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Abstract: In ECG applications, the correct recognition of R-peaks is extremely important for detecting
abnormalities, such as arrhythmia and ventricular hypertrophy. In this work, a novel ECG enhance-
ment and R-peak detection method based on window variability is presented, and abbreviated as
SQRS. Firstly, the ECG signal corrupted by various high or low-frequency noises is denoised by
moving-average filtering. Secondly, the window variance transform technique is used to enhance the
QRS complex and suppress the other components in the ECG, such as P/T waves and noise. Finally,
the signal, converted by window variance transform, is applied to generate the R-peaks candidates,
and the decision rules, including amplitude and kurtosis adaptive thresholds, are applied to deter-
mine the R-peaks. A special squared window variance transform (SWVT) is proposed to measure the
signal variability in a certain time window, and this technique reduces false detection rate caused by
the various types of interference presented in ECG signals. For the MIT-BIH arrhythmia database,
the sensitivity of R-peak detection can reach 99.6% using the proposed method.

Keywords: ECG; enhancement; R-peaks; squared window variance transform (SWVT);
adaptive thresholds

1. Introduction

The electrocardiogram (ECG) is a random and unstable signal that records the electrical
activity of the heart, and the ECG signals obtained in different environments and from
individuals are significantly different. The P wave, QRS complex and T wave are the main
components in the ECG waveform (see Figure 1) [1], and the accurate detection of them
is important to ECG signal analysis. The QRS complex is the dominant feature of the
ECG signal and its accurate detection is an important issue in many clinical conditions [2];
for example, the RR interval is used for heart rate measurement and diagnosis of several
abnormalities—ventricular hypertrophy [3], conduction abnormalities [4], etc.

The detection of the QRS complex is the first step in all kinds of automatic feature
extractions for ECG signals [5]. Unluckily, there are great challenges for automated de-
tection because the morphologies and amplitudes of many normal QRS complexes are
like the abnormal QRS complexes. The superimposed noise in the ECG signal makes this
problem more severe. Furthermore, the P/T waves with higher amplitude can interfere
with the detection of the QRS complex. Therefore, the first step of R-peak detection is signal
denoising, and then the QRS complexes are enhanced and detected.

Many denoising methods [6–13] for ECG signals have been proposed, including
digital filtering [14], morphological filtering [15,16] and decomposition-based denoising
methods [13,17,18]. Among them, the digital filters are widely used to remove the noise of a
certain frequency range because of their simplicity and efficiency; morphological filters [16]
are often used to smooth the ECG signal, but the size and shape is hard to determine;
decomposition-based denoising methods such as wavelet transform [16] and empirical
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mode decomposition (EMD) [17] methods decompose the signal into a series of modes and
set some modes to 0 to remove noise. Thus, most of the noises can be well addressed by
the methods mentioned above.

Figure 1. The main waveform in an ECG signal. P wave—Indicates atrial depolarization, or con-
traction of the atrium; QRS complex—Indicates ventricular depolarization, or contraction of the
ventricles; T wave—Indicates ventricular repolarization.

For QRS detection, most QRS detection methods [19–23] are researched based on
the three steps—denoising, QRS complex enhancement and decision rule creation. The
stages of QRS complex enhancement and decision rule creation are different and result
better or worse results. In [24], the Pan-Tompkins algorithm was proposed for R-peak
detection, which includes five steps, namely, band-pass filtering, derivation, squaring,
moving-window integration and adjustment of thresholds. In [25], the wavelet transforms
(WT) for detecting QRS complexes is proposed, in which the multiscale feature of WT
is used to distinguish QRS complexs from P/T waves or noise. In [26], an EMD-based
method for QRS detection was proposed; unlike the wavelet methods, the EMD methods
have overcome their mode-mixing problem, having emerged as powerful time-frequency
decomposition tools. However, the preprocesses of the above methods need to be carefully
designed, and multiple nonlinear transform techniques are necessary to enhance the
QRS complex.

