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Abstract: From November to December 2020, the third wave of COVID-19 cases in Korea is ongoing.
The government increased Seoul’s social distancing to the 2.5 level, and the number of confirmed
cases is increasing daily. Due to a shortage of hospital beds, treatment is difficult. Furthermore,
gatherings at the end of the year and the beginning of next year are expected to worsen the effects.
The purpose of this paper is to emphasize the importance of prediction timing rather than prediction
of the number of confirmed cases. Thus, in this study, five groups were set according to minimum,
maximum, and high variability. Through empirical data analysis, the groups were subdivided
into a total of 19 cases. The cumulative number of COVID-19 confirmed cases is predicted using
the auto regressive integrated moving average (ARIMA) model and compared with the actual
number of confirmed cases. Through group and case-by-case prediction, forecasts can accurately
determine decreasing and increasing trends. To prevent further spread of COVID-19, urgent and
strong government restrictions are needed. This study will help the government and the Korea
Disease Control and Prevention Agency (KDCA) to respond systematically to a future surge in
confirmed cases.
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1. Introduction

The COVID-19 pandemic has had a significant impact on human life. The G20 Summit
held in a virtual conference on March 2020 to discuss pending global issues resulting from
COVID-19. Coping and confronting the pandemic includes activities such as protecting
lives, protecting jobs and income, restoring trust, preserving financial stability, restoring
growth, minimizing disruption of trade and global supply chains, and providing assistance
to countries in need of support. COVID-19 has caused major economic losses, paralyzing
national economies around the world. The International Monetary Fund (IMF) predicted
that global trade volume would shrink by 10.4% on-year [1]. The World Bank Group (WBG)
is expecting that the global trade volume will drop 5.2% and to have its worst year since
World War II [2].

COVID-19 has been called a novel coronavirus (2019-nCoV), but on 11 March 2020,
the World Health Organization (WHO) announced its official name as COVID-19 [3].
On 13 February 2020, the International Committee on Taxonomy of Viruses (ICTV) officially
announced the virus’ name as SARS-CoV-2. Coronavirus is a ribonucleic acid (RNA) virus
that causes respiratory diseases, such as colds. It was named coronavirus because its
outer skin is shaped like a crown surrounded by bumps. It causes infection in a variety
of animals, including humans. The WHO classifies pandemic alarm levels from 1 to 6,
according to the infectious disease risk. This pandemic corresponds to the highest warning
level—6. When an infectious disease spreads worldwide and spreads across continents,
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it is called a pandemic. Thus far, the WHO has declared three pandemics: the Hong Kong
Flu in 1968, the Swine Flu in 2009, and COVID-19 in 2020 [4].

Until recently, the top five affected countries were as follows: the United States
death toll record with 17 million, India with 10 million, Brazil with 7 million, Russia with
2.7 million, and France with 2.4 million. In terms of death rate, Mexico has the highest death
rate at 9.1%, China has 5.3%, Iran has 4.7%, and Italy has 3.5%. In Korea, the cumulative
number of confirmed cases is about 47,000, and the death rate is approximately 1.4% [5].

Various studies have been conducted on past pandemic infections and disease.
Guan et al. [6] predicted the incidence of hepatitis A virus (HAV) using an auto regres-
sive integrated moving average (ARIMA) model and an artificial neural network (ANN).
Earnest et al. [7] forecasted the number of confirmed cases by applying the ARIMA model
to the number of confirmed cases per day for severe acute respiratory syndrome (SARS).
By applying ARIMA to China’s HFRS data, Liu et al. [8] predicted the incidence of hem-
orrhagic fever with renal syndrome (HFRS) from 2009 to 2011. Wu et al. [9] predicted
the incidence of HFRS over one year by using a hybrid model that combines ARIMA,
a generalized regression neural network (GRNN), and the non-linear autoregressive neu-
ral network (NARNN) with ARIMA. Nsoesie et al. [10] tried to predict the hantavirus
pulmonary syndrome (HPS) using an ARIMA model. Chen et al. [11] used the seasonal
autoregressive integrated moving average (SARIMA) to predict the incidence of influenza
in China; they found that the incidence rate varies according to region and season.

Based on past infectious diseases, research related to COVID-19 has also been ac-
tively conducted. Using a differential equation model that reflected social distancing and
transmission rate as parameters, Webb et al. [12] predicted and compared the number of
confirmed cases considering the number of report and the presence of symptoms in Italy,
Spain, and Korea. This demonstrates the importance of controlling COVID-19 infection
through social distancing. Alakus et al. [13] developed a prediction algorithm using deep
learning and had a positive impact on clinical prediction studies of COVID-19. Pham [14]
studied the cumulative number of deaths, the mortality per capita per unit time, and the
maximum total number of deaths as functions, and the solution of differential equations
composed of the functions is proposed as the numerical model of COVID-19. Pham [15]
generalized by introducing a function of recovered cases to the model in [14]. Additionally,
Pham [16] developed a new mathematical model by introducing the time-dependent ef-
fort of social restrictions—the resumption of states, wearing masks, and social distancing.
Arias et al. [17] suggested a generalized logistics regression to predict the number of cases
of COVID-19.

In addition to the aforementioned methods, studies have also been conducted us-
ing the ARIMA model to estimate the spread of COVID-19, examples of which are as
follows. Using ARIMA and Richard’s model, Kumar et al. [18] conducted a study that
forecast the population impact of COVID-19 in India compare goodness-of-fit for models.
Petropoulos et al. [19] predicted the number of COVID-19 patients in a short period of time
using a simple time series in Denmark, Norway, and Sweden. Additionally, [19] tracked
and compared the stringency level of each country. Using the ARIMA model, Ceylan [20]
predicted the number of COVID-19 cases in Italy, Spain, and France. Alzahrani et al. [21]
forecasted the number of COVID-19 confirmed cases in Saudi Arabia for the next four weeks.
Yang et al. [22] predicted the number of cases in Italy for the next few days. Kufel [23] pre-
sented ARIMA to forecast the rate of infection in 32 European countries over the next seven
days. In addition, there is a variety of research that studies the impact of COVID-19 [24–30].

