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Abstract: This study investigated immunological changes during an alcohol hangover, and the
possible difference between hangover-resistant and hangover-sensitive drinkers in terms of immune
reactivity. Using a semi-naturalistic design, N = 36 healthy social drinkers (18 to 30 years old)
provided saliva samples on a control day (after drinking no alcohol) and on a post-alcohol day.
Hangover severity was rated directly after saliva collection. Cytokine concentrations, interleukin
(IL)-1β, IL-6, IL-8, IL-10 and tumor necrosis factor (TNF)-α, and hangover severity were compared
between both test days and between hangover-sensitive and -resistant drinkers. Data from N = 35
drinkers (17 hangover-sensitive and 18 hangover-resistant) were included in the statistical analyses.
Relative to the control day, there were significant increases in saliva IL-6 and IL-10 concentrations
on the post-alcohol day. No significant differences in cytokine concentrations were found between
hangover-sensitive and hangover-resistant drinkers, nor did any change in cytokine concentration
correlate significantly with hangover severity. In line with previous controlled studies assessing
cytokines in blood, the current naturalistic study using saliva samples also demonstrated that the
immune system responds to high-level alcohol intake. However, further research is warranted, as,
in contrast to previous findings in blood samples, changes in saliva cytokine concentrations did
not differ significantly between hangover-sensitive and hangover-resistant drinkers, nor did they
correlate significantly with hangover severity.

Keywords: alcohol; hangover; immune system; cytokine; hangover severity

1. Introduction

Alcohol hangover refers to the combination of negative mental and physical symptoms
which can be experienced after a single episode of alcohol consumption, starting when
blood alcohol concentration (BAC) approaches zero [1,2]. A hangover is characterized by
a variety of symptoms [3,4] that may impair daily activities such as job performance or
driving a car [5,6]. Being hungover also negatively influences mood [7,8].

Despite these functional consequences, the pathology of the alcohol hangover has
received relatively little research attention. The immune system has been proposed to play
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a role in the pathology of the alcohol hangover [9,10]. It is hypothesized that cytokines
are released as a response to alcohol intake and subsequently interact with the central
nervous system (CNS), contributing to the various next-day symptoms collectively called
the hangover state. The immune system communicates with the CNS [11,12]. Peripherally
released cytokines influence CNS functioning, either through the endocrine pathway or via
the vagus nerve, resulting in upregulation of central cytokine production [13–15]. In healthy
volunteers, acute blood cytokine concentration changes have been demonstrated, starting
20-min post-alcohol-consumption [16,17]. It is hypothesized that these changes in immune
response may influence the presence and/or severity of the next-day alcohol hangover.

To date, few studies have investigated immune function changes during alcohol hang-
over. Kim et al. [18] collected blood samples from 20 male subjects (all with a history of
hangovers after drinking) on an alcohol-free day and the following day after an evening of
consuming soju, an alcoholic beverage made from rice, barley, or wheat. Blood samples
were collected prior to drinking and then the morning following alcohol administration.
The blood samples were stimulated by adding phytohemagglutinin (PHA) before cytokine
concentration assessments. Of the seven cytokines measured, there were significant ele-
vations in interleukin (IL)-10, IL-12 and interferon-gamma (IFN-γ), but not in IL-1β, IL-4,
IL-6, or tumor necrosis factor-alpha (TNF-α). Kim et al. found significant correlations
between blood ∆IL-12 and ∆IFN-γ concentrations and changes in overall hangover severity.
Significant correlations with subjective hangover scale scores were found for ∆IFN-γ, and
significant correlations with somatic hangover scale scores were found for ∆TNF-α and
∆IL-12, suggesting a meaningful contribution to hangover symptomatology [18].

Kim et al. [19] examined the effects of Hovenia dulcis Thunb fruit extract on alcohol
hangover. In a double-blind, placebo-controlled study, blood samples were taken at
baseline and 1, 4, and 12 h after alcohol consumption (Korean soju, containing 50 g alcohol).
TNF-α, IFN-γ, IL-6, IL-10, and IL-12 concentrations were determined. Kim et al. [19] found
significant correlations between blood IL-6 and IL-10 concentrations and hangover severity.

