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Abstract: Sleep apnea is a sleep disorder that affects a large population. This disorder can cause or
augment the exposure to cardiovascular dysfunction, stroke, diabetes, and poor productivity. The
polysomnography (PSG) test, which is the gold standard for sleep apnea detection, is expensive,
inconvenient, and unavailable to the population at large. This calls for more friendly and accessible
solutions for diagnosing sleep apnea. In this paper, we examine how sleep apnea is detected clinically,
and how a combination of advances in embedded systems and machine learning can help make its di-
agnosis easier, more affordable, and accessible. We present the relevance of machine learning in sleep
apnea detection, and a study of the recent advances in the aforementioned area. The review covers
research based on machine learning, deep learning, and sensor fusion, and focuses on the following
facets of sleep apnea detection: (i) type of sensors used for data collection, (ii) feature engineering
approaches applied on the data (iii) classifiers used for sleep apnea detection/classification. We also
analyze the challenges in the design of sleep apnea detection systems, based on the literature survey.

Keywords: sleep apnea; machine learning; deep learning; wearable systems

1. Introduction

Sleep apnea is a sleep disorder in which a sleeping person’s breathing is disturbed. It
is prevalent in adults as well as a small percentage of the juvenile population [1]. Subjects
suffering from sleep apnea undergo periods of no or shallow breathing during their
sleep. The former condition in which breathing stops temporarily is referred to as apnea,
while the latter condition of periods of shallow breathing or airflow reduction is called
hypopnea. Clinical comorbidities can result from either condition and, therefore, both
are detrimental to a person’s well-being [2]. The physiological symptoms of sleep apnea
include snoring, gasping for air during sleep, waking up with dry mouth and, in general,
low sleep quality, thereby leading to low attention, insomnia, decrease in cognitive skills,
accidents, memory loss and depression. In addition to the low quality of life caused by
sleep deprivation and fatigue, sleep apnea may also lead to severe issues such as diabetes,
cardiovascular problems, hypertension, neurological issues, and liver problems. Due to the
global prevalence of sleep apnea as well as the direct and indirect long-term problems it
brings about, it is important to diagnose and treat this condition. In this paper, we review
the recent state-of-the-art research in the application of machine learning for sleep apnea
detection. The review covers the parameters and sensors used, and feature engineering
approaches for enabling sleep apnea detection using machine learning.

There are three types of sleep apnea:

• Obstructive sleep apnea (OSA) occurs due to improper functioning of the upper
respiratory tract. When the muscles of the hard palate in the back of the throat
that supports that soft palate relax, the soft palate blocks the passage of air to the
respiratory system. This leads to stoppage of breathing for short durations [3].
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• Central sleep apnea (CSA) occurs when the brain fails to generate or transmit signals
that control breathing muscles. This leads to short durations of time when the subject
does not breathe at all.

• Complex sleep apnea syndrome is manifested with central apnea persisting even after
obstructive events have disappeared with PAP therapy [4].

Javaheri et al. [3] describe the etiological risk factors for sleep apnea and its con-
sequences. In this paper, we describe the recent research in the application of machine
learning for sleep apnea detection. Figure 1 presents the distribution of the number of
papers selected for this study from 2003 through 2021. The technical focus of this study
includes the following facets of sleep apnea detection: (i) type of sensors used for data
collection, (ii) feature engineering approaches applied on the data, and (iii) classifiers used
for sleep apnea detection/classification.
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This paper is organized as follows: In Section 2, we briefly explain how sleep apnea
is diagnosed, and the biomedical parameters along with their derivatives that aid in the
process. Subsequently, we examine the drawbacks of the standard tests for sleep apnea
detection, and reason the need for leveraging on the advances in machine learning and
wearable device technologies for the same. Section 3 details the recent studies on intelligent
sleep apnea detection mechanisms using classic machine learning and deep learning based
solutions, using single markers as well as sensor/feature fusion. Section 4 outlines the
recent studies in sleep apnea detection using machine learning on data generated by
environmental sensors and the significance of including features related health profiles,
during classifier training. We conclude our paper with our observations on the various
factors that influence the performance of machine learning classifiers for sleep apnea
detection.

2. Background
2.1. Diagnosis of Sleep Apnea

Clinical manifestations of sleep apnea conditions include variations in oxygen satura-
tion levels, respiratory effort, and heart rate. Gottlieb et al. [5] describes the pathophysiol-
ogy, assessment and treatment of obstructive sleep apnea. The PSG test is the gold standard
in the diagnosis of this condition [1]. This test is conducted in dedicated sleep labs under
the supervision of trained personnel. It is time consuming, and requires subjects to be
connected to instruments measuring various biomedical and physiological parameters.
The test monitors upper airway flow, respiratory effort, and biomedical and physiological
parameters such as electroencephalogram (EEG), electrocardiogram (ECG), and oxygen
saturation (SPO2) [1]. EEG helps detect electrical activity in the brain and related disorders.
This is measured using an EEG machine. ECG analyzes the rhythm of heartbeats and blood
flow to the heart muscles and is measured using an ECG machine or a single lead ECG.
SPO2 indicates the measure of oxygen in the blood. A pulse oximeter is used to measure
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SPO2. In addition, thoracic and abdominal signals as well as acoustic signals generated by
respiratory effort or snoring can also aid in the detection of sleep apnea.

Various parameters useful in the diagnosis of sleep apnea can be derived from the
above-mentioned signals. Analysis of ECG yields Heart Rate Variability (HRV), ECG
derived respiration (EDR), Cardiopulmonary coupling (CPC), and Ballistocardiography
(BCG) parameters.

• HRV measures the variation in the time interval between consecutive heartbeats,
known as the R-R interval. Previous research shows that variation in R-R interval is a
symptom of apneic events, and hence can provide the physiological basis of using R-R
series to detect OSA. Analyzing HRV, however, poses certain challenges. This includes
special attention to signal quality and elimination of background noise, along with
using a sensitive R-wave detection algorithm. Furthermore, interpretation of HRV is
difficult in patients who have atrial fibrillation or those with irregular heartbeats [6].

