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Abstract: Post-analysis of predictive models fosters their application in practice, as domain experts
want to understand the logic behind them. In epidemiology, methods explaining sophisticated
models facilitate the usage of up-to-date tools, especially in the high-dimensional predictor space.
Investigating how model performance varies for subjects with different conditions is one of the
important parts of post-analysis. This paper presents a model-independent approach for post-
analysis, aiming to reveal those subjects’ conditions that lead to low or high model performance,
compared to the average level on the whole sample. Conditions of interest are presented in the
form of rules generated by a multi-objective evolutionary algorithm (MOGA). In this study, Lasso
logistic regression (LLR) was trained to predict cardiovascular death by 2016 using the data from
the 1984–1989 examination within the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD),
which contained 2682 subjects and 950 preselected predictors. After 50 independent runs of five-
fold cross-validation, the model performance collected for each subject was used to generate rules
describing “easy” and “difficult” cases. LLR with 61 selected predictors, on average, achieved 72.53%
accuracy on the whole sample. However, during post-analysis, three categories of subjects were
discovered: “Easy” cases with an LLR accuracy of 95.84%, “difficult” cases with an LLR accuracy
of 48.11%, and the remaining cases with an LLR accuracy of 71.00%. Moreover, the rule analysis
showed that medication was one of the main confusing factors that led to lower model performance.
The proposed approach provides insightful information about subjects’ conditions that complicate
predictive modeling.

Keywords: post-analysis of data-driven models; rule design; multi-objective optimization; model
performance; prediction of cardiovascular death

1. Introduction

The increasing volume of data collected and the expanding computational resources
dictate current trends in data-driven modeling [1]. It is no longer surprising that models
outperform human experts in many areas [2]. Yet this high performance goes hand-in-hand
with significant growth in model complexity. This tendency results in greater intricacy
of the use of data-driven models in the medical domain, where model interpretability
is of primary importance [3]. While predicting diseases, one may even choose to use
less accurate “white box” models (easily interpretable with a simple structure), such as
decision trees or rules, rather than to unpack “black box” models (hardly interpretable
with a complex structure) [4,5].

To address the growing complexity of data-driven models and to understand the
non-trivial logic behind their decisions, a number of methods for post-analysis have
been proposed recently [6]. Some of them apply local approximations with simpler but
interpretable models [7], while others estimate feature importance using permutation
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techniques [8]; additionally, they search for influential samples that greatly affect model
parameters [9]. Alternatively, there are methods applied while generating a model that
aim to find a trade-off between model accuracy and complexity [10]. At this stage, optimal
sampling techniques or model structures that lead to higher accuracy and lower complexity
might be determined [11,12].

In this study, we addressed a particular question of model post-analysis, i.e., the
conditions in the sample that lead to higher or lower model performance. To answer
this question in the low-dimensional predictor space, error heatmaps can be used, since
they allow the visualization and identification of subpopulations with high and low error
rates considering one or two predictors [13]. Then, decision trees inherently perform
error analysis, as their terminal nodes contain subpopulations—whose characteristics are
discovered by moving up the tree—and model performance is easily estimated for each
terminal node [14]. Moreover, stratification is widely used when comparing the model
performance of different subpopulations (men vs. women, young vs. old, with vs. without
a particular condition), which may positively affect model predictive ability compared
to training on combined samples [15]. However, these approaches are not suitable for
multivariate error analysis in the high-dimensional predictor space. Alternatively, an
“unreliability” score, proposed by Myers et al. [16], is individually applied for each subject,
and its high values indicate decreased model accuracy. This approach requires additional
analysis of cases with high unreliability to extract knowledge about “difficult” subjects.

Taking into account the limitations of the existing studies, in the presented epidemio-
logical example we revealed “easy” and “difficult” cases for the model when it operated
in the high-dimensional predictor space. Particularly, we trained Lasso logistic regression
(LLR) to predict cardiovascular death using data from the Kuopio Ischemic Heart Disease
Risk Factor Study (KIHD) [17]. After validating the model, we generated a set of compact
rules that covered samples with extremely high or low model performance. Generally
speaking, this paper presents the model-independent approach for post-analysis and shows
that this approach not only reveals when the model predictions are less reliable, but also
finds out from which perspectives the model requires improvement and what kind of
new samples might be collected to bring more information into “difficult” regions of the
predictor space. Although we did not have a specific hypothesis to test, this exploratory
post-analysis yielded interesting findings.

