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Abstract: Since older adults are prone to functional decline, using Inertial-Measurement-Units (IMU)
for mobility assessment score prediction gives valuable information to physicians to diagnose changes
in mobility and physical performance at an early stage and increases the chances of rehabilitation.
This research introduces an approach for predicting the score of the Timed Up & Go test and Short-
Physical-Performance-Battery assessment using IMU data and deep neural networks. The approach
is validated on real-world data of a cohort of 20 frail or (pre-) frail older adults of an average of
84.7 years. The deep neural networks achieve an accuracy of about 95% for both tests for participants
known by the network.

Keywords: pre-frail; frail; older adults; mobility assessments; machine learning; supervised learning;
decision support

1. Introduction

With the demographic change a lot of challenges arise, particularly in the fields of
medicine and healthcare. Older adults need frequent medical attention for maintaining
their health and physical performance. Functional decline and mobility impairments are
symptoms of impending diseases and also for frailty [1]. Early diagnosed diseases can be
treated well, impairments can be minimised and there is a good chance of rehabilitation.
Additionally, older adults have a high risk of falling and the medical implications can
be more serious than the incident itself. Usually, standardised geriatrics assessments are
used for monitoring the physical performance and estimating the risk of falling of older
adults. Although digital solutions are available, the conventional assessments are still
mainly performed under the supervision of a medical professional, therefore it is time
consuming in clinical settings. Long-term monitoring on a regular basis assessments exceed
the logistic capacities of medical professionals. Another disadvantage of assessments is the
test situation itself, because people tend to give their best effort in test situations and studies
showed that capacity is not performance [2–4]. Sensor assisted monitoring of the mobility
and the physical performance in everyday life situations can give valuable information to
health professionals for diagnosis and therapy. IMU sensors are low-cost and unobtrusive
sensors for measuring the body’s specific force and angular acceleration. The light weight
and the small size makes those sensors ideal for carrying around in a pocket or attached
to a belt in daily life. Moreover, IMUs are not dependent on external infrastructure like
satellites and can be used inside as well as outside without any loss of accuracy.

Machine learning approaches and recently deep learning showed good result in
estimating gait parameters and fall risk of older adults [5]. One advantage of deep learning
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approaches is that the algorithms can approximate arbitrary functions, extract features
automatically and the time consuming and difficult step of handcrafting features is not
needed [6–9]. This advantage comes at the price of computationally expensive training
and hyperparameter optimisation.

In this contribution a machine learning model for predicting the assessment scores for
the Short-Physical-Performance-Battery (SPPB) and the Timed Up & Go test (TUG) on IMU
data is introduced. The model learned from IMU data collected in everyday life situations
from a cohort of older adults (84.75 y, 5.19 y SD). This article is structured as follows,
in Section 2 the state of the art of mobility assessments and technology approaches for
assisting are described. Technology assistance is divided in the two subgroups technology
assisted assessments and unsupervised assessment approaches. In Section 3 the study for
data acquisition, steps of preprocessing the data and the machine learning approach are
explained. The results are shown in Section 4 and discussed in the following Section 5. In
the last section conclusions are drawn and further steps are briefly mentioned.

2. State of the Art

Assessing the mobility of older adults is a common task in geriatrics medicine, val-
idated and well accepted assessments like the SPPB [10] and the TUG [11] test are com-
monly used.

The TUG assesses the mobility of an older adult by getting up from a standardised
chair, walking a distance of three metres, turning around and getting back to the chair to
sit down. Assistive devices used for walking are permitted but it must be documented and
used for any re-tests. The time from the start command “Go” until the patient’s buttocks
touches the seat again is measured in seconds. Assessment categories are <10 s = normal,
no mobility impairment, 11–19 s = minor mobility impairment not relevant in everyday
life, 20–29 s = mobility impairment, >30 s severe mobility impairment, need for interven-
tion [11]. Each category has numeric score, no mobility impairment is 1, minor mobility
impairment is 2, mobility impairment is score 3, and severe mobility impairment is 4.

The SPPB consists of three parts assessing balance, gait speed and lower limb strength.
During the balance test, the participant stands with the feet side by side, in semi-tandem
stance and tandem stance for ten seconds each. Habitual gait speed is measured over a
distance of 2.40 m, 3 m or 4 m. The chair rise test assess the muscle strength of the lower
extremities by measuring the seconds the participant needs to perform five times from sit
to stand. A maximum of 4 points for each task can be achieved. A total SPPB score ≤9
points was found as cut-off value for fit and frail people [10,12]. The approaches to support
the assessments using technology can be categorised in technology assisted assessments
and unsupervised assessments in real-life.