In this paper, we apply the ARIMA model and empirical data analysis to forecast
the number of confirmed COVID-19 cases in Korea. Using actual data, dividing the
wave into several cases, predicting the number of cumulative confirmed cases for each
case, and comparing the criteria. In doing so, we emphasize the importance of timing of
forecasting to make a meaningful forecast. In particular, the period from 20 January 2020
(first confirmed case) to 26 October 2020 (the beginning of the third wave of COVID-19)
is divided into five groups, which are subdivided into a total of 19 cases (the division is
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detailed in Section 2). Section 2 briefly describes the material and methods. Additionally,
the current status of confirmed cases in Korea, empirical data analysis of group and case
information, ARIMA models, and criteria are introduced. Section 3 presents the analysis
and results. Section 4 concludes the paper.

2. Material and Methods
2.1. The Number of COVID-19 Confirmed Cases in Korea

Figure 1 shows the number of confirmed cases and cumulative confirmed cases by
month in Korea [31]. On 20 January 2020, a tourist from Wuhan became the first confirmed
case in Korea. Then, 11 cases were reported, bringing the cumulative number of confirmed
cases to 12. In February and March, the number of confirmed cases increased sharply.
The primary cause of infections was indoor religious gatherings. Within three months of
the first outbreak, the cumulative number of confirmed cases reached 9887. The period
between February and April 2020 is defined as the first wave of COVID-19 in Korea [31,32].

Healthcare 2021, 9, x  3  of  17 
 

 

into five groups, which are subdivided into a total of 19 cases (the division is detailed in 

Section 2). Section 2 briefly describes the material and methods. Additionally, the current 

status of confirmed cases in Korea, empirical data analysis of group and case information, 

ARIMA models, and criteria are introduced. Section 3 presents the analysis and results. 

Section 4 concludes the paper. 

2. Material and Methods 

2.1. The Number of COVID‐19 Confirmed Cases in Korea 

Figure 1 shows the number of confirmed cases and cumulative confirmed cases by 

month in Korea [31]. On 20 January 2020, a tourist from Wuhan became the first confirmed 

case in Korea. Then, 11 cases were reported, bringing the cumulative number of confirmed 

cases to 12. In February and March, the number of confirmed cases increased sharply. The 

primary cause of infections was indoor religious gatherings. Within three months of the 

first outbreak, the cumulative number of confirmed cases reached 9887. The period be‐

tween February and April 2020 is defined as the first wave of COVID‐19 in Korea [31,32]. 

 

Figure 1. The number of confirmed cases and cumulative confirmed cases of COVID‐19 in Korea in 2020 (including im‐

ported cases). 

After the first wave, the number of confirmed cases decreased rapidly and there was 

a stable infection rate across the country. Nevertheless, in August and September, the sec‐

ond wave was generated by political rallies and church gatherings. During  the second 

wave, the cases increased sharply, and the government raised social distancing to level 2. 

There were 2757 cases in October, which was only slightly lower than in September. This 

period showed a stable infection rate, in comparison to other waves, but it included the 

day with the largest increase in confirmed cases; this study did not thoroughly address 

the third wave, because it is still underway [31,33]. 

From November to present, the number of confirmed cases increased rapidly again. 

This is defined as the third wave. In November, the total number of cases was 8017. Small 

gatherings among families and friends accounted for more than 20% of the third wave’s 

infections. Some of the provincial governments decided to raise the social distancing level 

to 2.5, which is the second highest. Worst of all, the confirmed cases in Seoul are being 

Figure 1. The number of confirmed cases and cumulative confirmed cases of COVID-19 in Korea in 2020 (including
imported cases).

After the first wave, the number of confirmed cases decreased rapidly and there was a
stable infection rate across the country. Nevertheless, in August and September, the second
wave was generated by political rallies and church gatherings. During the second wave,
the cases increased sharply, and the government raised social distancing to level 2. There
were 2757 cases in October, which was only slightly lower than in September. This period
showed a stable infection rate, in comparison to other waves, but it included the day with
the largest increase in confirmed cases; this study did not thoroughly address the third
wave, because it is still underway [31,33].

From November to present, the number of confirmed cases increased rapidly again.
This is defined as the third wave. In November, the total number of cases was 8017. Small
gatherings among families and friends accounted for more than 20% of the third wave’s
infections. Some of the provincial governments decided to raise the social distancing level
to 2.5, which is the second highest. Worst of all, the confirmed cases in Seoul are being
housed in retrofitted containers because of hospital bed shortages. The government and
citizens fear the need to raise social distancing to level 3 [31,34].
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All information related to confirmed cases in this paper was provided by the govern-
ment and was aggregated daily at midnight (00:00) [31].

2.2. Information of Groups and Cases Using Empirical Data Analysis
2.2.1. Empirical Data Analysis

Empirical analysis is an evidence-based approach to the study and interpretation
of information. The empirical approach relies on real-world data, metrics, and results,
rather than theories and concepts. Empirical analysis is a common approach used to
study probable answers through quantified observations of empirical evidence. However,
empirical analysis never gives an absolute answer, only the most likely answer based
on probability.

We can formulate the increasing number of confirmed cases of COVID-19 as follows:

y′(t) = lim
∆t→0

y(t + ∆t)− y(t)
∆t

(1)

where y′(t) illustrates the increasing number of confirmed cases of COVID-19 during the
time interval ∆t. Then, y(t) is the observed cumulative number of confirmed cases of
COVID-19 over time t. Therefore, y(t + ∆t) denotes the observed cumulative number
of confirmed cases of COVID-19 over time t + ∆t. Given different values of ∆t, we are
interested in investigating the pattern of y′(t).