In the proposed method, the noisy signal is first denoised by moving-average filtering,
and it can be easily replaced by other denoising methods. In the stage of ECG enhancement,
multiple methods were usually employed at the same time for the most studies; however,
the proposed window variance transform technique is very effective for highlighting R-
peaks and suppressing P/T waves and noise in the ECG signal, and all R-peaks candidates
can be well identified. Even if additional techniques are added, the candidates will not
be greatly improved. Hence, it is sufficient to use only window variance transform for
signal enhancement. Furthermore, two adaptive thresholds related to amplitude and
kurtosis are computed for recognizing the locations of R-waves. The experimental results
demonstrate that the proposed QRS detection method can accurately locate the R-wave
positions. The main contributions of this paper are as follows: (1) A novel QRS detection
method is proposed to accurately locate the positions of the R-waves. (2) An efficient
QRS-enhancement technique is designed.

This paper is organized as follows. In Section 2, we give a brief introduction of the
proposed method. In Section 3, we show and discuss the experimental results of the
proposed algorithm, in which the evaluation of algorithm is accomplished with the ECG
data from the MIT/BIH arrhythmia database. Concluding remarks are given in Section 4.

2. Materials and Methods
2.1. Data

The MIT-BIH database [27] contains 48 ECG records; each record contains 30 min and
was sampled at 360 Hz. There are two leads in each record and the first lead was used in
the experiment. Locations of R-peaks have been annotated by two or more cardiologists
independently for all records.
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2.2. Overview of the Algorithms

The proposed method for R-peak detection is divided into three stages, including
noise removal, ECG enhancement and decision rules. Those stages are illustrated in
Figure 2. In the proposed method, the ECG enhancement stage plays the most critical role;
it highlights the QRS complex and suppresses the other components in the ECG signal. A
brief description of each stage in Figure 2 is presented in the following subsections.

Enhanced signal

ECG signal

Step 1: Noise removal
Moving average filtering

Denoised signal

Step 2: Signal enhancement
local peaks

wvt
window signal

WVT

enhanced signal
squaring

Step 3: R-peaks detection
SWVT

adaptive threshold

R-peaks candidates

decision rules

R-peaks
decision 
  rules

amplitude
kurtosis

RR interval

Noisy signal

Denoised signal

 R-peaks

Figure 2. Flowchart of the proposed method. WVT—window variance transform signal.

2.2.1. Noise Removal

Since the signal is often corrupted by various noise—such as the high-frequency noise,
baseline wander noise and artifacts—in this section, to maintain the original morphological
features of the ECG signal, the moving average filtering is applied to smooth noise, and
the formula of moving average filters can be described as follows:

y′n=
1
M

M

∑
m=1

(yn−m) (1)

where yi and y′i represent the amplitudes of the ith sample in the original ECG signal and
denoised signal, respectively; M represents the filter length, which is set to 5 samples.
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2.2.2. ECG Enhancement

In this section, a novel ECG enhancement technique called window variance transform
is proposed. The variance of an signal segment is used to highlight all R-peaks and suppress
the other components. The proposed squared window variance transform (SWVT) is
summarized as follows:

1. Non-overlapping window
Local peaks P = [p1, p2, . . . , pN ] are first detected using the denoised signal. Then,
P is applied to generate an non-overlapping window N, WP = [wp1 , wp2 , . . . , wpN ],
and the ith window is determined by using wpi = [pi − w/2, pi + w/2], where w
is the window size. To avoid including multiple waveforms in one window, the
minimum width of wave T is used as a reference to set the range of w from 40 to
60 ms. Next, for the non-peak samples between two peaks, they are divided into
M non-overlapping windows: WNP = [wnp1 , wnp2 , . . . , wnpM ]; the window size is
2 ∗ w. Finally, the WP and WNP are merged to generate the N + M non-overlapping
windows W = [w1, w2, . . . , wN+M].