• Instantaneous Heart Rate (IHR) is the number of times the heart would beat if succes-
sive R-R intervals were constant.

• EDR measures respiratory activity from ECG. An explanation of the relation between
EDR and ECG is given in [7]. The respiratory effort causes changes in the position of
the ECG electrodes, which in turn affects the amplitude of the ECG signals. EDR is the
surrogate respiration signal derived from the amplitude variations of the ECG signals.
There are several techniques to derive EDR from ECG [8].

• CPC quantifies the degree of coherent coupling between HRV and variations of the
R-wave amplitude caused by modulation of the respiratory tidal volume. CPC can
be of high or low frequency coupling (HFC, LFC); the former is indicative of stable
sleep, while the latter is associated with sleep instability. A special characteristic of
LFC, so-called elevated LFC, can be used to detect periods of apnea and hypopnea [9].

• Ballistocardiography (BCG) is a noninvasive method based on the measurement of
body motion (body movements such as displacement, velocity, and acceleration),
generated by the ejection of blood by the heart, at each cardiac cycle. This is measured
using devices that can measure the body recoil force produced as a result of ejection
of blood [10].

• A parameter that may be related to HRV is Pulse Rate Variability (PRV), which is
measured from photoplethysmography (PPG) sensors [11]. PPG sensors use a light
source and a photodetector on the skin to characterize blood circulation.

Oxygen Desaturation Index (ODI) is a metric derived from SPO2, which represents
the number of times the oxygen level in blood falls for more than 10 s, divided by the
number of sleep hours. ODI is defined as the number of times that oxygen desaturation
was ≥3% per hour of sleep [12].

The above mentioned parameters are used to infer certain measures to ascertain the
presence of sleep apnea, such as:

• Apnea–hypopnea index (AHI) [13] is the number of times one has apnea or hypopnea
during one night, divided by the hours of sleep. In other words, AHI score is the
number of apnea and hypopnea events per hour of sleep. The severity of sleep apnea is
determined based on the AHI score as follows: normal (AHI < 5), mild (5 ≤ AHI < 15),
moderate (15 ≤ AHI < 30), and severe (AHI ≥ 30).

• Respiratory Disturbance Index (RDI) factor counts the number of times respiratory
difficulties disturb one’s sleep. This includes, in addition to apneic and hypopneic
events, respiratory effort-related arousals (RERA). RERA is the number of arousals
from sleep resulting from increased respiratory effort. RDI is expressed as:

• RDI = (Number of apneas + Number of hypopneas + Number of RERAs)/sleep hours.

2.2. The Need for More Accessible Detection Mechanisms—Sensors to the Aid

While the PSG test is the gold standard in sleep apnea diagnosis, its availability, cost,
requirement of trained staff, and limited capacity at sleep centers make it inaccessible to
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the common man, and sleep apnea is often undiagnosed or underdiagnosed, until the
subject starts showing symptoms of long-term impact. Studies show that the percentage
of elderly population in the world is increasing. Due to changing lifestyles, the number
of elderly people living alone is also increasing. This has resulted in the emergence of
geriatric healthcare homes, with round-the–the-clock staff support, albeit with high costs
of maintenance. Technological advances in sensors, low power embedded systems, and
machine learning have paved the way for more affordable and intelligent healthcare homes,
with automatic monitoring of the subjects’ vital parameters [14]. One of the possibilities of
such a system is the detection of sleep apnea.

Recent advances in sensing technologies have enabled the continuous collection of
various vital parameters that can lead to monitoring sleep quality in multiple ways. The use
of sensors to detect sleep apnea is a widely researched area, and the application of machine
learning techniques to detect apneic conditions has been found to be accurate and reliable.
The parameters used to detect sleep apnea, such as ECG and SPO2, their derivatives such as
HRV, BCG, ODI, thoracic and abdominal signals, pressure, and sound [15], can be obtained
from biomedical sensors, environmental sensors or vision-based systems.

• Biosensors allow sensing of vital parameters. For example, ECG sensors enable the
detection of HRV and R-R intervals through signal analysis. They also enable the
deduction of variations in QRS (Q wave, R wave, S wave) amplitude of ECG signals
and ECG derived respiration. A variant of the ECG sensor, the single lead ECG
sensor, is designed to be used with wearable devices. SPO2 sensors measure oxygen
saturation levels in the blood. Barometric sensors measure blood pressure.

• Environmental sensors include those that can monitor the surroundings of the subject
under study. For example, sound sensors allow nocturnal sound analysis by capturing
snoring via microphones. Sounds and sound patterns during inhalation and exhalation
will be different from normal when the upper respiratory tract is compromised. Inertial
motion unit (IMU) sensors allow deriving the position of the sleeping subject. Sensors
are also placed under the bed to enable non-intrusive monitoring.

• Vision based systems allow capturing of images through image and/or video feeds.
Analysis of the images and video frames enables determination of the sleeping position
of the subject under study.

Leelaarporn et al. [14] provide a comprehensive review of the utilization of sensors
in four different areas of smart living, including sleep monitoring. Recent research trends
in the area of sleep monitoring using several types of algorithms on pulse oximetry, ECG,
sounds and respiration data are described in [16]. Flemons et al. [17] studies the utility of
portable monitors in diagnosing sleep apnea in adults.