2.2.2. Information of Groups and Cases

Figure 2 shows the increasing number of confirmed cases of COVID-19 during the
time interval ∆t. As shown in Figure 2, the five points of high variability were divided
and examined in detail. The criteria for defining the five groups are as follows: Group
1 and Group 4 were based on the day when the number of confirmed cases per day was the
highest in the first and second waves. Group 2 was based on the day when the number of
confirmed cases was the lowest. Last, Group 3 and Group 5 were based on the days with
the greatest variability (the point at which more than 100 confirmed cases began to appear),
which signaled the beginning of the second and third waves.
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Details can be found in Table 1. In Group 1, with the time interval ∆t = 1, the maxi-
mum frequency was 813 cases (28 February 2020), the time intervals ∆t = 2–4 were 699.5,
656.7, and 618.8 cases (29 February 2020), and the time internals ∆t = 4–5 were 618.8 and
609.2 cases (2 March 2020). Time internals ∆t = 6–7 were 593.7 and 581.0 cases (3 March
2020) in the first wave of the COVID-19 pandemic, respectively.

Table 1. The number of confirmed cases of COVID-19 during time interval ∆t by Group.

Group Date
Number of Confirmed Cases

of COVID-19 Number of Confirmed Cases of COVID-19during Time Interval ∆t

Daily Cum. ∆t=1 ∆t=2 ∆t=3 ∆t=4 ∆t=5 ∆t=6 ∆t=7

Group 1

27 February 2020 571 2337 571.0 538.0 453.3 373.5 345.8 317.3 304.7

28 February 2020 813 3150 813.0 692.0 629.7 543.3 461.4 423.7 388.1

29 February 2020 586 3736 586.0 699.5 656.7 618.8 551.8 482.2 446.9

1 March 2020 476 4212 476.0 531.0 625.0 611.5 590.2 539.2 481.3

2 March 2020 600 4812 600.0 538.0 554.0 618.8 609.2 591.8 547.9

3 March 2020 516 5328 516.0 558.0 530.7 544.5 598.2 593.7 581.0

4 March 2020 438 5766 438.0 477.0 518.0 507.5 523.2 571.5 571.4

Group 2

4 May 2020 3 10,804 3.0 5.5 8.0 7.5 7.8 7.2 7.4

5 May 2020 2 10,806 2.0 2.5 4.3 6.5 6.4 6.8 6.4

6 May 2020 4 10,810 4.0 3.0 3.0 4.3 6.0 6.0 6.4

7 May 2020 12 10,822 12.0 8.0 6.0 5.3 5.8 7.0 6.9

8 May 2020 18 10,840 18.0 15.0 11.3 9.0 7.8 7.8 8.6

Group 3

12 August 2020 56 14,770 56.0 55.0 48.0 43.0 41.6 41.8 38.7

13 August 2020 103 14,873 103.0 79.5 71.0 61.8 55.0 51.8 50.6

14 August 2020 166 15,039 166.0 134.5 108.3 94.8 82.6 73.5 68.1

15 August 2020 279 15,318 279.0 222.5 182.7 151.0 131.6 115.3 102.9

16 August 2020 197 15,515 197.0 238.0 214.0 186.3 160.2 142.5 127.0

Group 4

16 August 2020 320 18,265 320.0 300.0 288.7 315.8 319.0 319.8 315.3

25 August 2020 441 18,706 441.0 380.5 347.0 326.8 340.8 339.3 337.1

26 August 2020 371 19,077 371.0 406.0 377.3 353.0 335.6 345.8 343.9

27 August 2020 323 19,400 323.0 347.0 378.3 363.8 347.0 333.5 342.6

28 August 2020 299 19,699 299.0 311.0 331.0 358.5 350.8 339.0 328.6

29 August 2020 248 19,947 248.0 273.5 290.0 310.3 336.4 333.7 326.0

Group 5

20 October 2020 91 25,424 91.0 74.5 75.0 79.0 77.8 72.7 78.0

21 October 2020 119 25,543 119.0 105.0 89.3 86.0 87.0 84.7 79.3

22 October 2020 155 25,698 155.0 137.0 121.7 105.8 99.8 98.3 94.7

23 October 2020 77 25,775 77.0 116.0 117.0 110.5 100.0 96.0 95.3

24 October 2020 61 25,836 61.0 69.0 97.7 103.0 100.6 93.5 91.0

25 October 2020 119 25,955 119.0 90.0 85.7 103.0 106.2 103.7 97.1

26 October 2020 88 26,043 88.0 103.5 89.3 86.3 100.0 103.2 101.4

27 October 2020 103 26,146 103.0 95.5 103.3 92.8 89.6 100.5 103.1

In Group 2, with the time interval ∆t = 1, 2, and 7, the minimum frequencies
were 2, 2.5, and 6.4 cases (5 May 2020). The time intervals ∆t = 3–4 and 6–7 were 3,
4.3, 6, and 6.4 cases (6 May 2020), and the time intervals ∆t = 5 was 5.8 cases (7 May
2020), respectively.

In Group 3, with the time interval ∆t = 1, the frequency with high variability
(based on more than 100 cases) was 103 cases (13 August 2020). The time intervals ∆t =
2–3 were 134.5 and 108.3 cases (14 August 2020). The time internals ∆t = 4–7 were 151,
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131.6, 115.3, and 102.9 cases (15 August 2020) before the second wave of the COVID-19
pandemic, respectively.

In Group 4, with the time interval ∆t = 1, the maximum frequency was 441 cases
(26 August 2020). The time intervals ∆t = 2 and 6–7 were 406, 345.8, and 343.9 cases
(27 August 2020). The time internals ∆t = 3–4 were 378.3 and 363.8 cases (28 August
2020). Time internals ∆t = 5 was 350.8 cases (29 August 2020) in the second wave of the
COVID-19 pandemic.