2. Window variance transform
To detect the R-peaks, the window variance transform is used to enhance the QRS com-
plexes; that is, the denoised signal is transformed to the WVT = [vi, v2, . . . , vN+M], in
which

vj =
1
lj

lj

∑
t=0

(y′t − µj)
2 (2)

where j = [1, 2, . . . , N + M] are the indexes of windows; lj is the number of samples
in jth window; µj is the amplitude mean of the jth window samples.

3. Squaring
To further enhance the QRS complexes, the squaring operator is applied in the WVT,
that is, the squared window variance transform (SWVT) is described as follows:

SWVT = [v2
1, v2

2, . . . , v2
N+M] (3)

As shown in Figures 3 and 4, the result of SWVT significantly suppressed the effect of
the P/T wave and enhanced the QRS complex. From Figure 4, it can be seen that SWVT
is also beneficial for the an ECG signal with inverse R peaks. Thus, the proposed QRS
complex enhancement technique is reasonable for R-peak detection.

Figure 3. Comparison of original signal and the transformed signals, (a) Original signal of 104 from
MIT-BIH database. (b) WVT—window variance transform signal. (c) SWVT—squared window
variance transform signal.
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Figure 4. Comparison of original signal and the transformed signals, (a) Original signal of 207 from
MIT-BIH database. (b) WVT—window variance transform signal. (c) SWVT—squared window
variance transform signal.

2.2.3. R-Peak Detection

Due to R-peaks being different from other waveforms in terms of morphology and
amplitude, most existing detection methods use amplitude thresholds for R-peak detection,
which is less robust to noisy signals. However, QRS complexes usually have significant
differences in amplitude and kurtosis compared with those of the other waveforms in ECG
signals; thus, the amplitude and kurtosis thresholds are applied for R-peak detection. The
detailed achievement is described as follows:

1. Generation of the R-peaks candidate set
The transformed signal SWVT not only highlights the R-waves but also sup-

presses the P/T waves, and the screening of the R-peaks candidate set can be com-
pleted by setting the amplitude threshold. Considering that the R-peaks which are
disturbed by noise may have lower amplitudes during the transformation, the 90th
percentile of SWVT and the mean of SWVT are applied to balance the amplitude
threshold Tc; that is,

Tc = 0.5 ∗ (0.75 ∗ per(SWVT,90) + 0.25 ∗ µSWVT) (4)

where per(SWVT,90) and µSWVT = 1
N+M ∑N+M

t=0 SWVTt are the 90th percentile value
and the mean value of SWVT, respectively; Tc denotes the positive threshold deter-
mining the transformed amplitude of candidate selection.

Then the amplitude threshold Tc is used for the extraction of R-peak candidates
set Sc:

Sc = {wj|vj > Tc, j = 1, 2, 3, . . . , N + M} (5)

2. Generation of the R-peaks with decision rules
(1) Adjusting the RR interval: the RR interval is another important feature of

R-peaks. In this study, the RR interval is determined by two RR interval averages.
One is the average of the eight most-recent beats RRrecent; the other is the average of
the detected R-peaks, RRall—that is,

RR = 0.75 ∗ RRrecent + 0.25 ∗ RRall (6)

For the first RR interval, the lower limit of the RR interval and the higher limit
of the RR interval are set to 200 and 360 ms, respectively. However, for irregular
heart rates, if an R peak is not found during the interval specified by the 1.66 ∗ RR, a
search-back technique is necessary to look back in time for the R peak.
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(2) Adjusting the thresholds: To better detect the R-peaks, the amplitude and
kurtosis thresholds Ta and Tk are automatically adjusted to float over R-peak candidate
points and detected R-peaks.