3. Machine Learning in Sleep Apnea Detection Based on Biomedical Markers in
Wearable Devices

Machine learning applies mathematical modelling to detect or predict anomalies or
patterns, to discover new knowledge from datasets. A model trained on a given dataset
is used to classify new data. Machine learning can be supervised, unsupervised, or
reinforcement learning [18]. Supervised learning algorithms take a labelled dataset as input
and output a hypothesis that best fits the labelled dataset. A labelled dataset provides
the algorithm with an outcome variable for each record in the dataset. Unsupervised
learning algorithms do not have a labelled dataset for classifier training; rather, they
detect patterns in the dataset to form clusters of similar records. Reinforcement learning
has a feedback ingredient that incorporates reward points for records that get correctly
classified, which substantiates classifier training. While there have been studies that uses
spectral/waveform analysis of signals for sleep apnea detection [19–21], the ability of
machine learning classifiers to learn from input datasets and generalize for future data
makes it a reliable approach in this area of research. Most studies on sleep apnea detection
rely on supervised learning.
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The common set of parameters that is used to detect sleep apnea was explained
in a previous section. Biomedical informaticians have used various machine learning
techniques to predict the accuracy of sleep apnea diagnosis using these aforementioned
parameters. Of late, the effectiveness of ensemble classifiers and deep learning techniques
has also been investigated. The features used for sleep apnea detection could be reported
directly from sensors, or extracted from various sensor observations. There has also
been extensive research into utilizing observations from one or more of these sensors
using data fusion to detect sleep disorders. Studies also include the impact of extracting
statistical, time and frequency domain features from the parameters, and performing
dimensionality reduction to downsize the feature vectors on the classifier performance.
In the following sections, we look at how classic machine learning, deep learning, and
sensor fusion techniques have been applied to detect sleep apnea. Deep learning can
be considered as a specialized segment of machine learning; however, the manner in
which feature engineering is accomplished differs greatly from each other. A snapshot of
recent research on sleep apnea detection using machine learning and deep learning with
biomedical sensors is presented in Table A1.

3.1. Classic Machine Learning Based Solutions

This section presents an overview of recent research in sleep apnea detection using
classic machine learning techniques. In many research papers, single biomedical markers,
such as SPO2, ECG, EOG, or EEG, have been used for the detection of sleep apnea. Among
these, most studies focus on using SPO2 and ECG signals because of their correlation
with apneic events—research shows that heart rate and systolic blood pressure increase
in response to apneic events [22]. For example, in [12], SPO2 signals are used for OSA
detection. During feature engineering, ODI, total time below saturation levels (tsa), and
other six features were extracted from SPO2. Various variants of decision tree (DT) clas-
sifiers were used to obtain an accuracy of 93%. In [23] too, pulse oximeter parameters
are used for sleep apnea detection. PPG measurements were obtained from SPO2 sensor
and analyzed to derive heart rate and breathing effort information. The best classification
performance of 87% was obtained when the Linear Discriminant Analysis was used on
SPO2 features and the PPG features were combined. Another study that makes use of
PPG measurements extracted from SPO2 readings is [24], in which statistical and time
domain SPO2 and PPG features were extracted around SPO2 drops and averaged per
patient. The impact of using SPO2 and PPG features on OSA detection was analyzed here.
Three SPO2 based features and two PPG features were selected for training a support
vector machine (SVM) classifier. Unlike [23], it was found that the classifier based on SPO2
features along with the subjects’ age yielded 77.7% accuracy, while the PPG features did
not have any impact on the classifier performance. This research highlights that age is also
a clear confounding parameter because of its correlation with cardiovascular health, and
using age alone for OSA detection can yield a reasonable accuracy. In [25], four machine
learning models are evaluated, to not just detect apnea but also ascertain its severity using
only SPO2 information obtained at the patient’s home. A three-step process comprising
feature extraction, feature selection, and classifier evaluation was conducted. A total of 16
features were extracted from SPO2 spanning statistical, spectral, and nonlinear domains,
in addition to ODI, which were input to a Fast Correlation Based Filter feature selection
algorithm. An AdaBoost model built with linear discriminants as base classifiers gave the
best apnea severity classification accuracy. In [13], Mostafa et al. analyzes SPO2 signals
from two public datasets using Deep Belief Network (DBN). The analysis shows that while
the accuracy increases with the increasing number of hidden neurons, the increase is mini-
mal, which may not justify the trade-off between classifier performance and processing
requirements. Another study that detects sleep apnea conditions employs seven features
and SVM [26]. This work not only detects but also corrects apneic events via a smart
pillow. The setup consists of a wearable device with a pulse oximeter, a smartphone, and
an adjustable pillow. The pulse oximeter on a wearable device senses the SPO2 signal and
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transmits it to a smart phone. The smartphone detects the SPO2 desaturation events and
issues a pillow adjustment command. The adjustable pillow adjusts its shape and height
according to the command. The adjustment effect is further monitored and evaluated by
the pulse oximeter, providing a closed-loop feedback system between monitoring and
corrective actions. Wrist band-mobile and mobile-pillow communication is over Bluetooth.
A review of approaches for detecting sleep apnea specifically using pulse oximetry data is
provided in [27].

ECG is another parameter that is commonly used in the detection of sleep apnea.
Hassan et al. [28] compare various machine learning classifiers on a dataset generated
by a single lead ECG sensor. Statistical moment-based and empirical mode decompo-
sition features were extracted from the raw data. Post feature extraction, Naive Bayes,
k-nearest neighbor (kNN), neural network, AdaBoost, Bagging, random forest, extreme
learning machine (ELM), discriminant analysis (DA) and restricted Boltzmann machine
were compared for performance. ELM gave the best accuracy of 83.77%. A dataset based
on single-lead ECG was used in [29] as well to detect sleep apnea. In this study, segments
of ECG signals were fed into dual-tree complex wavelet transform (DTCWT) to generate
frequency sub-bands. Three statistical features—variance, skewness, and kurtosis—were
extracted from the DTCWT output and analyzed to determine their suitability in detecting
sleep apnea. LogitBoost gave an accuracy of 84.4%. Other classifiers analyzed include
DA, kNN, Artificial Neural Network (ANN), ELM, SVM, AdaBoost and Bagging. ECG
signals have also been used not just for the detection of sleep apnea, but also to determine
its type [20].