In Group 5, with the time interval ∆t = 1–2, the frequency with high variability (based
on more than 100 cases) was 119 and 105 cases (21 October 2020). The time intervals
∆t = 3–4 were 121.7 and 105.8 cases (22 October 2020). The time internals ∆t = 5 was
100 cases (23 October 2020); the time internals ∆t = 6 was 103.7 cases (25 October 2020);
and the time internals ∆t = 7 was 101.4 cases (26 October 2020) before the third wave of
the COVID-19 pandemic, respectively.

As shown in Table 2, we set cases by date for forecast analysis based on the time point
mentioned in each group. In addition, it was used for predictive analysis using the data up
to the mentioned time point.

Table 2. Groups and cases by period for forecast analysis.

Group Case Date Group Case Date

1

Case 1 20 January 2020~28 February 2020

4

Case 11 20 January
2020~26 August 2020

Case 2 20 January 2020~29 February 2020 Case 12 20 January
2020~27 August 2020

Case 3 20 January 2020~2 March 2020 Case 13 20 January
2020~28 August 2020

Case 4 20 January 2020~2 March 2020 Case 14 20 January
2020~29 August 2020

2

Case 5 20 January 2020~5 May 2020

5

Case 15 20 January
2020~21 October 2020

Case 6 20 January 2020~6 May 2020 Case 16 20 January
2020~22 October 2020

Case 7 20 January 2020~7 May 2020 Case 17 20 January
2020~23 October 2020

3

Case 8 20 January 2020~13 August 2020 Case 18 20 January
2020~25 October 2020

Case 9 20 January 2020~14 August 2020 Case 19 20 January
2020~26 October 2020

Case 10 20 January 2020~15 August 2020 Recent Case 20 January
2020~27 October 2020

2.3. Time Series

In the autoregressive (AR) model, the partial autocorrelation coefficient (PAC) had a
significant spike, and the autocorrelation coefficient (AC) decreased in sequence. In this
case, the order of AR (p) is determined based on the number of significant spikes of the
PAC. The formula for the AR (p) model is as follows:

Yt = εt + α1Yt−1 + α2Yt−2 + · · ·αpYt−p (2)
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Unlike AR, in the moving average (MA) model, the AC has a significant spike.
The PAC decreases in sequence, and the order q of the MA model is determined based on
the number of significant spikes of the AC. The formula for the MA (q) model is as follows:

Yt = εt − β1εt−1 − β2εt−2 − · · ·βqεt−q (3)

The autoregressive moving average (ARMA) model shows a form of sequentially
decreasing in both the AC and the PAC. The formula is as follows:

Yt = α1Yt−1 + α2Yt−2 + · · ·αpYt−p + εt − β1εt−1 − β2εt−2 − · · ·βqεt−q (4)

where εt is called the error or white noise. The εt is assumed to be independently normal
distribution. The ARIMA model converts a non-stationary time series data into a stationary
time series that is expressed as ARIMA (p,d,q), where p is the order of the AR model,
d is the differencing order, and q is the order of the MA model. For example, AR (1) is
equivalent to ARIMA (1,0,0), and MA (2) is equivalent to ARIMA (0,0,2).

There is no clear trend in the stationary time series, and the average and variance
are constant over time. In the case of a known time series analysis model, analysis is
possible when the data is in the form of time series data that shows normality without
trend or seasonality. In the case of data having a long period, a trend with a sudden and
unpredictable change in direction, or data showing seasonality, the analysis is conducted
after making the data in the form of a stationary time series through the difference using
the difference between observed values. To check whether it is a normal time series or
a non-stationary time series, check through a sequence chart or ACF (auto correlation
function) [35].

This paper dealt only with the ARIMA (p,2,q) model. In general, a non-stationary
time series becomes a stationary time series by a first or second differencing. In the data
of this study, when the difference was 0 or 1, the sequence chart had an inconsistent form
of mean and variance, and it can be seen that the ACF had an abnormal time series in the
form of slowly decreasing. When the difference was 2, the mean and variance appeared in
a certain form, indicating that the time series was normal.

When d = 1, the cumulative number of confirmed cases predicted by the ARIMA
model, gradually decreased or showed a negative value, which is a contradiction. However,
when d = 2, the predicted value of the cumulative cases increased stably, so the ARIMA
(p,2,q) model was used.

2.4. Criteria for the Comparion of Goodness-of-Fit

To compare the goodness-of-fit by ARIMA for each case, the following four criteria
were used:

First, root mean square error (RMSE) is as follows:

RMSE =

√
1
n

n

∑
t=1

et2 (5)

Second, mean absolute error (MAE) is as follows:

MAE =
1
n

n

∑
t=1
|et

2| (6)

Third, mean absolute percentage error (MAPE) is as follows:

MAPE =
100
n

n

∑
t=1

et
2 (7)
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Finally, the sum of square error (SSE) is as follows:

SSE =
(n+1)+14

∑
t=n+1

(
Yt − Ŷt

)2 (8)

Here, et is the difference (error) between the actual cumulative number of cases Yt
and the predicted value Ŷt of the ARIMA model at time t. Additionally, n is the length of
time t. The SSE was calculated as the difference between the predicted values and the data
for 14 days—two weeks from the end of the truncated case. The smaller the values of all
four criteria mentioned above, the better the fit, relative to other models.

3. Results

For the data set, the time series method was applied to compare the criteria of each
section using SPSS 25 (IBM, Armonk, NY, USA). The ARIMA (p,d,q) models were fitted
p = 0, 1, . . . , 5, d = 2, q = 0, 1, . . . , 5 for 19 cases, with 684 models to be compared. Among
them, only the top six models of each case were selected based on the RMSE.