2. Materials and Methods
2.1. KIHD: Baseline Cohort

The data utilized in the current study were collected in 1984–1989 in the city of Kuopio
and the surrounding area in Eastern Finland, whose population was recorded to have one
of the highest rates of coronary heart disease [17,18]. The KIHD study is an ongoing project,
where the study outcomes are derived from the national registers annually.

The baseline examinations (1984–1989) comprised 2682 randomly selected middle-
aged men (42–60 years old), whose health state was carefully described with thousands of
physiological, clinical, biochemical, psychological, and socioeconomic measurements. As a
starting point, 950 predictors were preselected by the domain expert to perform predictive
modeling. In our experiments, the outcome variable was “death from a cardiovascular
disease by 2016” referring to codes I00–I99 of the 10th International Classification of
Diseases (ICD 10) [19]. Before training a predictive model, preprocessing was applied
(Figure 1). Every time we trained the model, the predictors were normalized to the interval
(0, 1) using the scaler fitted on the training data.
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Figure 1. Preprocessing the sample from the Kuopio Ischemic Heart Disease Risk Factor Study (KIHD): “cvd” corresponds
to “cardiovascular death by 2016”, while “no cvd” corresponds to “no cardiovascular death (alive) by 2016”. The nearest
neighbor imputation technique implemented by Troyanskaya et al. was utilized [20].

2.2. Multi-Objective Rule Design for the Model Post-Analysis

Let us consider a dataset of n subjects described with m predictors each: X ={
x(1), x(2), . . . , x(n)

}
, where x(i) ∈ Rm, i = 1, n, and an outcome variable: y ={

y(1), y(2), . . . , y(n)
}

, where y(i) ∈ {0, 1}. In the context of epidemiological data, y(i) = 0

and y(i) = 1 designate “negative” and “positive” regarding a diagnosis. The sample

(X, y) =
{(

x(1), y(1)
)

,
(

x(2), y(2)
)

, . . . ,
(

x(n), y(n)
)}

is used to train a model that per-

forms mapping f : x(i) 7−→ y(i) , i.e., predicts a value of y(i) for a given vector of predic-
tors x(i).

In this study, we applied an LLR model, since in our previous experiments, it demon-
strated the highest performance on the KIHD data [21]. LLR describes a relationship
between a linear combination of predictors and the probability of having a disease in the
form of a sigmoid function, P(y = 1|x) = 1/1 + exp(−(ω0 + ω1x1 + . . . + ωmxm)), as a traditional
logistic regression model does [22]. However, LLR is a penalized regression, whose cost
function includes an L1-regularization term ‖ ω ‖1 in addition to the cross-entropy error

∑n
i=1 log

(
1 + exp

(
−y(i)·

〈
ω, x(i)

〉))
[23]:

min
ω
‖ ω ‖1 + C·∑n

i=1 log
(

1 + exp
(
−y(i)·

〈
ω, x(i)

〉))
(1)

where C defines a shrinkage parameter (the regularization amount) equal to 0.15 in
this study.

If P(y(i) = 1|x(i)) ≥ α, then, y(i) = 1; otherwise, y(i) = 0. For the imbalanced sample,
a cutoff value α requires adjustment (this typically equals 0.5 for the balanced sample);
therefore, α is defined as a proportion of “positive” cases in the training sample.

To estimate the model performance on the test data, we executed 50 independent runs
of a k-fold cross-validation with stratification, where k = 5. LLR was implemented using
the scikit-learn library [24]. In each run, we collected the true values of y(i) and the model
outcomes on the test data to calculate the number of times the predictions were correct
and wrong for each subject. Then, for “positive” cases, we produced the amount of true
positive (TP) and false negative (FN) predictions: TPi and FNi; for “negative” cases, we
calculated the number of true negative (TN) and false positive (FP) predictions: TNi and
FPi. This model evaluation served as a basis for further analysis, aiming to reveal groups
of “easy” and “difficult” cases.