Ta = 0.75 ∗ (α ∗ PERAc + (1− α) ∗MEANAR) (7)

Tk = 0.75 ∗ (α ∗ PERKc + (1− α) ∗MEANKR) (8)

where PERAc and PERKc are the 90th percentile values of the amplitude and kurtosis
in the candidate set Sc, respectively. Similarly, MEANAR and MEANKR are mean
values of the amplitude and kurtosis in the peak set SR, respectively. α is a hyperpa-
rameter, and it is used to control the weight of R-wave amplitude and kurtosis for
adjusting thresholds.

For irregular heart rates, the lower Ta and Tk are needed for back searching for
missing R-peaks; hence, two thresholds are reduced by half to avoid missing beats:

Ta ← 0.5 ∗ Ta (9)

Tk ← 0.5 ∗ Tk (10)

(3) Generation of the R-peaks: according to the thresholds aforementioned, we
designed some decision rules to generate the R peaks SR. For each of the peak in Sc, if
an RR interval is between 0.92 ∗ RR and 1.16 ∗ RR, a judgment is made to determine
whether the current peak is the R peak; the decision rules can be described as follows:

SR = {SCl |y
′
Cl

> Ta and kCl > Tk l = 1, 2, . . . , L} (11)

0.92 ∗ RR < SCl − SRlast < 1.16 ∗ RR (12)

where Cl and y′Cl
represent the lth candidate peak and the amplitude of the lth candi-

date peak; kCl is the kurtosis of the lth candidate peak; SRlast refers to the position of
the last R-peak in the current R-peaks set.

3. Results
3.1. Metrics for Performance Evaluation

In this study, three metrics were used to evaluate the performance of R-peak detection
in the simulation experiment, sensitivity (SEN), positive predicative value (PPV) and
cumulative statistical index (CSI) [28], which are described as follows.

SEN =
TP

TP + FN
∗ 100 (13)

PPV =
TP

TP + FP
∗ 100 (14)

CSI =
1
2
(SEN + PPV− FPR− FNR) ∗ 100 (15)

Fd =
FP + FN

TP+FN+FP
(16)

where TP, FN and FP represent true positive (correctly identified R peak), false negative
(missing R peak) and false positive (wrongly identified R peak), respectively. FPR is the
false positive rate FP/(FP + TP) and FNR is the false negative rate FN/(FN + TP). Fd
was employed to measure the detection error rate. Larger SEN, PPV and CSI values mean
better detection performance; meanwhile, a lower Fd is expected.

3.2. Experimental Data and Environment

In the experiment, 30 ECG records from the MIT-BIH arrhythmia database were
adopted to evaluate the effectiveness of the proposed R-peak detection method. The length
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of all signals was 30 min. The classic PT [24], XQRS [29] and RSlope [30] methods are
introduced for comparison. These methods were implemented with Python and Matlab,
and the parameters were set according to the original papers. All experimental results
were performed on Linux x86_64, Matlab: version R2018b and Python: version 3.7.6.

3.3. Detailed Accuracy of the MIT-BIH Database

In the first experiment, the R-peak detection results were derived with the proposed
method when applied to all 30 ECG signals from MIT-BIH dataset. In Table 1, the TP, FP,
FN, SEN, PPV and CSI of each record are listed. From Table 1, we find that both SEN and
PPV still show very high accuracy for most of the records. The proposed method did not
perform well in several records (114, 207, 208, 214, 228, 232), for which the SEN or PPV
were lower than 99%. In addition, the CSI values for most records were lower than 98%,
because some records showed higher FP and FN.

Table 1. Results of evaluation of proposed method on MIT-BIH database.