The technology assisted assessments are still performed in a way the assessment
is supposed to be in order to use the validated point values for evaluation. Technical
devices are used to enhance the measurements and to support the supervisors as well
as the participants. In [13] an approach to enhance the TUG test was introduced. The
measurements of the values’ score were computed and automatically measured using
an IMU sensor. The computed values showed a high correlation to the gold standard
measurement under supervision of a health professional using a stopwatch. A system for
automated SPPB assessment executions has been developed in [14].

The unsupervised assessment approaches are trying to detect motion combinations
from assessments in real-life by sensors. Once a motion combination is recognised the
recorded sensor data is used to compute the performance. In [15] an approach for automat-
ically detect TUG execution using an IMU sensor is shown and the results were compared
to traditional stopwatch measurements. The TUG could be recognised with an accuracy of
96% and the results showed a strong correlation with the conventional method. As an item
of the SPPB test and important parameter for functional decline, gait speed is focused as
well. Approaches using cameras to measure the gait speed in domestic environments are
introduced in [16–18]. Instead of cameras, more privacy respecting ambient sensors can be
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used as well like in [19–22]. However, all of those sensors are fixed and measure the gait
speed in a single location only. To overcome this disadvantage small portable low-cost IMU
sensors can be used to measure gait speed as well. The research in [23,24] showed, that
gait speed estimations based on IMU data are comparable to gold-standard measurements
of a GAITRite walkway. The experiments described in [25] showed the validity and repro-
ducibility of using IMU sensors for gait parameter estimation. Besides the gait parameter
measurements IMU data can be used to measure the intensity of activities [26].

Deep learning approaches showed good results on estimating gait parameters and
the risk of falling on wearable sensor data [5]. Yu et al. used IMU data of Parkinson’s
disease patients collected during TUG assessments for estimating the fall risk and the
severity of Parkinson’s disease symptoms. The Convolutional Neural Network achieved
an F-measure of 94% for estimating the fall risk and a Root-Mean-Squared-Error of 0.06
for severity estimation [27]. Similar approaches showed good results for people suffering
from neurological disorders and multiple sclerosis. The networks achieved an accuracy
of 92.1% and an Area Under the Curve (AUC) of 0.88 respectively [28,29]. Considering
the parameters age and gender in addition to the raw sensor data significantly improves
the performance of deep learning models [30]. Convolutional Neural Networks are also
able to predict the frailty and cognitive dysfunction in respect to the mini-mental state
examination of older adults. The network was trained with spectograms of walking-in-
place data collected by IMUs. The network achieved an accuracy of 94.63% and 97.59%
for frailty and cognitive dysfunction respectively [31]. An Artificial Neural Network
in combination with a pressure sensor was used to detect abnormal foot postures. The
pressure sensors were placed inside shoes and the Artificial Neural Network classified
abnormal foot postures based on the gait characteristics with an accuracy of 99% [32]. Gait
abnormalities can be detected using wrist-worn IMUs as well. A deep neural network
trained IMU data collected by smartwatches achieved an accuracy of 88.90%, a sensitivity
of 90.60%, and a specificity of 86.20% [33]. Deep Neural Networks also has been used to
detect the fall incidents themselves. Using wearable sensor data an accuracy of 97.16% was
achieved on the task of fall detection [34]. Using accelerometer data only a sensitivity of
88.20% and a specificity of 96.40% could be achieved in [35].

The mentioned approaches focus on enhancing the execution of geriatrics assessments
using technology or detecting motion patterns from assessments in real-life. The approach
in the article at hand is different, because the score of an assessment is predicted on IMU
data. The participant neither has to execute any special motion patterns nor to complete
the assessment in a certain place.