3.1. Prediction of Cumulative Confirmed Cases of COVID-19 by Group and Case Using ARIMA
3.1.1. Comparison of Goodness-of-Fit by Group and Case

Tables 3–7 show the fitting ARIMA models and criteria for groups and cases, and sorts
by RMSE (in ascending order).

Table 3. Results of auto regressive integrated moving average (ARIMA) models for Group 1 (Case 1–4).

Case Model RMSE MAPE MAE

1

ARIMA (5,2,5) 41.181 279.699 21.819

ARIMA (5,2,3) 43.399 248.562 24.118

ARIMA (5,2,4) 43.842 245.299 23.871

ARIMA (5,2,2) 43.898 210.373 23.854

ARIMA (3,2,3) 44.380 170.642 22.634

ARIMA (4,2,2) 44.985 186.538 25.879

2

ARIMA (5,2,5) 41.618 280.246 22.416

ARIMA (5,2,4) 42.445 264.567 23.586

ARIMA (4,2,5) 43.134 185.019 23.488

ARIMA (5,2,3) 43.212 233.869 24.876

ARIMA (4,2,4) 43.358 197.110 25.585

ARIMA (4,2,2) 44.134 180.253 25.783

3

ARIMA (5,2,5) 49.641 162.569 25.548

ARIMA (5,2,4) 53.291 185.799 28.713

ARIMA (5,2,3) 53.474 185.343 29.178

ARIMA (4,2,3) 53.571 197.765 31.706

ARIMA (4,2,4) 54.185 196.412 31.613

ARIMA (5,2,1) 56.478 200.521 33.533

4

ARIMA (5,2,5) 49.869 149.950 25.762

ARIMA (5,2,2) 52.173 177.074 29.535

ARIMA (5,2,4) 52.491 172.811 28.209

ARIMA (5,2,3) 52.593 177.511 28.595

ARIMA (4,2,4) 53.320 191.480 30.849

ARIMA (4,2,3) 53.340 184.271 30.593
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Table 4. Results of ARIMA models for Group 2 (case 5–7).

Case Model RMSE MAPE MAE

5

ARIMA (2,2,5) 56.172 5.963 27.920

ARIMA (5,2,5) 56.428 5.968 27.800

ARIMA (3,2,5) 56.471 5.885 28.122

ARIMA (4,2,5) 56.711 5.965 28.064

ARIMA (5,2,3) 56.901 5.805 28.879

ARIMA (1,2,5) 57.573 5.741 29.995

6

ARIMA (2,2,5) 55.895 5.719 27.720

ARIMA (5,2,5) 56.147 5.748 27.637

ARIMA (3,2,5) 56.185 5.668 27.886

ARIMA (4,2,5) 56.424 5.708 27.934

ARIMA (5,2,3) 56.589 5.737 28.651

ARIMA (1,2,5) 57.283 5.719 29.760

7

ARIMA (2,2,5) 55.629 5.656 27.576

ARIMA (5,2,5) 55.856 5.705 27.451

ARIMA (3,2,5) 55.911 5.697 27.726

ARIMA (4,2,5) 56.074 5.880 27.739

ARIMA (5,2,3) 56.314 5.772 28.552

ARIMA (1,2,5) 57.000 5.821 29.559

Table 5. Results of ARIMA models for Group 3 (case 8–10).

Case Model RMSE MAPE MAE

8

ARIMA (2,2,5) 41.712 3.338 21.422

ARIMA (3,2,5) 41.842 3.324 21.452

ARIMA (5,2,4) 41.908 3.357 21.539

ARIMA (5,2,3) 42.149 3.332 21.863

ARIMA (1,2,5) 42.659 3.443 22.016

ARIMA (4,2,5) 43.019 3.400 21.602

9

ARIMA (2,2,5) 41.912 3.826 21.639

ARIMA (3,2,5) 41.948 3.929 21.489

ARIMA (5,2,3) 42.327 3.750 21.909

ARIMA (5,2,4) 42.670 3.789 22.007

ARIMA (1,2,5) 42.830 3.941 22.299

ARIMA (4,2,5) 43.182 3.658 21.863

10

ARIMA (2,2,5) 42.796 5.012 22.084

ARIMA (4,2,5) 42.953 4.557 22.098

ARIMA (5,2,4) 42.961 4.570 22.007

ARIMA (5,2,3) 43.140 5.146 22.399

ARIMA (1,2,5) 43.640 5.178 22.863

ARIMA (2,2,3) 44.011 4.337 22.637
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Table 6. Results of ARIMA models for Group 4 (case 11–14).

Case Model RMSE MAPE MAE

11

ARIMA (5,2,5) 44.253 5.333 23.426

ARIMA (3,2,5) 44.313 5.304 23.198

ARIMA (4,2,5) 44.417 5.334 23.291

ARIMA (2,2,5) 44.558 5.417 23.484

ARIMA (5,2,3) 44.904 5.330 23.665

ARIMA (5,2,4) 45.051 5.390 23.746

12

ARIMA (3,2,5) 44.405 4.711 23.263

ARIMA (4,2,5) 44.476 4.797 23.207

ARIMA (2,2,5) 44.643 4.866 23.504

ARIMA (5,2,3) 45.015 4.755 23.653

ARIMA (5,2,4) 45.314 4.626 23.801

ARIMA (1,2,5) 45.397 4.467 23.848

13

ARIMA (3,2,5) 44.471 4.190 23.417

ARIMA (4,2,5) 44.536 4.313 23.344

ARIMA (2,2,5) 44.675 4.372 23.506

ARIMA (5,2,4) 44.779 4.452 23.463

ARIMA (5,2,5) 44.798 4.352 23.527

ARIMA (4,2,4) 44.867 4.352 23.050

14

ARIMA (3,2,5) 44.449 3.845 23.491

ARIMA (4,2,5) 44.484 4.056 23.391

ARIMA (5,2,4) 44.707 4.247 23.410

ARIMA (5,2,5) 44.714 4.188 23.457

ARIMA (4,2,4) 44.773 4.242 22.997

ARIMA (5,2,3) 44.941 4.116 23.740

Table 7. Results of ARIMA models for Group 5 (case 15–19).