Mammen et al. [20] examined the effects of clove bud polyphenols (Clovinol, 250 mg)
on hangover severity. In a double-blind, placebo-controlled study, alcohol (1 g/kg) was
administered to 16 male social drinkers and blood samples were taken at 0, 0.5, 2, 4, and
12 h after treatment. Alcohol significantly increased blood concentrations of C-reactive
protein and IL-6. Treatment with Clovinol significantly reduced blood concentrations
of C-reactive protein and IL-6 and significantly reduced overall hangover severity. No
correlations between hangover severity and cytokine concentrations were presented, but
the authors reported that the observed elevation of IL-6 was highest among subjects who
reported severe hangover symptoms.

Whereas most drinkers experience hangovers after heavy drinking, approximately 10–
25% of social drinkers claim to be hangover-resistant, despite consuming large quantities
of alcohol [21–24]. The symptoms reported by these hangover-resistant drinkers, if any,
tend to be limited to mild drowsiness-related descriptors [25]. Comparing hangover-
sensitive and hangover-resistant drinkers may increase our knowledge of the underlying
pathology of the alcohol hangover. For example, immune reactivity may differ between
the two groups, which could explain the absence of hangover symptoms in the resistant
group. To date, no direct comparisons between hangover-sensitive and hangover-resistant
individuals comparing biomarkers of immune functioning have been published.

The current data on immune activation after heavy alcohol consumption come from
controlled studies. However, in real life, often, higher amounts of alcohol are consumed
than those administered in controlled experiments [25]. To enhance ecological validity, the
current study had a semi-naturalistic design, in which the investigators did not interfere
with the drinking session. The primary aim of the study was to investigate saliva cytokine
concentrations, during a post-alcohol day and a control day. A secondary aim was to directly
compare hangover-sensitive drinkers with hangover-resistant drinkers. It was hypothesized
that, compared with hangover-sensitive drinkers, hangover-resistant drinkers would display
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a reduced immune response. It was further hypothesized that hangover severity correlates
significantly with the magnitude of the changes in cytokine concentrations.

2. Materials and Methods

This was a semi-naturalistic study, consisting of a training day and two test days, with
approximately one week scheduled between the test days (for a full description, see [25]).
Participants consumed alcohol at a venue of choice, with corresponding behaviors and
real-life alcohol consumption levels [26]. One test day was scheduled after an evening of
drinking alcohol (the post-alcohol day), the other test day after an alcohol-free day (the
control day). The study was conducted at Utrecht University. The University of Groningen
Psychology Ethics Committee approved the study, and written informed consent was
obtained from all participants.

The aim was to include two groups of social drinkers: (1) N = 18 hangover-sensitive
drinkers and (2) N= 18 hangover-resistant drinkers. Allocation was based on a combination
of whether or not the participant reported having a hangover after a night of heavy
drinking and their score on the one-item hangover severity scale [27]. It was essential
that both groups consumed sufficient amounts of alcohol to produce a hangover per se.
Therefore, their peak estimated BAC for their usual drinking occasions had to be higher
than 0.08%. This was determined by asking participants how many alcoholic units they
usually consumed within a certain time frame. By using a modified Widmark formula [28],
which takes drinking time and the amount of alcohol consumed into account and controls
for sex and body weight, peak estimated BAC was calculated. Notably, in the Netherlands,
standard units of alcoholic drinks each contain 10 g alcohol, independent of the type of
alcoholic beverage.

To be included, participants had to be healthy (i.e., no physical or mental disease), 18
to 30 years old, non-smoking, not using illicit or medicinal drugs (except contraception),
and have received no recent vaccinations. Participants were considered healthy if they
reported the absence of physical and mental health conditions and did not receive any phar-
macological or psychological treatment. During test days, participants were not allowed
to take any treatments to prevent or relieve hangover symptoms, medication that may
have an impact on immune functioning, such as acetaminophen, aspirin, and non-steroidal
anti-inflammatory drugs (NSAIDs), or to consume caffeinated beverages. Participants were
excluded if they reported acute inflammation (infections, common cold, severe acne, flu),
allergic reactions (asthma and food allergy), autoimmune diseases (rheumatoid arthritis,
multiple sclerosis, diabetes type II), inflammatory bowel disease (Crohn’s disease, ulcer-
ative colitis, irritable bowel syndrome), or other conditions that may have an impact on
cytokine concentrations (e.g., chronic fatigue syndrome and fibromyalgia).