3. Methods and Materials
3.1. Data Acquisition

The data was collected during the observational OTAGO study in 2014 and 2015
over a period of 10 months [36]. The functional performance was assessed every month
by the TUG and SPPB tests through conventional stopwatch measurements by a health
professional. The cohort consisted of 20 participants (17 female, 3 male) aged 76 to 92
(mean 84.3 y, SD 5.19 y). At baseline, 14 participants (70%) were identified as frail (Frailty-
Index ≥ 2 pts.) and six participants were pre-frail. The mean scores of the functional
performance were 17.9 s for TUG and 5.95 points for SPPB. The baseline characteristics
are presented in Table 1. Table 2 shows the characteristics of the cohort at the end of the
study. The cohort size is reduced by two, because two participants deceased during the
study. Despite dropout the available data of these two participants was considered. Each
participant got one IMU sensor for data collection.
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Table 1. The baseline characteristics of the study cohort.

n = 20 Age (y) BMI ( kg
m2 ) Frailty Index (pts.) SPPB (pts.) TUG (s)

Mean 84.75 27.39 1.90 5.95 17.87
SD (±) 5.19 6.10 0.72 2.33 5.33

Range (min-max) 76.00–92.00 17.33–43.09 1.00–3.00 3.00–11.00 11.16 - 31.63

Table 2. The characteristics at the end of the study cohort.

n = 18 Age (y) BMI ( kg
m2 ) Frailty Index (pts.) SPPB (pts.) TUG (s)

Mean 85.44 28.27 2.00 6.61 16.12
SD (±) 4.92 6.44 0.97 2.85 5.85

Range (min-max) 77.00–93.00 16.89–45.99 0.00–4.00 2.00–12.00 8.15–30.06

The IMU sensor of type Shimmer 3r was capable of measuring force in 9 Degrees of
Freedom (9DOF) and was comprised of wide range and low range accelerometer, gyroscope,
magnetometer, and pressure sensor [37]. In the first two weeks of the study the sensor was
set to 51.2 Hz and in the remaining time of the study the sensor was set to 102.4 Hz. The
sensors were given to the participants before the TUG and SPPB were done and collected
after around about two weeks. Therefore, the dataset consists test situations and everyday
life situations. Participants were asked to wear the the Shimmer3r IMU the whole day on a
sensor belt, in a trouser pocket or other small pocket on the right side of the hip. The logo
should face the front and the side with the charging port facing down. At night the sensor
was supposed to be placed on the charging station. The participants were instructed to
store the sensor safely during taking a shower and in the exercise bath. In total, 259 days of
IMU data were collected.

3.2. Preprocessing

Before using the data for learning several preprocessing steps were applied. Partici-
pants 2, 3, and 4 were excluded, because of unavailable IMU data. The models are tested
with two different testing strategies. The first testing strategy is the common testing strategy
in machine learning, a test set is separated from the dataset. The second strategy is to test
the models on data of participants which have been excluded before processing the data.
The data of the excluded participants were neither used for training nor for evaluation
of the model during training time. The participants 16 and 19 were randomly chosen
for evaluating the performance of the model on unknown participants. This led to an
exclusion of the SPPB score 2, because participant 19 was the only participant with a score
of 2 in a SPPB assessment. Only two TUG assessments took longer than 30 s (max. +1.6 s).
The scores were included in score 3, for not losing the data. The values of the low range
accelerometer, wide range accelerometer, gyroscope and magnetometer were chosen as
input to the network. The values of the temperature sensor were mostly 0 and contained
errors and were not considered. The orientation in relation to the earth coordinate frame of
the IMU was unknown and to eliminate the influence of the orientation the magnitude for
each sensor modality was computed by

mi =
√

x2
i + y2

i + z2
i (1)

where i is the index of the value and x, y, and z are the axis of the sensor. After computing
the magnitude the sensor data was filtered by a second order low-pass filter with a cut-off
frequency of 1

4 × sampling f requency. The filtered data has been divided into 5 s non-
overlapping windows. Since two different sampling frequencies were used in the study
the number of values per window differed. The number of values per window were
rounded down to 500 values for the sampling frequency of 102.4 Hz and to 250 values for
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51.2 Hz. Latter were oversampled to 500 values per window by duplicating each value.
The final sets may contain data from assessments as well, but the amount of windows
containing assessment data is insignificant. For each participant about 180,018.13 (SD
± 19,565.80) samples are available and a maximum of 1320 samples of each participants
contain assessment data. The number of windows per class of the resultant dataset are
shown in Table 3. Due to the setting of the data acquisition the classes were imbalanced
and for several classes no windows were available at all. To balance the dataset windows
of the overrepresented classes were deleted and the score 12 was excluded from the SPPB.
Considering the smallest class as lower threshold for balancing, would have led to massive
loss of data. The dataset was balanced two times and two different datasets, one for each
assessment were derived. The dataset for the SPPB had 148,307 windows per class and the
dataset for the TUG had 169,711 windows per class. The sets were divided into subsets for
training (75%), validation (15%) and test (10%) in a stratified fashion.