Case Model RMSE MAPE MAE

15

ARIMA (3,2,5) 41.744 2.511 23.107

ARIMA (4,2,5) 41.811 2.513 23.150

ARIMA (2,2,5) 41.892 2.495 23.300

ARIMA (5,2,3) 42.234 2.524 23.307

ARIMA (5,2,4) 42.308 2.536 23.433

ARIMA (1,2,5) 42.622 2.509 23.948

16

ARIMA (4,2,5) 41.852 2.647 23.268

ARIMA (2,2,5) 41.932 2.624 23.408

ARIMA (5,2,3) 42.285 2.636 23.714

ARIMA (5,2,4) 42.319 2.651 23.534

ARIMA (1,2,5) 42.631 2.628 24.053

ARIMA (4,2,4) 42.779 2.609 23.730
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Table 7. Cont.

Case Model RMSE MAPE MAE

17

ARIMA (3,2,5) 41.957 2.429 23.375

ARIMA (4,2,5) 42.030 2.428 23.410

ARIMA (2,2,5) 42.100 2.419 23.532

ARIMA (5,2,3) 42.416 2.432 23.727

ARIMA (1,2,5) 42.782 2.414 24.175

ARIMA (4,2,4) 42.892 2.458 23.869

18

ARIMA (3,2,5) 41.938 2.444 23.457

ARIMA (2,2,5) 42.072 2.449 23.619

ARIMA (5,2,4) 42.349 2.489 23.824

ARIMA (5,2,3) 42.366 2.472 23.791

ARIMA (5,2,5) 42.390 2.498 23.826

ARIMA (1,2,5) 42.714 2.447 24.212

19

ARIMA (3,2,5) 41.871 2.392 23.431

ARIMA (4,2,5) 41.940 2.391 23.491

ARIMA (2,2,5) 42.005 2.397 23.589

ARIMA (5,2,2) 42.278 2.386 23.846

ARIMA (5,2,3) 42.319 2.398 23.796

ARIMA (5,2,5) 42.401 2.394 23.943

As can be seen in Table 3, in case 1, the RMSE of ARIMA (5,2,5) was 41.181, which was
closer to the actual data than other models. In addition, the MAE of the model was 21.819,
which was the smallest of all models. The MAPE of ARIMA (3,2,3) was 170.642, which
was the smallest among case 1. In case 2, the RMSE and MAE of ARIMA (5,2,5) were the
smallest. Based on MAPE, the value of ARIMA (4,2,2) was the closest to the actual data.
In Cases 3 and 4, all criteria of ARIMA (5,2,5) appeared to be predictive models with the
best descriptive.

As can be seen in Table 4, in case 5, the RMSE of ARIMA (2,2,5) was 56.172, which was
the smallest among case 5. Based on MAPE, the value of ARIMA (1,2,5) was 5.741, which
was the smallest. The MAE of ARIMA (5,2,5) was 27.800, which was the smallest. In case
6, based on the RMSE, the value of ARIMA (2,2,5) was 55.895, which was the smallest.
The MAPE of ARIMA (3,2,5) was 5.668, which appeared to be a predictive model with the
best descriptive. The MAE of ARIMA (5,2,5) was 27.637, which was the smallest. In case 7,
the RMSE and MAPE of ARIMA (2,2,5) were the closest among case 7, and the MAE of
ARIMA (5,2,5) was the smallest of all the models.

As can be seen in Table 5, in case 8, the RMSE and MAE of ARIMA (2,2,5) were the
closest among case 8. The MAPE of ARIMA (3,2,5) was 3.324, which was the smallest
among the other models. In case 9, the RMSE of ARIMA (2,2,5), the MAPE of ARIMA
(4,2,5), and the MAE of ARIMA (3,2,5) were 41.912, 3.658, and 21.489, which were the closest
to the actual data in comparison to the other models. In case 10, the RMSE of ARIMA (2,2,5)
was 42.796, which was the closest to the others. The MAPE of ARIMA (2,2,3) and the MAE
of ARIMA (5,2,4) appeared to be predictive models with the best goodness-of-fit.

As can be seen in Table 6, in case 11, the RMSE of ARIMA (5,2,5) was 44.253, which was
closer to the actual data than the other models. Based on the MAPE and MAE, the values
of ARIMA (3,2,5) were the closest among case 11. In case 12, the RMSE of ARIMA (3,2,5)
was 44.405, which appeared to be the best predictive value. The MAPE of ARIMA (1,2,5)
was 4.467, which was the smallest. The MAE of ARIMA (4,2,5) was 23.207, which was the
closest to the others. In cases 13 and 14, the RMSE and MAPE of ARIMA (3,2,5) provided
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the best fit. Based on MAE, ARIMA (4,2,4) appeared to be a predictive model with the
best fit.

As can be seen in Table 7, in case 15, the RMSE and MAE of ARIMA (3,2,5) provided
the best fit. The MAPE of ARIMA (2,2,5) was 2.495, which was closer to the actual data
than the other models. In case 16, the RMSE and MAE of ARIMA (4,2,5) provided the best
fit. The MAPE of ARIMA (4,2,4) was 2.609, which predicted significantly better results than
the others. In case 17, as in case 15, the RMSE and MAE of ARIMA (3,2,5) show the best
fit. The MAPE of ARIMA (1,2,5) was the smallest. In case 18, all criteria of ARIMA (3,2,5)
provided the best fit among the other models. In case 19, as in case 15, the RMSE and MAE
of ARIMA (3,2,5) were predictive with the best fit. The MAPE of ARIMA (5,2,2) was 2.386,
which was the closest to the actual data.