Usually, the model performance is described with statistics averaged over the whole
sample. These aggregated values are helpful when comparing models, but they do not
reflect the distribution of errors in the space of predictors. In other words, the model
performance varies for different subjects and we might be more or less confident in the
correctness of predictions depending on the subject’s characteristics. Therefore, we propose
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an approach to automatically generate a set of rules that represent the conditions leading
to higher or lower model performance compared to the average level.

Let rule denote a set of concurrent conditions “xj equals aj”:

rule = (x1 = a1) and (x2 = a2) . . . and
(
xj = aj

)
and . . . =

⋂
j∈J

(xj = aj), (2)

where aj is a particular level (category) of a predictor xj and J contains indices of pre-
dictors included in the rule. To define levels aj, we first need to introduce categories
for each predictor xj based on its distribution. For dichotomous variables, as well as
for ordinal or continuous variables with fewer than eight different values in the sam-
ple, i.e.,

∣∣xj
∣∣ < 8: aj ∈

{
0, 1, . . . , max

(
xj
)}

. For ordinal or continuous variables with
eight and more possible values, i.e.,

∣∣xj
∣∣ ≥ 8, we introduce Nbins intervals using the k-

means clustering method, Nbins = 4. Each interval corresponds to a particular level of xj:[
xj

lower0 , xj
upper0

]
→ 0, . . . ,

[
xj

lower(Nbins−1) , xj
upper(Nbins−1)

]
→ (Nbins − 1) .

Then, to generate rules of interest, i.e., to select predictors xj and to define their levels
aj, we solve two three-objective optimization problems:

Problem 1 (3): To define rules that describe subgroups of subjects with the maximum
true positive rate (TPR) and true negative rate (TNR) (i.e., “easy cases”):

TPR(rule)→ max
TNR(rule)→ max

Nsubjects(rule)→ max
(3)

Problem 2 (4): To define rules that describe subgroups of subjects with the minimum
TPR and TNR (i.e., “difficult cases”):

TPR(rule)→ min
TNR(rule)→ min

Nsubjects(rule)→ max
(4)

In both problems, the third criterion is used to maximize the number of subjects
covered by the rule, which aims to find as general a pattern as possible.

To solve the multi-objective Problems (3) and (4), we apply the Non-dominated Sorting
Genetic Algorithm III (NSGA III), which is a stochastic optimization algorithm operating
with a population of solutions whose quality improves during the search [25]. NSGA
III is based on a Pareto-dominance idea and returns a set of nondominated solutions (in
our case, a set of rules), of which one cannot be preferred over another. Each solution
in the population is coded with a binary string, a so called “chromosome”, and genetic
operators such as selection, crossover, and mutation are applied to binary strings so that
new solutions with better values of objective criteria are produced. Figure 2 explains how
a binary coding is used to represent rules (2):
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The number of bits nbits
j to code aj depends on the amount of levels nlevels

j intro-

duced for xj, plus one additional level, meaning the absence of xj in the rule: nbits
j =⌈

log2

(
nlevels

j + 1
)⌉

. If, after decoding, aj >
(

nlevels
j + 1

)
, this also means the absence of xj

in the rule.
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In this study, we used NSGA III implemented in the Platypus package [26]. Table 1
contains the algorithm settings.

Table 1. The Non-dominated Sorting Genetic Algorithm III (NSGA III) settings used in the experiment.

Setting (Parameter) Names Setting (Parameter) Values

Selection Tournament selection with a tournament size of 2

Crossover Half-uniform crossover

Mutation Bin-flip mutation

Solution representation Binary code→ Gray code

M-objective problem 3

Outer divisions, pout 20

Inner divisions, pin 0

Reference points, H H =

(
M + pout − 1

pout

)
+

(
M + pin − 1

pin

)
= 231

Population size The smallest multiple of four greater than H, i.e., 232

Generations 200

Probability distribution for initializing
solutions in the starting population

P
(

xj is not included in the rule
)
= 0.95

P
(

xj is included in the rule
)
= 0.05

Given the stochastic nature of NSGA III, we ran the algorithm 25 times for each
problem, i.e., Problem 1 and 2 (3, 4), and then combined the final populations from all of
the runs. Figure 3 summarizes the pipeline described; the source code might be found on
GitHub [27].
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was estimated using the test data and the results were collected for further analysis. Discretization was applied to continuous
predictors to define their levels (categories) used for generating rules. NSGA III found combinations of predictors and their
values describing “easy” cases, i.e., subgroups of subjects with a large number of true positive (TP) and true negative (TN)
predictions, and “difficult” cases, i.e., subgroups of subjects with a large number of false positive (FP) and false negative
(FN) predictions.