Record TP FP FN SEN (%) PPV (%) CSI (%)

100 2273 1 0 100 99.96 99.96
101 1863 3 2 99.89 99.84 99.73
102 2174 13 13 99.41 99.41 98.81
103 2084 0 0 100 100 100
107 2128 5 9 99.58 99.77 99.34
112 2539 0 0 100 100 100
113 1795 0 0 100 100 100
114 1875 118 4 99.79 94.08 93.87
115 1953 0 0 100 100 100
116 2385 1 27 98.88 99.96 98.84
117 1535 0 0 100 100 100
118 2278 0 0 100 100 100
119 1987 1 0 100 99.95 99.95
121 1859 4 4 99.79 99.79 99.57
122 2475 1 1 99.96 99.96 99.92
123 1518 0 0 100 100 100
124 1617 2 2 99.88 99.88 99.75
200 2598 1 3 99.88 99.96 99.85
202 2114 18 22 98.97 99.16 98.13
205 2639 0 17 99.36 100 99.36
207 1842 133 18 99.03 93.27 92.30
208 2893 5 62 97.90 99.83 97.73
209 3005 0 0 100 100 100
210 2607 2 43 98.38 99.92 98.30
212 2748 0 0 100 100 100
213 3243 5 8 99.75 99.85 99.60
214 2247 37 15 99.34 98.38 97.72
215 3357 2 6 99.82 99.94 99.76
217 2190 22 18 99.18 99.01 98.19
219 2148 1 6 99.72 99.95 99.67
220 2048 0 0 100 100 100
221 2419 4 8 99.67 99.83 99.51
222 2463 0 20 99.19 100.00 99.19
228 2034 29 19 99.07 98.59 97.67
230 2256 0 0 100 100 100
231 1571 0 0 100 100 100
232 1779 69 1 99.94 96.27 96.21
233 3072 5 7 99.77 99.84 99.61
234 2753 0 0 100 100 100

Total 88,364 482 335 99.65 99.39 99.03
TP—true positive (correctly identified R peak); FN—false negative (missing R peak); FP—false positive (wrongly
identified R peak); SEN—sensitivity; PPV—positive predicative value; CSI—cumulative statistical index.
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3.4. Accuracy Evaluation and Comparison

In the second experiment, the overall performance of the proposed method on MIT-
BIH database is shown in Table 2, which also contains three comparison results. In this
paper, the detected locations of R-peaks are very close to the reference locations, and some
R-peaks were shifted by less than 75 ms compared with the reference R peaks. It can be seen
from Table 2 that 99.03% of total beats can be detected correctly by the proposed method;
SEN and PPV were 99.65% and 99.39%, respectively. Moreover, the CSI of the proposed
method was higher than 99%—better than those of the methods used for comparison.

Table 2. Comparison of R-peak detection performance with some classic methods.

Method SEN PPV CSI

PT 99.04 99.38 98.49
RSlope 99.23 98.58 97.83
XQRS 99.19 99.21 98.41
SQRS 99.65 99.39 99.04

Note: SEN = Sensitivity, PPV = positive predicative value, CSI = cumulative statistical index.

Table 3 was drawn based on Table 2, which shows the FP and FN comparison results
among the four methods. In Table 3, the proposed method shows the least detection errors
among the four methods. It is worth noticing that there is a discrepancy between the
accuracy reported here and those reported in other methods [5,31]. This is possibly because
the different tolerances for counting a detection as a TP are set. In this study, the tolerance
is set to ±75 ms of the annotation. In a total of 88,699 beats, there were 482 and 335 beats
detected as FP and FN, respectively. Furthermore, the proposed method achieved the
minimum detection error of 0.92%. As the proposed method effectively suppressed the P/T
wave and noise in the stage of R-peak enhancement, the proposed method significantly
reduced the number of FN. Therefore, it is seen that the proposed method has better
detection than the other methods.

Table 3. The detection error accuracy comparison results among the four methods.

Method Total FP FN Fd

PT 88,699 512 (0.58%) 754 (0.85%) 1.43%
RSlope 88,699 1198 (1.35%) 721 (0.81%) 2.16%
XQRS 88,699 715 (0.81%) 807 (0.91%) 1.72%
SQRS 88,699 482 (0.54%) 335 (0.38%) 0.92%

Note: FP = correctly identified R-peaks, FN = missing R-peaks, Fd = error rate.