During the training day, demographic data (sex, age, weight, and height) were col-
lected. One of the test days was scheduled after an evening of drinking alcohol (the
post-alcohol day), the other after an alcohol-free day (the control day). There were no
instructions given with regard to when or how much alcohol to consume. Although a
test day was scheduled, subjects could voluntarily cancel the test day if they (also last-
minute) did not want to consume alcohol on that day. Then, an alternative test day was
scheduled. At screening, and on each test day, a urine drug screen (AlfaScientic Designs,
Inc, Poway, CA, USA) was conducted to verify the absence of illicit drug use (including
amphetamines (including 3,4-Methylenedioxymethamphetamine, MDMA), barbiturates,
cannabinoids, benzodiazepines, cocaine, and opiates). Females were tested for pregnancy.
In addition, a breath alcohol test was performed on each test day, using an Alcotest 7410
Breath Alcoholmeter (Dräger, Hoogvliet, The Netherlands).

At the start of both test days, a saliva sample was collected by the passive drool method
in 2-mL polypropylene cryovials, using SalivaBio’s Saliva Collection Aid (Salimetrics, State
College, PA, USA). For each subject, on the post-alcohol day and the control day, it was
aimed to collect the saliva samples at the same time of day (between 9 and 12 a.m.), in
order to prevent circadian influences on cytokine concentrations. Participants were not
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allowed to eat or drink for at least 30 min before donating the saliva. The cryovials were
stored at a temperature of −80 ◦C.

Saliva cytokine concentrations were determined by multiplex immunoassays (cus-
tomized Bio-Plex® Multiplex Immunoassay System, BioRad Laboratories, Veenendaal,
The Netherlands). All incubations were conducted at room temperature. First, 25 µL of
each saliva sample was pipetted into a dilution plate; 25 µL of assay buffer was added to
dilute the samples (×2). The magnetic beads were prepared by dilution with 4× buffer
and pipetted into a 96-well plate. After washing the beads twice, the standards and the
samples were added to the plate and incubated for 30 min. The plate was washed twice
and diluted biotinylated detection antibody was added, which was then incubated for
30 min. The plate was washed twice and diluted streptavidin– phycoerythrin (used as
detection substrate) was added and incubated for 10 min. The plates were washed twice
and assay buffer was added to each well. Fluorescence was read within 30 min.

Single assessments of the following cytokines were made: IL-1β, IL-2, IL-4, IL-5,
IL-6, IL-8, IL-10, granulocyte–macrophage colony-stimulating factor (GM-CSF), interferon-
gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Cytokine concentrations were
expressed in pg/mL saliva. For each cytokine determination, each multiplex plate had a
unique lower limit of detection (LOD). For those cytokine concentrations below the LOD
of the assay, the LOD value was divided by 2 to enable inclusion of these assessments in
the statistical analyses. If more than 25% of the cytokine assessments were below the LOD
value, the results for that cytokine were considered to be unreliable and not used for final
data analysis.

Overall hangover severity (a one-item hangover score), as well as the severity of 23
individual symptoms, such as nausea, headache, tiredness, and apathy, were assessed on
an 11-point scale, ranging from 0 (absent) to 10 (extreme) [25,27].

Statistical analyses were performed using IBM Statistical Package for the Social Sci-
ences (SPSS), version 27. Mean and standard deviation (SD) were computed for all param-
eters. Cytokines for which more than 25% of determinations were below the LOD were
not considered in the statistical analysis. Cytokine data were not normally distributed,
and nonparametric tests were used for statistical analyses. The cytokine concentrations
and the overall hangover severity on the post-alcohol day and control day were com-
pared for all the participants, as well as for the hangover-sensitive and hangover-resistant
groups separately, using the nonparametric related-samples Wilcoxon signed rank test.
Applying the nonparametric independent-samples Mann–Whitney U test, data were com-
pared between the hangover-sensitive group and the hangover-resistant group. Difference
scores (∆, post-alcohol day—control day) in cytokine concentrations were correlated with
difference scores of severity of both overall hangover and the 23 individual hangover
symptoms, using nonparametric Spearman’s rho correlations. p-values were adjusted for
multiple comparisons (dividing 0.05 by the number of comparisons made, to be used as
significance cut-off).