In general, any multi-objective evolutionary algorithm (MOGA) might be applied in
the proposed approach (Figure 3); therefore, the overall time complexity depends on the
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optimization algorithm used. Time complexities of different MOGAs are discussed in the
article by Curry and Dagli [28].

Lastly, from all generated rules that excessively describe subgroups of different sizes
with various levels of TPR and TNR, we selected the final set of rules meeting the follow-
ing criteria:

1. There are at least Supp subjects covered by the rule (the minimum rule support):
Supp = 30.

2. The difference between TPR and TNR does not exceed γ·max(TPR(rule), TNR(rule))):
γ = 0.1 (the rule is equally valid for “positive” and “negative” cases).

3. The average model accuracy for subjects covered by the rule is either lower than
αdi f f or higher than αeasy (to define “difficult” and “easy” cases correspondingly):
αdi f f = 50%, αeasy = 95%.

From a practical point of view, the final set of rules allowed us to reveal the conditions
(subjects’ features) that lead to higher or lower model performance, compared to the
average level. First, this knowledge is helpful for revising the sample and collecting new
data. Second, using these rules, we can introduce four categories of subjects: “easy” cases
that are covered only by the rules with Accuracy(rule) ≥ αeasy; “difficult” cases that are
covered only by the rules with Accuracy(rule) ≤ αdi f f ; “ambiguous” cases that are covered
by the rules with Accuracy(rule) ≥ αeasy and the rules with Accuracy(rule) ≤ αdi f f ; “not
covered cases” that are covered by none of the rules. Applying the final set of rules
to unseen data and categorizing samples in such a way provides us with additional
information about the probability of wrong predictions and allows us to be more or less
confident in the model outcome.

3. Results

First, we trained the LLR model predicting cardiovascular death in 50 runs of five-fold
cross-validation and estimated the model performance on the test data: accuracy = 72.527%,
TPR = 72.485%, and TNR = 72.552%. Despite splitting the data into the training and test
samples randomly, for some subjects the correctness of the model predictions did not
vary across the multiple runs: the model outcome was always (or in most of the runs)
either right or wrong. To generate rules that would reveal the conditions of “easy” and
“difficult” cases, we used a preprocessed set of predictors: we filtered out predictors that
were not selected by LLR in at least one run. Thus, in the further analysis, 191 predictors
were involved.

Next, after 25 independent runs of NSGA III, we ended up with 4355 rules for
Problem 1 (3) and 4583 rules for Problem 2 (4). Figure S1 in the Supplementary Mate-
rials presents these initial sets of rules in the criterion space TPR–TNR.

Then, we selected the final set of rules using criteria 1–3 from Section 2.2 and, as a
result, we obtained 43 rules representing “easy” cases, for which the model accuracy was
higher than αeasy = 95%, and 39 rules that represent “difficult” cases, for which the model
accuracy was lower than αdi f f = 50%. These particular threshold values were chosen
to reveal the subjects’ characteristics that lead to the extremely high and extremely low
model accuracy, provided that the accuracy for the remaining “ambiguous” and “non-
covered” cases is close to the model accuracy on the whole sample. We also aimed to
have the number of “non-covered” cases along with “ambiguous” cases at least lower
than half of the sample. Thus, the selected 82 rules divided the KIHD sample into four
categories, whose characteristics, with respect to the model accuracy and the number of
subjects, are given in Table 2. Moreover, to support our choice, a description of subjects’
categories obtained for other αeasy and αdi f f is presented in the Supplementary Materials
(Figures S2 and S3).