Previous research indicates that parameters derived from ECG such as IHR, HRV,
BCG, and CPC, have also been used as markers for training classifiers to detect sleep apnea.
For example, certain studies [30,31] indicate that HRV measures have a great potential
to boost OSA detection. Khandoker et al. [32] highlight the effectiveness of using HRV
and EDR with an SVM classifier to attain 100% accuracy in the detection of apneic events.
This study also uses SVM to estimate the relative severity of OSA. In [33], kNN, quadratic
discriminant analysis (QDA) and SVM were applied on statistical measures of HRV. de
Chazal et al. [34] use HRV, EDR, and CPC, obtained from single lead ECG signals, for
sleep apnea detection. The analysis in this study shows that CPC features along with
the time-domain-based HRV parameters gave the best classification performance, with
an accuracy of 89.8%. The classifier algorithm used was multiple logistic discrimination.
In [35], 24 time and frequency domain features are extracted from ECG signals. This
included time domain features such as mean, median, standard deviation, and mode
for each NN interval series, and frequency domain features such as normalized power
in various frequency ranges, and the vegetative balance index. Feature selection was
performed by discarding redundant features, leading to nine features being used for
training decision trees, discriminant analysis, logistic regression, support vector machines,
variation of kNN, and ensemble learning classifiers. Seo et al. [36] study sleep quality and
stability assessment using sleep questionnaires and ECG. Respiratory and CPC parameters
were extracted from ECG signals, and results found a significant correlation between AHI
and CPC. Studies related to sleep analysis using EEG signals include [37,38].

3.2. Deep Learning Based Solutions

Deep learning techniques such as Deep Neural Network (DNN), Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN) and Long-Short Term Memory (LSTM)
are being increasingly used for diagnosing sleep apnea, both on single markers as well as
with sensor/feature fusion. Feature engineering and selection is crucial to the performance
of intelligent solutions, especially in the biomedical domain [39]. One of the advantages
of using deep learning is that they have the capability to learn relevant features from
the raw data, using neurons, convolution and pooling layers. For example, Li et al. [40]
argue that that while feature engineering is essential for improving the performance of
classifiers, it often depends on human expertise which can tend to be subjective. In this
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study, unsupervised learning algorithms with sparse auto-encoders were used to learn
features from ECG signals, to decouple the dependency of subjective human expertise
on crucial feature engineering aspects. Classification was carried out using SVM and
ANN, and the classification performance was refined using decision fusion and Hidden
Markov Model (HMM). The accuracy obtained was 85% and the sensitivity was 88.9%.
Another study that performs algorithmic extraction of features is [41]. In this, a single
electrooculogram (EOG) signal was used to perform automatic sleep scoring. A three-layer
DBN with 500, 200, and 100 neurons was used for feature extraction and label prediction.
The predicted labels and original labels were used to train an HMM model. The average
accuracy of the DBN–HMM model was 83.3%. This study attempts to establish that DBN
can extract features by itself without manual intervention. Novák et al. [31] study how
LSTM can enable the detection of temporal dependencies in features relevant to sleep
apnea detection.

Wang et al. [42] use ECG signals for sleep apnea detection. R-R intervals and R-peak
amplitudes were extracted from ECG signals, and time window ANN was applied for
classification. The accuracy obtained was 87.3%. Mostafa et al. [13] describe a method to
detect sleep apnea using SPO2 by calculating the AHI score. The deep learning algorithm
used was DBN. Performance analysis was performed on two public datasets [43,44] with
SPO2 values. Pathinarupothi et al. [15] detail the use of LSTM-RNN for the detection of
sleep apnea severity and explores the relation between IHR and SPO2 towards this. The
research shows that OSA severity detection can be solely based on either IHR or SPO2
signals.

In [45], IHR is used as the sole marker for sleep apnea detection. This paper argues
that using only IHR and its derivatives can provide 85% accuracy at best, with simple
classification algorithms for classifying minute-to-minute apnea. Therefore, LSTM–RNN
was employed for the identification of sleep apnea and its severity. Various configurations
of LSTM–RNN, post feature extraction and selection, were used for training, which yielded
99.99% accuracy in detecting sleep apnea. Erdenebayar et al. [22] describe a comparative
study of the performance of deep learning classifiers on ECG signals—the classifiers are
Deep Neural Network (DNN), 1D CNN, 2D CNN, RNN, LSTM and gated-recurrent unit
model (GRU). The 1D CNN and GRU models were the best performing with an accuracy
and recall of 99%. Other studies include [46–48].

3.3. Sensor/Feature Fusion Techniques

Extensive study has been performed to estimate the effectiveness of sensor or feature
fusion techniques to detect sleep apnea. This involves the concurrent use of two or more
parameters originating from different sources and performing classification based on the
values of all these parameters. For example, Memis et al. [49] apply feature-level fusion
of ECG and SPO2 signals. The temporal information from the ECG and SPO2 signals
was fed as input to Naïve Bayes, kNN, and SVM classifiers. SVM gave the best accuracy
of 96.64%. Xie et al. [50] also explores ensembles and data fusion over ECG and SPO2
signals. When analyzed separately, the research finds that SPO2 features can detect apneic
episodes better than ECG features. Various classifier combinations trained on select features
from SPO2 and ECG were then analyzed for performance. Feature extraction yielded
111 ECG and 39 SPO2 features, from which 8 ECG and 31 SPO2 features were selected
for classifier training. The base classifiers were combined using maximum probability,
average probability, product of probability and majority voting. Garde et al. [11] extract
time-domain and frequency-domain features from SPO2 and PRV, and applies Logistic
Regression to detect apnea/hypopnea events.

In [51], Prabha et al. make use of HRV and Respiratory Rate Variability (RRV) from
ECG and respiratory effort signals (RES), respectively. A decision making system which
fuses time-domain features from HRV and RRV signals, by combining their outputs with
empirically calculated weights, produced an accuracy of 100%. The weight associated
with time-domain HRV features was considerably higher than that of time-domain RRV
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features, which indicates that HRV has a higher correlation with sleep apnea detection than
RRV, although the latter may be complementing the former. This analysis concludes that
the time-domain features of HRV and RRV provide sufficient information to detect OSA.
Other related studies include [52,53].

4. Other Solutions

In addition to devices that measure biomedical parameters, studies show the applica-
tion of environmental sensors/devices such as microphones and cameras to ascertain the
presence of sleep apnea. Literature also shows the application of health profiles to detect
apnea and predict the AHI values to classify the severity of apneic events. Examples of
such studies are summarized below.