3. Results

N = 36 participants completed the study. One hangover-sensitive subject was excluded
based on having a much greater alcohol intake when compared to the group average (32
versus 11.1 alcoholic drinks). The final dataset for statistical analysis included N = 17
hangover-sensitive drinkers and N = 18 hangover-resistant drinkers. Their demographic
data are summarized in Table 1.
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Table 1. Demographics.

Demographics All Participants Hangover-Resistant Hangover-Sensitive p-Value

N 35 18 17
Male/female 13/22 8/10 6/11

Age (year) 21.1 (1.8) 20.8 (2.0) 21.4 (1.6) 0.356
Height (m) 1.77 (0.1) 1.78 (0.1) 1.76 (0.1) 0.397
Weight (kg) 68.5 (10.3) 71.1(10.2) 65.8 (1.0) 0.126

BMI (kg/m2) 21.9 (2.2) 21.4 (2.3) 22.3 (2.0) 0.186
Alcoholic units consumed 11.0 (5.1) 10.7 (4.7) 11.3 (5.6) 0.715

Estimated BAC (%) 0.17 (0.7) 0.17 (0.07) 0.17 (0.07) 0.701

Mean and standard deviation (SD) are shown. Abbreviations: BAC = blood alcohol concentration, BMI = body mass index.

The hangover-sensitive group (N = 17, 70.6% female) and the hangover-resistant group
(N = 18, 55.6% female) did not significantly differ in any demographics, including the
number of alcoholic units consumed on the alcohol day and corresponding estimated BAC
on the evening before the test day. In the morning of the test days, breath alcohol content
was determined. On the alcohol-free test day, breathalyzer assessments were zero in all
subjects; on the post-alcohol test day, N = 3 subjects tested positive when entering the
institute, and their assessments were postponed until BAC reached zero.

The mean (SD) post-alcohol day saliva collection time was 10.56 a.m. (1.1), which was
an average of 9.01 (1.4) hours after cessation of drinking. The control day collection time
of 10.37 a.m. (1.1) did not significantly differ (p = 0.21) from the post-alcohol day. Table 2
summarizes the mean (SD) saliva cytokine concentrations as assessed on the post-alcohol
day and the control day for all participants.

Table 2. Mean (SD) saliva cytokine concentrations of all participants.

Test Day Post-Alcohol Day Control Day

Cytokine Mean (SD) % Below LOD Mean (SD) % Below LOD p-Value

IL-1β 158.7 (205.9) 0.0% (0/35) 198.4 (413.6) 0.0% (0/35) 0.523
IL-6 16.4 (20.5) 2.9% (1/35) 8.6 (8.8) 2.9% (1/35) 0.001 *
IL-8 584.3 (668.8) 0.0% (0/35) 809.3 (1725.0) 0.0% (0/35) 0.342

IL-10 13.7 (12.9) 5.7% (2/35) 7.8 (5.9) 17.1% (5/35) 0.001 *
TNF-α 85.2 (51.1) 0.0% (0/35) 70.6 (46.5) 0.0% (0/35) 0.038

Mean (pg/mL) and standard deviation (SD) are shown for all N = 35 participants. Abbreviations: LOD = lower limit of detection,
IL = interleukin, TNF-α = tumor necrosis factor-alpha. Cytokines with more than 25% of participants below LOD are not shown. Significant
differences (p < 0.01, after adjusting for multiple comparisons) between the post-alcohol and control day are indicated by *.

For a number of participants, it was not possible to reliably determine saliva cytokine
concentrations. If, for more than 25% of participants, an assessment was below the LOD,
either on the post-alcohol day or the control day, these cytokines were omitted from the
analyses. This was the case for IL-2, IL-4, IL-5, GM-CSF, and IFN-γ. For several cytokines,
an increase in concentration was seen on the post-alcohol day (IL-6, IL-10, and TNF-α).
After adjusting for multiple comparisons, significant differences (p < 0.01) between the
post-alcohol day and the control day were found for IL-6 and Il-10, whereas the difference
for TNF-α approached significance. The differences for IL-1β and IL-8 were not significant.