Healthcare 2021, 9, 792 7 of 12

Table 2. Four categories of subjects in the KIHD sample after applying the final set of rules. The “Accuracy, %” columns
represent the mean accuracy estimated in 50 runs of five-fold cross-validation. “The number of cases” columns contain the
absolute number of subjects, with the percentage of the whole sample in parentheses.

Accuracy, % The Number of Cases

Easy Difficult Ambiguous and
Non-Covered Easy Difficult Ambiguous Non-Covered

No cvd 95.73 46.76 66.55 414 264 91 373
Cvd 96.28 50.17 76.05 100 172 31 378

Overall 95.84 48.11 71.00 514 (28.20%) 436 (23.92%) 122 (6.69%) 751 (41.20%)

To visualize the groups of subjects covered by the final set of rules, we introduced an
82-dimentional rule space, where each dimension defined whether a subject was covered by
the rule or not. These binary vectors were used by t-SNE (t-Distributed Stochastic Neighbor
Embedding) to project subjects into the two-dimensional space [29]. Figure 4 illustrates
the “easy”, “difficult”, and “ambiguous” cases and how the model accuracy changes for
different clusters of subjects. These clusters mean that, within two large groups of “easy”
and “difficult” cases, there are different conditions leading to an increase or decrease in
model performance.
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true positive rate (TPR), and true negative rate (TNR) within clusters averaged over 50 independent runs of five-fold
cross-validation, as well as the number of subjects who died by 2016 (“cvd”) and stayed alive by 2016 (“no cvd”), are given
for each cluster.
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In general, the results can be analyzed from two perspectives. First, we may pay
attention to the rules that describe a particular subject and make conclusions at the subject
level about the predictors that make it “easy” or “difficult” for the model. Second, we may
carry out analysis at the rule level by reviewing the combinations of predictors and their
values that commonly lead to “easy” or “difficult” cases. For example, the two following
rules describe “difficult” cases:

(AMIHIST = no) and (BLPRESMED = yes) and (DIUR = yes) and (ISCHAEMIA = no),
Nsubjects = 38, TPR = 45.18% and TNR = 42.95%,

(5)

where AMIHIST is “Myocardial infarction in the past”, BLPRESMED is “Drug for blood
pressure in last 7 days”, DIUR is “Diuretics”, and ISCHAEMIA is “Ischemia in exercise
stress test”.

(SMOHIST = no) and (PRESCRIP = yes) and (WAGE = yes) and (54 ≤ AGE ≤ 55),
Nsubjects = 86, TPR = 48.00% and TNR = 45.45%,

(6)

where SMOHIST is “Smoking history, ever,” PRESCRIP is “Drugs prescribed by a doctor in
last 7 days”, WAGE is “Salary: wages (if retired, then no)”, and AGE is “Age, years”.

What is interesting is that, in both groups, the subjects took medication. However, the
first group had neither myocardial infarction in the past nor ischemia in exercise stress test,
i.e., rule (5), and the second group had never smoked, i.e., rule (6). This implies that, in
these rules, medication works as a factor that confuses the model for both the “cvd” and
“no cvd” groups.

Lastly, to generalize the analysis of predictors and to extract the most important
ones from the whole final set of rules, for each predictor, we calculated the number of
unique “easy”, “difficult”, and “ambiguous” subjects covered by the rules that contain
this predictor. Figure 5 presents the 50 most important predictors and their levels from
the final set of rules. As can be noted, the same predictors with the same values might be
involved in the rules that describe “easy” and “difficult” cases. For example, “ISCHAEMIA
= no” in most of the cases corresponds to “easy” subjects (11.41% of the whole sample),
but it also relates to “difficult” subjects (3.68% of the whole sample). On the contrary,
the predictors “PRESCRIP = no” and “PGLINHIB = no” refer to “easy” subjects, whereas
“PRESCRIP = yes” and “PGLINHIB = yes” correspond to “difficult” subjects. Moreover,
“SELFMED = no” and “PGLIMED = no” only describe “easy” subjects.