3.1.2. Comparison of Predictive Value by Group and Case

Table 8 describes the results of the ARIMA models for each group and case, based on
SSE. Here, note means the time interval, including the variability (maximum, minimum,
and high variability of the point at which more than 100 confirmed cases began to appear),
elapsed from the base date of each group.

Table 8. Results of ARIMA models for each group and case based on SSE.

Group Case Model SSE Rank of SSE Note

1

2 ARIMA (4,2,5) 138,245,907 1

∆t =
2, 3, 4, le 3 the 2nd and 3rd wavesmicit101010101010101010101010101010

10101010101010101010101010101010101010101010101010101010101010101
0101010101010101010101010101010101010101010101010101010101010101

01010101010101010101010101010

4 ARIMA (5,2,5) 159,104,779 2 ∆t = 6, 7

3 ARIMA (5,2,5) 195,270,591 3 ∆t = 4, 5

3 ARIMA (5,2,4) 273,033,961 4 ∆t = 4, 5

4 ARIMA (5,2,4) 311,756,668 5 ∆t = 6, 7

2

7 ARIMA (5,2,5) 21,750 1 ∆t = 5

5 ARIMA (5,2,5) 978,159 2 ∆t = 1, 2, 7

6 ARIMA (5,2,5) 182,580,231 3 ∆t = 3, 4, 6, 7

6 ARIMA (1,2,5) 250,929,996 4 ∆t = 3, 4, 6, 7

5 ARIMA (4,2,5) 282,621,031 5 ∆t = 1, 2, 7

3

10 ARIMA (1,2,5) 16,973,894 1 ∆t = 4, 5, 6, 7

9 ARIMA (4,2,5) 28,752,738 2 ∆t = 2, 3

9 ARIMA (5,2,3) 311,216,609 3 ∆t = 2, 3

8 ARIMA (5,2,3) 360,558,068 4 ∆t = 1

8 ARIMA (5,2,4) 948,734,643 5 ∆t = 1

4

14 ARIMA (4,2,5) 26,281,173 1 ∆t = 5

14 ARIMA (5,2,3) 30,701,687 2 ∆t = 5

12 ARIMA (5,2,3) 39,839,429 3 ∆t = 2, 6, 7

12 ARIMA (4,2,5) 43,645,283 4 ∆t = 2, 6, 7

11 ARIMA (5,2,3) 47,148,618 5 ∆t = 1

5

17 ARIMA (2,2,5) 45,812 1 ∆t = 5

18 ARIMA (3,2,5) 48,181 2 ∆t = 6

19 ARIMA (3,2,5) 64,905 3 ∆t = 7

15 ARIMA (1,2,5) 397,393 4 ∆t = 1, 2

19 ARIMA (2,2,5) 2,161,447 5 ∆t = 7

As can be seen in Table 8, in Group 1, the SSE of ARIMA (4,2,5) for case 2 was
138,245,907, which was significantly smaller than the others. In Group 2, the SSE of ARIMA
(5,2,5) for case 7 was 21,750, which was the smallest. The SSE of ARIMA (1,2,5) for case
10 in Group 3, ARIMA (4,2,5) for case 14 in Group 4, and ARIMA (2,2,5) for case 17 in
Group 5 were the closest to actual data compared to the other models in the same group.
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We confirmed that the analysis should be performed taking into account the time interval
of the last five days or more, including the maximum, minimum, and high variability
(when more than 100 confirmed cases started to appear).

For reference, it was confirmed that the analysis should be performed taking into
account the time interval of the last five days or more, including the maximum, minimum,
and high degeneration (when more than 100 confirmed cases started to appear).

Note the consideration of the maximum, minimum, and expensive modification, (a
confirmed case is the time more than 100 people begin to appear) over the last five days,
confirmed that this analysis should be done.

Based on the note above, ∆t of the best model in Group 1 was 2, 3, and 4, a period that
was the initial period of the COVID-19 outbreak. Thus, its data was small; ∆t was smaller
than other groups. In Groups 2, 4, and 5, the values of the best models for each group were
5. In Group 3, ∆t of the best model was 4, 5, 6, and 7 and the minimum was 4. That is,
we found that the best prediction in Group 3 was to analyze it using the data up to the
point of high variability (minimum and maximum) over four days. Except for Group 1,
which was unstable due to low data, the remaining groups were required to predict using
the data up to the point of high variability (minimum and maximum) for the last five days.

3.2. Results of Fitting and Forecasting for the Latest Period Using ARIMA

The ARIMA model was fitted to the data set of confirmed COVID-19 cases, including
the data set from the latest period of the third wave outbreak (up to 27 December 2020).
As in Section 3.1.1, ARIMA (p,d,q) models were fitted p = 0, 1, . . . , 5, d = 2, q = 0, 1, . . . ,
5 for 19 cases. Table 9 lists the top 10 based on the RMSE among the fitted ARIMA models.

Table 9. Criteria of confirmed cases according to ARIMA.

Model RMSE MAPE MAE

ARIMA (3,2,5) 53.031 4.190 29.780

ARIMA (5,2,4) 53.323 4.216 29.925

ARIMA (2,2,5) 53.333 4.449 30.232

ARIMA (5,2,3) 53.591 4.120 30.061

ARIMA (4,2,3) 54.150 4.914 30.567

ARIMA (4,2,4) 54.177 4.811 30.602

ARIMA (5,2,5) 54.638 4.296 30.976

ARIMA (1,2,5) 54.680 3.860 30.569

ARIMA (3,2,4) 55.385 4.568 31.593

ARIMA (0,2,5) 55.621 4.609 30.879

Based on the RMSE, ARIMA (3,2,5) provides the best fit, the value was 53.031. Ad-
ditionally, the MAE of the model was 29.780, the closest to actual model than others.
Compared to other models based on MAPE, the value of ARIMA (1,2,5) was 3.860, ap-
peared to be the best predictive model. The model with the least SSE in each group in
Table 8 also had smaller RMSE, MAPE, and MAE values compared to cases in the same
group. Therefore, we estimated the predicted values and 95% confidence intervals over the
next 14 days for the best models, ARIMA (3,2,5) and ARIMA (1,2,5) based on three criteria.