3.5. Visual Display of R-Peak Detection Results

Figure 5 presents an ECG segment with an obvious waveform distortion caused by
large baseline wander, and the R-peak detection results produced by different methods.
Compared with the reference labels, there are several obvious errors for PT, XQRS and
Rslope methods, which are marked by red rectangles and Xs. However, our method can
deal with this case very well. In other words, the proposed method effectively suppressed
the noise. Then, R-peak detection results were more carefully analyzed using record 208.
Figure 6 shows the original ECG signal from 15 to 30 s and the R-peaks locations detected by
different detectors. The proposed method can accurately detect the locations of all R-peaks;
however, the XQRS and R slope showed some missing R-peaks. This phenomenon may be
caused by irregular beats. Furthermore, XQRS demonstrates the worst performance for the
wide ectopic beats.
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Figure 5. The R-peak detection results of 101 for different detectors on MIT-BIH database (a red X
represents the wrongly identified R peak; a red rectangle is the missing R peak). TP—true positive (cor-
rectly identified R peak); FN—false negative (missing R peak); FP—false positive (wrongly identified R
peak); SEN—sensitivity; PPV—positive predicative value; CSI—cumulative statistical index.

Figure 6. The R-peak detection results of 208 record for different detectors (a red rectangle is the missing R-peak). TP—true
positive (correctly identified R peak); FN—false negative (missing R peak); FP—false positive (wrongly identified R peak);
SEN—sensitivity; PPV—positive predicative value; CSI—cumulative statistical index.

4. Discussion

In this study, the performance of the proposed R-peak detection method was tested
on MIT-BIH database. Based on the results presented in Table 2, all these methods have
excellent R-peak detection capacity with sensitivity rates higher than 99%. That is, most
existing methods for R-peak detection have shown excellent performance. However, the
three stages for R-peak detection, including preprocessing, enhancement and decision rules,
are very different. This paper provided a novel QRS-enhancement R-peak detection method.
Next, we analyzed the impacts of key steps and parameters on the experimental results.

4.1. ECG Enhancement

As shown in Table 4, the proposed method is easy to perform and does not need
complex mathematical calculations compared with the other methods, especially for the
stage of enhancement of QRS complexes. For instance, the proposed work only needs one
to perform a simple window variance transform to achieve QRS complex enhancement
and obtain better detection performance.
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Table 4. The enhancement stages among the four methods.

Method Preprocessing Enhancement

PT bandpass Derivative Squaring Moving-window integration

XQRS bandpass Moving-window integration

RSlope detrending lowpass Separate heart beat detection Quality assessment

SQRS moving-average window variance transform

PT is a real-time QRS detection algorithm. XQRS is a QRS detection algorithm in WFDB application guide. Rslope is a QRS detection
algorithm proposed by Gieraltowski et al. in 2015. SQRS is the proposed method.

4.2. The Effect of Using a Kurtosis Threshold

Figure 7 illustrates the distribution comparison between the QRS complexes and other
ECG waveforms, in which QRS, P and T waves were extracted from the QT Database [32],
and the number of each wave is 100. In Figure 7, the amplitude and kurtosis distributions
of the main waveforms in ECG signal are plotted; it can be seen that there is are significant
differences between the QRS complex and P/T wave in amplitude and kurtosis values.
In statistics, a higher kurtosis means that the increase in variance is caused by extreme
differences in low frequencies that are greater or less than the average.

Next, we analyzed the impacts of key steps and parameters on the experimental
results. It is well known that most of R-peak detection methods only depend on amplitude
thresholds to identify R-peaks, and some mistakes may occur for unobvious R-waves
shape. Thus, in this study, two statistical thresholds were used for R-peak identification.
In Table 5, we list the performance of using kurtosis threshold on detection results. As
shown in Table 5, compared with the performance without using a kurtosis threshold, the
proposed method can get fewer FN and more TP, and the improvements to SEN and CSI
are 1.21% and 1.08%, respectively. Hence, the kurtosis threshold plays a vital role in R-peak
identification, and there is a significant decrease in FN because R-peak features were deeply
extracted. As a result, higher CSI and SEN were obtained.