Thus, these results support our previous conclusion about the role of medication in
model performance: Its presence adversely affects both TPR and TNR [32].
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4. Discussion

Typically, model performance is evaluated using the whole sample, which gives
its average estimate. Yet it remains unclear for which samples the model is prone to
making right predictions and for which samples its predictions are likely to be wrong.
The high-dimensional predictor space commonly makes the analysis of results even more
complicated. Therefore, in this study, we proposed an approach that enabled us to generate
a set of rules that explain which samples were “easy” (predictions were more accurate) or
“difficult” (predictions were less accurate) for the LLR model, trained and tested on the
high-dimensional epidemiological data.

Since the average level of accuracy achieved by LLR was only 72.5% when predicting
cardiovascular death for subjects from the KIHD cohort, the additional post-analysis was
aimed at revealing those subjects’ features that lead to high or low model performance.
First, the knowledge about “difficult” subjects might be helpful for revising the sample, as
they are the first candidates for double-checking. Moreover, collecting new samples, if it
takes place, with characteristics corresponding to “difficult” cases might increase the model
performance by bringing more information to the poorly modeled areas of the predictor
space. Then, applying the set of rules to unseen data provides more confidence in the
model predictions if new samples are categorized as “easy” cases. Knowing the weak spots
of the model is of the utmost importance for clinical applications, where additional tests
should be performed for “difficult” cases to avoid wrong predictions.

Moreover, as a well-interpretable tool, rules explicitly report the logic behind decision
making while analyzing each subject, which is especially valuable for medicine. At the
same time, when extracting the most important predictors from the final set of rules, we
generalized the results at the whole sample level and obtained common patterns. Thus,
in the KIHD sample, taking no medication (prescribed or non-prescribed drugs, drugs
for back or joint pain, drugs for blood pressure, prostaglandin synthetase inhibitors or
pain killers, diuretics, and beta-blockers), absence of other diseases (kidney stones, colitis,
chronic bronchitis, gallbladder disease, migraine, and restricted mobility), and a high
standard of living defined by socioeconomic predictors (having a color television, a video
recorder, and/or a dishwasher and using a car or a taxi in winter) are common traits
of “easy” cases for the LLR model when predicting cardiovascular death. Conversely,
“difficult” cases included subjects who had taken medication (prescribed drugs, drugs
for back or joint pain, drugs for blood pressure, drugs for hypertension, prostaglandin
synthetase inhibitors or pain killers, and diuretics) [32].

Although in this study, the approach proposed was applied for LLR post-analysis, it is
model-independent and might be useful for better understanding of any model behavior,
which is especially helpful when “black box” models are trained on high-dimensional
data. Such post-analysis is also useful for “white box” models, because variables that are
important for making predictions differ from variables that are informative for describing
“easy” and “difficult” cases.

The main limitation of this study is that all of our findings are applicable to the
KIHD cohort, but they cannot be extrapolated to other populations. To make more general
conclusions, e.g., about the role of medication in predicting cardiovascular death, we
need to perform the same analysis for other populations, and then check if there are rules
and variables similar for different populations. Additionally, since this post-analysis was
applied to a particular data-driven model with a certain prediction horizon, for other
models or different prediction horizons the analysis should be re-run.

Despite these limitations, the approach proposed is useful for many epidemiological
studies, as the model accuracy has been reported to be far from 100% [33–36]. “Difficult”
cases should be identified so that clinicians can revise the model predictions and use
their expertise when the model is likely to make a mistake. This approach, i.e., when
the model is augmented with the human expertise in some cases, corresponds to the
philosophy of responsible machine learning (and responsible artificial intelligence, in
general), which is being discussed by researchers nowadays [37]. Thus, such post-analysis
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is extremely important from a practical perspective, as it supports model deployment in a
“responsible” way.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/healthcare9070792/s1, Figure S1: The initial sets of rules generated when solving Problems 1
and 2. Each point corresponds to one rule in the criterion space TPR-TNR, wherein color indicates
the number of subjects covered by the rule. Figure S2: The overall accuracy for “easy”, “difficult”,
“ambiguous” and “non-covered” subjects averaged over 50 runs of 5-fold cross-validation for dif-
ferent values of the thresholds α_easy and α_diff. Figure S3: The percentage of “easy”, “difficult”,
“ambiguous”, and “non-covered” subjects of the whole KIHD sample.
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