Table 3 summarizes the mean (SD) saliva cytokine concentrations as assessed on the
post-alcohol day and the control day for both groups separately. For most cytokines, an
increase in concentration was seen on the post-alcohol day. In the hangover-resistant
group, the increase reached significance for IL-6 (p = 0.005), and the difference in IL-10
approached significance (p = 0.011). No other comparisons revealed significant differences
after correcting for multiple comparisons.
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Table 3. Mean (SD) saliva cytokine concentrations.

Hangover-Resistant Group (N = 18) Hangover-Sensitive Group (N = 17)

Cytokine Post-Alcohol
Mean (SD)

Control Day
Mean (SD) p-Value Post-Alcohol

Mean (SD)
Control Day
Mean (SD) p-Value

IL-1β 179.4 (196.8) 148.1 (237.2) 0.732 136.7 (219.0) 251.6 (545.8) 0.981
IL-6 22.4 (26.6) 9.8 (11.2) 0.005 * 10.1 (7.6) 7.4 (5.4) 0.084
IL-8 582.3 (614.6) 626.7 (1004.7) 0.472 586.4 (741.0) 1002.7 (2274.6) 0.523
IL-10 12.0 (8.8) 6.0 (3.1) 0.011 15.4 (16.2) 9.8 (7.6) 0.041

TNF-α 79.6 (42.2) 62.9 (38.3) 0.048 91.2 (59.8) 78.8 (53.8) 0.332

Mean (pg/mL) and standard deviation (SD) are shown. Significant differences (p < 0.01, after adjusting for multiple comparisons) between
the post-alcohol day and the control day are indicated by *. No significant differences were found for any of the assessments between
hangover-sensitive and -resistant drinkers.

Individual subject data for IL-6 and IL-10 are also summarized in Figure 1. From
Figure 1, it is evident that most individuals had higher cytokine concentrations on the
post-alcohol day (i.e., above the black diagonal line representing equal concentrations).

Figure 1. Mean (SD) saliva cytokine concentrations. Individual subject data from the hangover-sensitive group (red markers)
and hangover-resistant group (blue markers) are shown for interleukin (IL)-6 and IL-10, which were both significantly
increased on the post-alcohol day.

To further investigate the magnitude of cytokine changes after alcohol consumption,
delta saliva concentrations (∆, post-alcohol day—control day) for cytokine concentrations
were calculated and compared between the hangover-sensitive group and the hangover-
resistant group. No significant differences were found between the two groups for any
of the cytokines. Furthermore, when comparing the raw data from the control day and
post-alcohol day separately, no significant differences were found between the groups.

Hangover-resistant drinkers reported an overall hangover severity score of zero
(N = 12) or one (N = 6), resulting in a mean (SD) severity score of 0.3 (0.5). The mean
(SD) overall hangover severity score in hangover-sensitive drinkers was 5.9 (2.0). On the
control day, the overall hangover severity score was zero (0.0) for both groups. There were
no significant correlations between ∆overall hangover severity and changes in cytokine
concentrations. Regarding the ∆severity scores of 23 individual hangover symptoms, after
correcting for multiplicity (p < 0.002), no significant associations were found between
∆symptom severity scores and ∆cytokine concentrations. Correlations between ∆IL-6 and
∆headache (r = 0.572, p = 0.017) and between ∆IL-6 and ∆concentration problems (r = 0.536,
p = 0.027) showed a trend towards significance.
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4. Discussion

This study demonstrated that the immune system is activated after alcohol con-
sumption at levels which produce hangover, as significant increases in salivary cytokine
concentrations IL-6 and IL-10 were found during the post-alcohol day.

Surprisingly, the changes in cytokine concentrations did not significantly differ between
hangover-sensitive and hangover-resistant drinkers. In contrast, a clear difference was seen in
the presence and severity of hangover symptoms in the hangover-sensitive group and their
absence in the hangover-resistant group. This suggests that the latter experienced less intense
or no hangover symptoms despite activation of immune responses. Of course, there are
various other physiological factors which are involved in hangover [29–32], but the relative
contribution of these to hangover and hangover resistance remains to be determined. Another
possibility is that that hangover resistance is actually a manifestation of these drinkers being
less aware of their hangover symptoms. Future research might therefore investigate the extent
of alexithymia and poor meta-cognition in this population.