4.1. Using Environmental Sensors

Sleep apnea detection can be performed with externally mounted devices or ambient
sensors, other than biomedical sensors. One such technique for sleep apnea detection
is based on smartphones. Camcı et al. [54] use sonar waves generated by smart phones,
which give information about chest movements, to detect sleep apnea. The accuracy of
the system was found to be dependent on the subject’s change of sleep position. Other
techniques such as placing a microphone close to the subject’s nose and mouth were found
to be obtrusive and impacting the sleep behavior of the subjects [55,56]. Another technique
relies on the use of a 3D time-of-flight camera, which records the subject’s respiratory
motion [57]. The signals pertaining to respiratory movement of abdominal muscles are
analyzed to monitor sleep stages and detect apnea. Davidovich et al. [58] propose a novel
algorithm for sleep apnea screening with a contact-free system based on a piezo-electric
sensor. The setup consisted of a piezo-electric sensor, which recorded a combination of
gross body motion, rib cage movements, and the cardioballistic effect. The specificity and
sensitivity were found to be 89% and 88%, respectively.

Hafezi et al. [59] estimate sleep apnea severity from tracheal movements via an
accelerometer attached to the participant’s suprasternal notch. 7 morphological features
were extracted from tracheal movements, on which a deep learning classifier using a
combination of CNN and LSTM, was applied. However, this method requires wearing a
patch which may be inconvenient to the subjects.

In [60], Wang et al. propose a sleep breathing monitoring mattress which utilizes the
ultra-wideband (UWB) physiological sensing technique. The UWB physiological sensing is
accomplished via a series of very narrow and low power pulses over wideband. If apnea is
detected, the head of the mattress is lifted up to increase blood oxygen saturation and ease
the apneic condition. The methodology involved dataset collection using signals recorded
from the experiment using Fast Fourier Transform (FFT), feature extraction using Principal
Component Analysis (PCA) and classification using kNN, AdaBoost, DT, and SVM. kNN
produced better results than the rest of the classifiers.

In [56], acoustic signals placed on the ceiling above the patient’s bed, were used.
Subjects were classified into four sleep apnea severity groups according to their AHI.
A two-stage filtering process to remove various unwanted noises and purify the sleep
breathing sounds was applied. A total of 23 temporal and spectral features of the audio
signal were extracted, which included the mel frequency, cepstral coefficients (MFCCs),
spectral flux, and zero crossing rate. Logistic regression, SVM, DNN with 2 hidden layers
were applied for classification.

In [61], machine learning models (kNN, AdaBoost, and DT) are applied on data
generated by UWB sensors for sleep apnea detection. The experimental setup consists
of a sleep breathing monitoring mattress which utilizes the UWB physiological sensing
technique. The mattress also has a mechanism to lift up the head on detection of apneic
events.

Avcı et al. [62] use abdominal, nasal, and chest respiratory signals and applied en-
semble classifiers such as AdaBoost, random forest and random subspace to detect sleep
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apnea. Feature extraction and dimensionality reduction via PCA was performed to yield a
best-case accuracy of 98.68%. Table A2 provides a snapshot of studies that apply machine
learning to data generated by environmental sensors for sleep apnea detection. Ozdemir
et al. In [63], a fully automatic apnea detection algorithm along with an early warning
system to predict apneic events, is described. The algorithm also works on nasal respira-
tory airflow signals, on which feature extraction was performed. Subsequently, Randomly
Select and Compute (RANSAC) algorithm was used for feature reduction on the original
39 features, and the set of features that is not significant for OSA detection is listed. SVM,
kNN, and linear regression for classification are compared for learning and prediction of
OSA episodes. The solution produced an accuracy of 87.6% of and sensitivity of 91.3%.
Another study that makes use of airflow sensing signals for sleep apnea detection and
classification of apnea severity is [55]. A total of 17 features from overnight airflow sensing
samples were extracted, and fed into DNNs with various combinations of hidden layers
and activation nodes per layer. The algorithm used the tanh activation function alongside
the softmax classifier. Diagnosis of sleep apnea was performed using AHI threshold values
of 5, 15, and 30 events/hour. The severity classification logic classified patients into four
groups—no apnea, mild apnea, moderate apnea, and severe apnea. The best accuracy that
DNN gave was 92.69%.

In [64], sleep data and 3D facial scans were used as features. The data collected
was pre-processed for pose alignment and hole filling and analyzed using Matlab’s deep
learning framework. The model thus generated was tuned for performance and used
for classification. The accuracy reported was 69%. However, this method requires facial
images of the subject, which restricts the subject’s degree of freedom while sleeping. Other
studies in the area that use non-biomedical parameters include [65–67].

Non-wearable techniques for sleep apnea detection have certain advantages and dis-
advantages when compared with wearable devices. For example, wearable devices for
sleep apnea detection have to be small in form factor and light-weight, while non-wearable
techniques such as BCG-embedded beds or camera based systems do not have restric-
tions on their size or form factor. Another characteristic of comparison between wearable
and non-wearable techniques is power consumption. Minimizing power consumption
enables the wearable device to be on battery power for longer durations, which reduces
the overhead of charging the devices. Power consumption of such devices occurs in three
activities—sensing, processing, and communication. These three functions have to be
optimized for energy saving to enable the device to be worn for long periods of time
without recharging. In contrast, non-wearable devices can be connected to the main power
supply, and hence need not be designed for optimized power consumption. One significant
factor that affects the accuracy of sleep apnea detection in both techniques, is the place-
ment of the sensors. Wearable devices allow round-the-clock monitoring of parameters
since it does not restrict the parameter collection to a certain geographical region under
study. However, non-wearable devices are sensitive to the sensing range of the devices.
Environmental sensor-based systems also sometimes tend to be intrusive—for example,
placing a microphone close to a subject’s face while sleeping could be uncomfortable for
him/her. Camera-based systems may tend to be expensive and have higher power and
bandwidth requirements. Due to all these aspects, wearable devices may be conducive
to at-home sleep monitoring, while non-wearable techniques may be applied in hospital
environments where the mobility of the subjects is more constrained.

