons why
decision and risk analysis, based on Bayesian modelling of net benefit per capita, could
serve as a useful practical tool during a pandemic, consistent with the discussion in [2].
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10.3390/healthcare9081023/s1. Table S1: Gelman–Rubin statistics for the Florida employment and
fatality rate model parameters; Figure S1: Trace plots of parameters of the Florida employment
model; Figure S2: Histograms of parameters of the Florida employment model; Figure S3: Trace plots
of parameters in the Florida fatality rate model; Figure S4: Histograms of parameters of the Florida
fatality rate model.
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