Kim et al. [18] reported significant correlations between blood ∆IL-12 and ∆IFN-γ
concentrations and changes in total hangover scale scores. Significant correlations with
subjective hangover scale scores were found for ∆IFN-γ, and significant correlations with
somatic hangover scale scores were found for ∆TNF-α and ∆IL-12. Kim et al. [19] reported
significant correlations between blood IL-6 and IL-10 concentrations and hangover severity.
In the current study, we did find significant correlations between changes in saliva cytokine
concentrations and overall hangover severity. Moreover, for the 23 individual hangover
symptoms, no significant correlations with cytokine concentrations were found.

There are several distinctions between the three studies that may account for the
observed differences. The most important one is the fact that, in the current study, assess-
ments were performed using saliva, whereas the studies by Kim et al. [18] used stimulated
blood cells, and Kim et al. [19] performed assessments on normal blood samples. Further,
in the current study and in Kim et al. [18], change scores (hangover–placebo) were used for
the correlations, whereas in Kim et al. [19], absolute blood cytokine concentrations were
correlated with hangover severity. Various methodological differences between the three
studies may also account for the inconsistent findings. First of all, cytokines were assessed
at different time points (approximately 9 h after drinking cessation in the current study,
versus 12–14 h in the studies by Kim et al. [18], Kim et al. [19], and Mammen et al. [20]). Sec-
ondly, these studies included only male participants, whereas the current study included
both sexes. In addition, the method of assessing overall hangover severity differed between
the studies. Finally, in the studies by Kim et al. [18], Kim et al. [19], and Mammen et al. [20],
participants were given a pre-calculated mixture of alcohol in the lab, which was consumed
within a set time. In the current naturalistic study, participants were allowed to drink any
type of alcohol and non-alcoholic drink at a location and pace of their own choice. This
resulted in a mean (SD) drinking time of 5.4 (1.9) hours, which was longer than in the
controlled studies, and also resulted in significantly higher estimated BAC levels.

Our findings are in line with other observations which have been published else-
where [25]. These showed no significant differences between the hangover-sensitive
and -resistant drinkers in demographics, alcohol consumption patterns, and mood [25].
Moreover, the groups did not differ significantly in scores on the Alcohol Use Disorders
Identification Test (AUDIT) and Self-Rating of the Effects of alcohol (SRE) scale, suggest-
ing no difference in harmful alcohol consumption patterns [25]. Further, there were no
differences in reported behaviors during the alcohol consumption sessions (e.g., dancing,
sitting in a bar). Morning assessments of urine methanol [33] and urine ethyl glucuronide
(EtG) and ethyl sulfate (EtS) [34] did not reveal any significant differences between the
hangover-sensitive and -resistant groups. However, urine ethanol concentration was sig-
nificantly lower in the hangover-resistant group when compared to the hangover-sensitive
group [35], suggesting accelerated alcohol metabolism among hangover-resistant drinkers.
Although a study that further explored potential differences in alcohol metabolism between
hangover-sensitive and -resistant drinkers found no significant differences in breath alco-
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hol concentration, subjective sleepiness, and subjective intoxication after an acute alcohol
challenge (BAC 0.05%) [36], another study confirmed that drinkers with a faster ethanol
elimination rate experienced less severe hangovers [37]. Future research into alcohol
metabolism is warranted to further investigate potential differences between hangover-
sensitive and -resistant drinkers. Exploring possible genetic differences related to immune
functioning and alcohol metabolism may help to elucidate why some drinkers claim to be
hangover-resistant while others are hangover-sensitive.

The use of a naturalistic study design has many strengths [26]. As opposed to con-
trolled trials, this design closely mimics a real-life drinking session. Type and quantity of
beverage consumption are under control of the subjects only, as well as the chosen venues
and their behaviors (e.g., talking, dancing). Alcohol consumption levels are usually higher
than allowed in controlled studies [25], better reflecting their normal drinking behavior
that provokes hangovers. Characteristic of the naturalistic study design is the fact that
researchers are not present during the drinking session and thus cannot interfere with
the subjects’ natural behaviors. Important information, such as the amount of alcohol
consumed, is retrospectively reported to the investigators. From these data, important
study variables are estimated and calculated, such as the peak BAC. Assessments during
the hangover state are made in the presence of the investigators.