4.2. Health Profiles for the Detection of Sleep Apnea

There has been research that highlights the significance of including a subject’s health
profile in the diagnosis of sleep apnea and its severity. Mencar et al. [68] use 19 features
including heart disease, diabetes, gender, BMI, age, smoking, hypertension and snoring, to
explore methods to classify sleep apnea severity. Classification algorithms are applied to
classify the severity of sleep apnea, and regression methods are applied to predict the AHI
values. In another work, Ustun et al. [69] argue that medical information of subjects would
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be more suited to diagnose sleep apnea than real time sleep related symptoms. Features
such as age, gender, BMI, presence of hypertension, history of heart failure, stroke, asthma,
smoking, and snoring were used to train the classifiers. Seven classifiers including variants
of Logistic regression, DT, and SVM were compared with a new machine learning model
named SLIM (Supersparse Linear Integer Models). SLIM is a linear classification model
for creating medical scoring systems, and this gave a sensitivity of 64.2% and specificity of
77%. The study supports the use of simple models with good generalization capabilities,
especially for medical applications where datasets are prone to overfitting.

5. Discussion and Conclusions

In this study, we briefly summed up the causes and risks associated with sleep apnea,
and the drawbacks of the related diagnostic processes. We outlined the parameters that
help detect apneic events. Subsequently, we examined the application of machine learning
in sleep apnea detection, with focus on wearable systems. We summarized the recent
research that demonstrates feature engineering techniques and efficient use of classic
machine learning, deep learning, and sensor/feature fusion algorithms to detect sleep
apnea, and in some cases, classify its severity, using biomedical markers such as ECG, EEG
and SPO2. The paper also briefly looked at the application of environmental sensors and
information in subjects’ health profiles to ascertain the presence of sleep apnea.

From our analysis, an observation is that machine learning algorithms applied to
datasets in the literature survey, produce varying degrees of accuracy. This indicates that
the performance of the algorithms depends on various factors such as:

(i) Data collection modalities

Factors such as type of sensors, their placement, and frequency and sensitivity of
measurements, affect the training of machine learning classifiers. Among the various
biomedical parameters that aid in the detection of sleep apnea, we observe that the most
common of them are those from ECG, SPO2, and EEG signals. The drawback of using ECG
is that the signals generated by three leads or more require a resting ECG or an ECG Holter
monitor, which may be restrictive for the subject under study because of the placement of
leads. Single lead ECG can be embedded within wearable devices; however, the accuracy of
such devices is less than those with multilead devices. Collection of EEG data also requires
the subjects to wear a headgear while sleeping, which may cause inconvenience. SPO2
sensors, such as single lead ECG sensors, can be embedded within wearable devices and,
in combination with the demographic information of subjects, has been proven to provide
good results in the detection of sleep apnea. Environmental sensors may constrain the
subjects to a certain area under observation while sleeping (such as bed-embedded BCG
sensors). Some may introduce noise in the data collection, for example, acoustic sensors
are prone to errors from ambient noise.

(ii) Dataset characteristics

Characteristics of data such as its distribution and dataset features, along with the pre-
processing that has been applied to it also influences the efficiency of supervised training
techniques. For a classifier to be well-trained, the dataset it trains on must be balanced.
In the case of sleep apnea, it has to be ensured that the number of apneic events in the
dataset are comparable with that of non-apneic events. In the absence of this, the classifier
gets trained for the majority classes and misclassifies the minority classes. Additionally,
appropriate data pre-processing techniques and feature engineering should be performed
to fine tune the classifier training.

(iii) Labelling techniques

Training machine learning models for sleep apnea detection using supervised learning
techniques, requires annotation of the records in the sleep dataset. Some of the standards
used in sleep stage scoring from sleep study reports are the Rechtschaffen and Kales
standard (R&K) [70] and American Academy of Sleep Medicine (AASM) [71]. In practice,
apneic events are annotated manually by domain experts. The process involves correlation
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of the subject’s biomedical and physiological history with the sleep data, while adhering to
the guidelines set forth by the standards. The dependency of annotation on the standards
and subjective domain expertise may limit the generalization capability of the trained
model.

The capability of a wearable device or an end-to-end system to store data for analysis,
raise alarms on detection of abnormalities, and generate reports long-term is prudent, and
especially useful in the context of geriatric care homes. Today, there are commercial devices
that synchronize collected data to a smartphone periodically; however, a drawback of such
a system is that at any given time, the device can be paired with only a single smartphone.
The ability to support data collection and analysis at a central location would be especially
beneficial in geriatric healthcare, where elderly people are saved the effort required to
access and view their own reports.
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Appendix A

Table A1. Machine/deep learning based sleep apnea detection using biomedical sensors.

Reference Year Subject
Demographics

Signal
Used

Classifiers
Applied Feature Engineering Approach Accuracy

[22] 2019 65 male, 21
female ECG

DNN, 1D CNN,
2D CNN, RNN,
LSTM, Gated
recurrent unit

Performed by deep learning algorithms.
For example, while using CNN, feature
map was extracted using filter kernels

by the convolution layer.
Dimensionality reduction was

performed by the pooling layer.

Accuracy:
99.0%

[40] 2018 Apnea-ECG @ ECG DNN, HMM
SVM, ANN

Sparse auto-encoders was used to learn
features via unsupervised learning.

Accuracy:
85%;

[42] 2019 Apnea-ECG @ ECG Time window
ANN

R-R intervals and R-peak amplitudes
were extracted from ECG signals.

Further, 6 time domain and 6 frequency
domain features from R-R interval, and

6 frequency domain features from
R-peak amplitudes were extracted.

Accuracy:
87.3%

[34] 2016 Apnea-ECG @ ECG Multiple logistic
discrimination

Features extracted included RR-interval,
EDR, CPC and their derivatives.

Accuracy:
89.8%
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Table A1. Cont.

Reference Year Subject
Demographics

Signal
Used

Classifiers
Applied Feature Engineering Approach Accuracy

[31] 2008 Apnea-ECG @ ECG LSTM, ANN and
Elman Network

Feature extracted include: Time domain
HRV parameters such as RMSSD

(square root of mean squared
differences of successive NN intervals),
R-R mean (mean of R-R interval length)
and NN50 (number of intervals longer
than 50 ms) and frequency domain HRV
features such as Low Frequency/High
Frequency (LF/HF) ratio, total power
for analyzed interval, Low Frequency
(LF), High Frequency (HF), Very Low
Frequency (VLF), normalized LF and

normalized HF.