Table 10 shows the predicted values, UCL (upper confidence limit), and LCL (lower
confidence limit). According to Table 10, the number of cumulative confirmed cases for
the next 14 days might be 58,532–70,389 in ARIMA (3,2,5), and 58,533–69,877 in ARIMA
(1,2,5). Figures 3 and 4 show the predicted values, 95% confidence intervals, and actual
data values for each model.
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Table 10. Prediction of cumulative confirmed cases according to the best models with 95% confidence interval.

Date Real Data
Based on RMSE and MAE

ARIMA (3,2,5)
Based on MAPE
ARIMA (1,2,5)

Forecast UCL LCL Forecast UCL LCL
28 December 2020 58,714 58,532 58,636 58,427 58,533 58,640 58,425
29 December 2020 59,764 59,456 59,668 59,243 59,477 59,697 59,256
30 December 2020 60,731 60,428 60,756 60,101 60,417 60,755 60,079
31 December 2020 61,758 61,448 61,912 60,984 61,358 61,832 60,883

1 January 2021 62,578 62,432 63,046 61,818 62,248 62,875 61,622
2 January 2021 63,235 63,327 64,106 62,547 63,113 63,920 62,306
3 January 2021 64,255 64,153 65,125 63,180 63,964 64,983 62,945
4 January 2021 64,969 64,975 66,175 63,775 64,809 66,070 63,548
5 January 2021 65,807 65,847 67,308 64,386 65,651 67,181 64,121
6 January 2021 66,676 66,770 68,515 65,025 66,493 68,318 64,669
7 January 2021 67,350 67,710 69,752 65,667 67,336 69,477 65,195
8 January 2021 67,991 68,628 70,978 66,278 68,181 70,660 65,702
9 January 2021 68,648 69,515 72,185 66,845 69,028 71,864 66,192
10 January 2021 69,099 70,389 73,394 67,384 69,877 73,088 66,665Healthcare 2021, 9, x  14  of  17 
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Figure 4. Time-series plot for the best ARIMA (1,2,5).

4. Discussion

In Section 3, we used ARIMA to compare the criteria of each case using data sets from
Korea. The period between 20 January to 26 October 2020 was divided into five based
on (1) peak of the first wave; (2) the day when the increase in confirmed cases is at its
minimum; (3) the day when the variability of the confirmed case is high before the peak
of the second wave; (4) peak of the second wave; and (5) the day when the variability of
the confirmed cases is high before the peak of the third wave. Tables 3–7 show the top six
results by comparing the goodness-of-fit of the ARIMA model for each group and case,
and Table 8 shows the top five results based on SSE to examine the predicted values.

In general, if the goodness-of-fit is high, the predicted value is thought to be high,
but the results were different. As can be seen from the note of the results in Table 8,
the SSE value of the ARIMA model derived using ∆t 5 was significantly lower than that of
other models.

It is recommended because it performs much better at predicting the number of
confirmed cases using data at each point in time of the time interval 5, i.e., the average data
of 5 days. By predicting the number of confirmed patients based on the results of analysis
at various points in time using empirical data analysis and the ARIMA model using it, it is
possible to preemptively respond to the variability (increase, decrease, rapid increase, etc.)
of the number of confirmed patients through daily updates.

Additionally, in Korea, since the case definition is clear and data collection is almost in
real time, the predictive power of the ARIMA model is relatively excellent and stable. There
were unpredictable events due to the blind spot, but the blind spot is expected to gradually
decrease due to the learning effect and preemptive examination on the similar exposure
pathway. In addition, they successfully conducted a blind test as a way to cope with the
phenomenon of avoiding tests due to social stigma, and there is a foundation for imposing
legal sanctions in case of false reports on the route of infection. Prediction through the
ARIMA model provides an important basis for KDCA to predict the necessary severe
disease constant and prepare it in advance. In Korea, the proportion of public medical
services is small, so the number of beds that can treat critically ill patients is limited. This is
because it takes time to secure the number of severe illnesses by seeking cooperation from
the private medical field. The accuracy of the prediction model is expected to improve as
data is accumulated. However, there is a need for a model that can reflect the effects of
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external factors such as the effect of policy measures such as adjustment of the quarantine
stage and the influx of mutant viruses.

5. Conclusions

This study aimed to suggest an appropriate prediction time point to significantly
predict the number of confirmed cases. To significantly predict the number of confirmed
COVID-19 cases in Korea, we proposed it should be analyzed and predicted using data
at each point in time of the time interval 5, i.e., the average data of 5 days. Forecasting
at this time can clearly confirm whether the number of cases will increase or decrease in
the future.

The ARIMA model was fitted using the most recent data in progress for the third
wave. As a result of predicting the number of cumulative confirmed cases for the next
14 days based on the best models of each criterion, the number of cumulative confirmed
cases by the beginning of next year was expected to reach 70,000. Currently, Korea has a
shortage of hospital beds. The results are expected to effectively estimate at the point the
number of beds required by predicting variability (decrease and, increase) and the number
of confirmed cases. In addition, this study is expected to help the government and Korea
Disease Control and Prevention Agency (KDCA) to respond systematically to a future
surge in confirmed cases.

However, it is difficult to accurately predict the changing cases, because various
factors affect the increase in the number of confirmed cases. Furthermore, the influence
of mass inflection is large. Therefore, it is necessary to study various techniques, such as
reinforcement of machine learning, modeling research based on deep learning, and the
application of prediction algorithms.
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