Some of the signals are affected by stretches of noise, baseline wander and artifacts.
For example, 222 has some non-QRS waves with highly unusual morphologies (may lead
to false positives); 208 has an irregular RR interval (may lead to missing R-peaks). In
Figures 5 and 6, the R-peak detection results are shown; the proposed method can achieve
annotations the same as the references. However, for the comparison methods, obvious FP
and FN occurred. This was due to improper threshold setting or improper noise processing
during QRS complex enhancement. However, the proposed method can deal with this case
by introducing the simple window variance transform and decision rules. That is, the two
thresholds, including amplitude and kurtosis, can distinguish between R-peaks and non-R
peaks which are similar to the R-peaks in morphology and amplitude.

Figure 7. The comparison of QRS complexs distributions with P/T waves. All waves were extracted from the qtdb dataset:
(a) amplitude; (b) kurtosis.
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Table 5. The performance of the proposed method using a kurtosis threshold.

Using Kurtosis TP FP FN SEN PPV CSI

No 87,190 374 1509 98.44 99.52 97.96
Yes 88,364 482 335 99.65 99.39 99.04

TP is correctly identified R-peaks, FP is wrongly identified R-peaks and FN is missing R-peaks. SEN is sensitivity,
PPV is positive predicative value and CSI is cumulative statistical index.

4.3. Selection of the Weight

In this work, the performance of the proposed method was influenced by the ampli-
tude and kurtosis thresholds; that is, the superparameter α in Equations (7) and (8) had a
large effect on experimental results. The α is a superparameter which represents the weight
of R-peaks amplitude or kurtosis. In Figure 8, we plot the R-peak detection performance
of the proposed method with different α values. In Equations (7) and (8), larger α means
lower thresholds and more FP, which results in lower PPV. On the contrary, smaller α
means higher thresholds and can lead to more FN and lower SEN. From 8, we can see that
α = 0.5 achieved the best CSI; meanwhile, better SEN and PPV were obtained.

Figure 8. The performance with different α for SEN (sensitivity), PPV (positive predicative value)
and CSI (cumulative statistical index). P wave—Indicates atrial depolarization, or contraction of
the atrium; QRS complex—Indicates ventricular depolarization, or contraction of the ventricles;
T wave—Indicates ventricular repolarization.

However, there are still some limitations to the present study. A signal with unusual
morphologies may cause bad performance by the proposed method. The reason is that
the R-peak detection result is more relative to the approativate adaptive thresholds, but
the amplitude and kurtosis values of the unusual R-peaks are irregular. In addition, the
adaptive thresholds depend on the window size, and the selection of window size is
another challenge. However, the fixed window may not include all samples in a wave
with severe waveform variations, and the results of R-peaks based on window variance
transform may not be satisfying. Those limitations have to be solved for future research.
Furthermore, we will also consider using other non-curated datasets, such as the NST
dataset, and ambulatory ECG dataset obtained by wearable devices, to observe and analyze
the preprocessing performance of the proposed method for noisy signals.

5. Conclusions

In this paper, a simple and reliable ECG enhancement and R-peaks detection method
was proposed, which is easy to perform and does not need complex mathematical calcula-
tions. The proposed method for R-peak determination is very robust for signals with larger
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amplitudes or P/T waves. The sensitivity of detecting R-peaks in the MIT-BIH database
using the proposed method can reach 99.65%, which is much better than the most of the
existing R-peak detection methods. The experimental results and analysis demonstrate that
the proposed R-wave enhancement technique and the decision rules, including amplitude
and kurtosis factors, are useful for the recognition of R-peaks. It can be conclude that the
proposed method is suitable and reliable for ECG R-peak detection.
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