Accuracy:
82.1%

[33] 2010
5 male, 12
female, 26

years–67 years
ECG kNN, QDA, SVM

Median, inter-quartile difference (75th
and 25th percentile), and mean absolute

deviations of the R-R intervals were
computed for each epoch.

Accuracy:
90%

[28] 2015 Apnea-ECG @ ECG

Naive Bayes,
kNN, ANN,
AdaBoost,

Bagging, Random
Forest, ELM, DA,

Restricted
Boltzmann
Machine

Statistical features such as mean,
variance, skewness and kurtosis of the

ECG signals were extracted.

Accuracy:
83.77%

[26] 2013 40 subjects SPO2 SVM

For each detected SPO2 desaturation
event, extract 7 features from a window

of 150 s from the starting point of the
SPO2 desaturation. Features extracted

include no. of desaturation events,
speed of decline in SPO2, in addition to
statistical measures such as minimum
and standard deviation of the SPO2

values.

Accuracy:
93.5%

[51] 2017 32 subjects, 18
to 75 years

ECG,
RES SVM

Time domain features (such as mean
NN interval, standard deviation of NN
interval, mean heart rate, RMSSD) and

frequency domain (peak frequency,
absolute power, relative power) features
from HRV and RRV from ECG and RES,

respectively, were computed.

Accuracy:
100%

[29] 2017 Apnea-ECG @ ECG

DA, kNN, ANN,
ELM, SVM,
AdaBoost,
Bagging,

LogitBoost

Skewness, variance and kurtosis were
extracted and used for classifier

training.

Accuracy:
84.4%

[49] 2017 Apnea-ECG @ ECG,
SPO2

Naïve Bayes,
kNN, SVM

Uses concatenation of temporal
information from ECG and SPO2

signals.

Accuracy:
96.64%
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Table A1. Cont.

Reference Year Subject
Demographics

Signal
Used

Classifiers
Applied Feature Engineering Approach Accuracy

[50] 2012 UCD # ECG,
SPO2

Adaboost,
Decision Trees

Time domain features from SPO2,
which measure the regularity,

variability, and complexity of a time
series, were extracted. From ECG,

HRV and EDR-based features in both
time and spectral domains were

extracted.

Accuracy:
82%

[12] 2010 Apnea-ECG @ SPO2
Various variants
of Decision tree

classifiers

ODI indices from SPO2 were
computed.

Accuracy:
93%

[15] 2017 Apnea-ECG @ ECG,
SPO2 LSTM-RNN Feature extraction was performed by

LSTM.
Accuracy:

92.1%

[13] 2017 UCD #,
Apnea-ECG @ SPO2 DBN Feature extraction was by DBN.

Accuracies:
85.36% and

97.64%,
respectively

for the 2
datasets

[32] 2009

(1) Apnea-ECG
@

(2) UCD #
(3) 83 subjects;

with mean +/−
standard

deviation age of
55.6 +/− 10.7

yrs

ECG SVM

Feature extraction from HRV and
EDR, using wavelet decomposition

was performed. Feature selection was
performed using a hill climbing

algorithm. 14 HRV and 14 EDR were
selected for classifier training.

Accuracy:
100%

[11] 2016
160 children (87

male, 59
female)

SPO2 Logistic
Regression

Time and frequency domain features
from SPO2 and pulse rate variability

were used for classifier training.
-

[23] 2017 52 subjects SPO2
Linear

Discriminant
Analysis

Features from SPO2 (such as number
of desaturations > 3%, spread of SPO2,
minimum and average of SPO2), PPG

and PPG derived respiration were
extracted for classifier training.

Accuracy:
87%

[35] 2020 Apnea-ECG @ ECG

Decision trees,
DA, logistic

regression, SVM,
kNN, ensemble

learning

24 time and frequency domain
features were extracted. Feature

selection by discarding redundant
features, which resulted in a set of 9

features for classifier training

Accuracy:
98.7%

[52] 2020 Not specified

Respiration,
SpO2,

heartrate,
3-ACC
signals

Gaussian
Naïve-Bayes,
ANN, kNN

Dataset was collected and labelled per
AASM’s sleep apnea judgement

criteria. A train:test ratio of 8:2 was
used. 5-fold cross-validation was
applied. The hyper-parameters of

each machine learning algorithm were
set by using the average of five

cross-validation data sets.

Accuracy:
95%
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Table A1. Cont.

Reference Year Subject
Demographics Signal Used Classifiers

Applied Feature Engineering Approach Accuracy

[53] 2017 1983 subjects
Demographic
information,

EEG

Random Forest,
XGBoost, and
Light Gradient

Boosting Machine

A total of 36 features were
extracted from demographic
information and EEG signals,

including frequency and
percentage of every sleep stage,

time in bed, total sleep time, sleep
efficiency and total number of
one-step transitions overnight.
Data imbalance was corrected

using SMOTE analysis and feature
selection was performed using

statistical analysis.

Area under
the curve:

0.9128

[46] 2019 SHHS (NSRR)
%

Raw
physiological

respiratory
signals

LSTM

LSTM was used to automatically
learn and extract relevant features,
and detect potential sleep apnea
events. Direct respiration signals
gave better accuracy than derived

their signals such as EDR

Accuracy:
70%

(approx.)

[47] 2020 Apnea-ECG @ ECG
Logistic

Regression, SVM
and 1D CNN

Time domain and frequency
domain features of R-R interval

were extracted for training logistic
regression and SVM classifiers.
There was no need for feature

engineering with 1D CNN.

Accuracy:
88.23%

[48] 2020 MESA (NSRR) * Respiratory
signals

CNN, Markov
Chain Features learned by CNN. Accuracy:

80.78%

[24] 2019 975 subjects SPO2 SVM

Extracted features include simple
time-domain (e.g., amplitude and
length of desaturation), statistical
(e.g., minimum and mean SpO2
value) and desaturation severity
(e.g., area below SpO2 baseline)
and quasi periodicity features

(e.g., phase rectified signal
averaging (PRSA)).