The study also has some limitations that should be addressed. First of all, a disad-
vantage of the naturalistic approach is that it has to rely in part on retrospective reporting,
while it may be preferable to monitor some of the parameters very carefully [26]. The
timing of the saliva specimen would then have been exact. Moreover, some other variables
which showed large interindividual differences, such as the start and stop time of alcohol
consumption or time to bed, could be kept stable across subjects in controlled studies.
Another example of an interindividual difference is food intake during the drinking ses-
sion. In the current study, this was assessed in an unsystematic way, not allowing analysis.
However, from the collected data, it can be concluded that food intake differed between
the participants. Previous research showed that food intake and specific nutrients may
have an impact on reported hangover severity [38,39]. Therefore, it is advised that future
naturalistic studies should collect data on food intake using systematic assessment tools
such as food frequency questionnaires. The amount of water and nonalcoholic beverages
consumed was not assessed in the current study. Although previous research did not
reveal any relationship between the consumption of water and nonalcoholic beverages
and hangover severity [40,41], this may have had an effect on cytokine concentrations.
Therefore, it is advised to collect data on water and nonalcoholic beverage consumption
in future studies. Taken together, it would be useful to replicate the current findings in a
controlled trial with preset drinking times and sleeping times, including the same type and
amount of alcohol consumption for all subjects.

Saliva samples were taken in the current study, as this is a noninvasive method which
is more friendly for participants when compared to blood drawing. Saliva sample collection
has many advantages over blood drawing, including being more cost-effective and not
painful for participants. Compared to collecting urine or drawing blood, patients strongly
prefer the collection of saliva samples [42,43]. In this study, no blood samples were taken,
so a direct comparison to determine whether these matched was not possible. However,
the literature shows that saliva assessments closely match results from blood drawings and
that both assays are a valid method to gather information on immune functioning and its
relationship with emotional states [44–46]. Nevertheless, it should be kept in mind that
cytokine concentrations are influenced by many external factors. Several of these factors
were under control in this study (e.g., the absence of immune-related disease was used as
an inclusion criterion), while others were systematic interpersonal differences which were
stable within subjects (e.g., oral health, and time of day that the saliva samples were taken
on the post-alcohol day and control day), while other factors that may influence cytokine
concentrations were the variables under investigation that were deliberately uncontrolled
in this naturalistic study (e.g., time after drinking, peak estimated BAC).
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In line with previous research, we chose to assess cytokines as biomarkers of the
innate immune response. The purpose of the innate immune response is to immediately
protect the body against foreign pathogens and toxics such as alcohol. In contrast, adaptive
immunity is acquired over a lifetime after previous exposure to a toxic, to prepare the
body’s immune system for future challenges. Repeated alcohol abuse has been associated
with a reduction in the number of B and T cells [47], which are involved in adaptive
immunity. Therefore, in future research, it may be of interest to assess biomarkers of the
adaptive immune response, including B cells and T cells.

Finally, future research should include measurements at multiple time points during
the day. It has been previously reported that measuring hangover severity at a single time
point on both test days is a limitation as temporal fluctuation of presence and severity
during the day are not taken into account [48]. Temporal changes in hangover severity
have also recently been investigated, showing that different types of severity patterns
occur across drinkers [49]. These different patterns might explain the absence of significant
associations with changes in cytokine concentrations, as, in the current study, participants
were not selected based on their temporal hangover severity profile. Concentrations of
inflammatory markers may also fluctuate throughout the day [50,51], which makes it
important to at least standardize the time of sample collection across test days. To better
capture the circadian effects of both cytokine concentrations and hangover severity, in
future research, having multiple assessment points during the day is warranted.

5. Conclusions

The current findings confirm that the immune system responds to alcohol consump-
tion, which is measurable on the post-alcohol day. As the observed cytokine changes do
not differ significantly between hangover-sensitive and -resistant drinkers, and they do
not significantly correlate with overall hangover severity or individual symptom severity,
the exact nature of the association between immune functioning and the hangover state
warrants further investigation.
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