Accuracy:
77.7%

[41] 2015
SleepEDF
Database

[Expanded] ~
EOG DBN Feature extraction was performed

by DBN.
Accuracy:

83.3%

[25] 2019
320 subjects,
age 54.8 +/−

13.5 years
SPO2

Linear
Discriminant

Analysis, Logistic
regression,

Bayesian Multi
Layer Perceptron,

AdaBoost

Time domain features that
characterize central tendency,
dispersion, asymmetry, and

peakedness of a given time series,
frequency domain features such as

PSD of SPO2 signals, ODI3 and
non-linear measures were

computed.

[45] 2017 Apnea-ECG @ ECG LSTM-RNN

Continuous time series IHR
measurements were converted to
a series of feature vectors, for each

beat window.

Accuracy:
99.99%

@ Apnea-ECG: 70 ECG signal recordings extracted from PSG recordings with a 16-bit resolution, a sampling rate of 100 Hz [43,72]. # St.
Vincent’s University Hospital/University College Dublin (UCD) Sleep Apnea Database: 21 males, 4 females; age 28 years—68 years [44]. %
SHHS dataset Sleep Heart Health Study: The dataset consists of 5804 adults of age 40 and older. A subset consisting of 1008 female and
1092 male patients with mean age 62.5 ± 12.6 (standard deviation) years was used in the study cited [73]. * MESA (NSRR): 6814 subjects;
age 45 years–84 years [74]. ~ SleepEDF Database [Expanded] 20 subjects; age 25 year–34 years [75].
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Table A2. Machine/deep learning based sleep apnea detection using environmental sensors.

Reference Year Subject
Demographics Signal Used Classification

Approach Methodology Accuracy

[59] 2020 Ages 18–85
years

Tracheal
movements CNN+LSTM

Recorded tracheal movements
were filtered using a bandpass
filter with cut-off frequencies of
0.1 Hz and 25 Hz. Time-series

sliding windowing technique with
a window size of 10 s was applied.

21 morphological features were
extracted from each window.

Accuracy:
84%

[64] 2018 39 male, 30
female adults Facial images CNN

Involved data collection,
pre-processing, model generation

and tuning, and classification,
using Matlab based deep learning

framework

Accuracy:
69%

[60] 2019

5 subjects
simulating
sleep apnea
conditions

UWB signals
AdBoost,

Decision tree,
SVM, kNN

Accuracy:
98%

[54] 2017

4 subjects
simulating
sleep apnea
conditions

Accelerometer
and sonar

waves from
smart phones

kNN, CART

Mean, variance and range for
accelerometer data and the noise

level were extracted, and
subsequently, no. of breaths per

minute was calculated.

Accuracy:
97.7%

[58] 2016
77 male, 19

female
23–88 years

Piezo-electric
sensor Signal analysis

Gross body motion, rib cage
movements, and cardioballistic

effect was recorded by the
piezoelectric sensor. Time and

frequency domain features were
extracted from motion, respiratory

rate and inter-beat intervals, to
calculate AHI.

-

[56] 2018

120 subjects,
including 3

children and 4
adolescents

Acoustic
signals from
microphone
placed at a

distance of 1.7
m above the
subject’s bed

Logistic
regression,
SVM, DNN

with 2 hidden
layers

Several temporal and spectral
characteristics of audio signals

such as the mel frequency cepstral
coefficients (MFCCs), spectral flux,

and zero crossing rate were
extracted.

Accuracy:
92.5%

[55] 2018 MrOS [TBD]

Airflow signals
from a

thermistor
placed in front

of the nose

SVM, AdaBoost,
Regression,

Deep Neural
Networks

Seventeen time domain features
were extracted from airflow

signals, after subsampling and
filtering.

Accuracy:
92.69%

[63] 2016 6 subjects
Nasal

respiratory
airflow signals

SVM, kNN,
Linear

Regression for
Classfication

15 time-series features of OSA
periods such as mean, variance,
minimum, maximum, median

values of signals were extracted.
Minimum, maximum, average

inspiration/expiration amplitudes
and durations of nasal airflow

signal were also extracted. Feature
reduction was performed using

RANSAC algorithm.

Accuracy:
87.6%



Healthcare 2021, 9, 914 16 of 19

Table A2. Cont.

Reference Year Subject
Demographics Signal Used Classification

Approach Methodology Accuracy

[62] 2015 Apnea-ECG

Abdominal,
chest and nasal

respiratory
signals

AdaBoost,
Random Forest

and Random
Subspace

Wavelet transform based on
feature extraction methods are

applied on 1 min length
respiration signals.

Accuracy:
98.68%

[61] 2015
3 male, 1 female

Age 48 ± 6.9
years

Reflect pulses
from Impulse

Radio
Ultra-Wide

Band (IR-UWB)
radar panel

Linear
Discriminant

Normal and apnea epochs were
extracted from the IR-UWB data.

15 statistical features were derived
from these extracted epochs.

Accuracy:
73%

[65] 2020
9 subjects

Age 65 years or
more

Signals from
pressure

sensitive mat

Temporal
convolutional

network (TCN),
bidirectional

LSTM

Data pre-processing included
occupancy extraction, bandpass

filtering, signal combination,
concatenation and normalization.

TCN and bidirectional LSTM
approaches were compared with

SVM and threshold based
approaches.

Accuracy:
95.1%

[66] 2020
4 male, 4 female
Age 25 years–55

years

Respiratory
signals from

accelerometer
and pressure
transducer

CNN

Sliding window approach was
used for signal processing.

Proposes a system of continuous
monitoring of breath, from an

accelerometer-based device worn
around the subject.

Accuracy:
88%

[67] 2019 20 adults Speech signals Random Forest

Offline detection of OSA using
speech/voice analysis. This is
based on the fact that speech

properties of OSA patients are
altered. Feature extraction was
performed on audio files using

Random Forest feature selection
and Mann–Whitney U test

ranking.

Accuracy:
87.5%
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