The data of the two participants reserved for testing were preprocessed in the same
way, but were not balanced and not divided into subsets. The data for SPPB score 2 of
participant 19 were not considered for evaluation, because the model was not trained
for that class. The number of values per class for participants 16 and 19 are shown in
Tables 4 and 5 respectively. The data was collected over a certain period of time and the
physical performance changed during that time. So, one participant could have achieved
different assessment scores.

Before the data was fed to the model the data was scaled to a range of 0 and 1.

Table 3. This table shows the number of windows for each class of the SPPB and the TUG assessments.
The range of the TUG score is smaller than the range of the SPPB score.

Score TUG SPPB

1 216,624 0
2 2,016,236 83,248
3 467,412 128,331
4 - 371,263
5 - 298,456
6 - 235,227
7 - 522,077
8 - 357,449
9 - 379,761

10 - 145,679
11 - 178,402
12 - 379

Table 4. This table shows the number of windows for participant 16 who was excluded from the
training set.

Score TUG SPPB

2 88,733 0
3 80 0
4 - 14,505

10 - 43,708
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Table 5. This table shows the number of windows for participant 19 who was excluded from the
training set. Score 2 of the SPPB were not considered for evaluation, because the model for the SPPB
was not trained with class 2.

Score TUG SPPB

2 28,336 256
3 82,010 8633
4 - 28,184
5 - 67,403
7 - 5868

3.3. Network Architecture

For this research a deep neural network approach was used. The architecture is shown
in Figure 1 and the blocks are shown more detailed in Figure 2. The architecture and
window size are adapted from [38]. Two models were trained, one for each assessment.
The difference of the models was the number of neurons of the classification layer. For the
SPPB model 9 neurons, and for the TUG model 3 neurons were used. In both networks
the final classification layer is activated by the softmax function. The trained networks are
available in the supplementary materials.
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Figure 1. The deep neural network used for this research. Each sensor modality had its own input.
The inner structure of the blocks are shown in Figure 2.
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Figure 2. The blocks of the deep neural network. Details about the blocks and the layer parameters can
be found in the Tables A1 to A6 in Appendix A.

As first layers Long-Short-Term-Memory (LSTM) layers are used for capturing the relation
between the time steps. Then a convolutional layer was added to learn features for each sensor
modality. All intermediate features were concatenated and forwarded to a sequence of convolutional
layers. The final classification was performed by a two layer neural network. Dropout, maximum
pooling and batch normalisation layers were added to prevent overfitting.
The model was trained using categorical cross-entropy as loss function and accuracy as metric. The
accuracy was computed as follows

accuracy =
correct classi f ied

all samples
(2)

The optimiser was AMSGrad version of the Adaptive Moment Estimation (Adam) with an initial learning
rate of 0.001, a first order derivative momentum of 0.5, a second order derivative momentum of 0.8,
and an exponential decay after the first 10 epochs [39].

lr(epoch) = 0.001 × e0.1×(10−epoch) (3)
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Figure 2. The blocks of the deep neural network. Details about the blocks and the layer parameters
can be found in the Tables A1–A6 in Appendix A.

As first layers Long-Short-Term-Memory (LSTM) layers are used for capturing the
relation between the time steps. Then a convolutional layer was added to learn features
for each sensor modality. All intermediate features were concatenated and forwarded to a
sequence of convolutional layers. The final classification was performed by a two layer
neural network. Dropout, maximum pooling and batch normalisation layers were added
to prevent overfitting.

The model was trained using categorical cross-entropy as loss function and accuracy
as metric. The accuracy was computed as follows

accuracy =
correct classi f ied

all samples
(2)

The optimiser was AMSGrad version of the Adaptive Moment Estimation (Adam) with
an initial learning rate of 0.001, a first order derivative momentum of 0.5, a second order
derivative momentum of 0.8, and an exponential decay after the first 10 epochs [39].

lr(epoch) = 0.001 × e0.1×(10−epoch) (3)

4. Results

The best epochs were epoch 67 for the SPPB model with a validation accuracy of 94.29%
and epoch 52 for the TUG model with a validation accuracy of 95.89%. The accuracy on
the test %set was 94.28%, and 95.79% for the SPPB and the TUG model respectively. The
accuracy for the TUG scores (2, 3) for participant 16 was 98.84%, and 26.15% for participant
19. The accuracy for the SPPB scores (4 and 10) of participant 16 was 6.39%, and for SPPB
scores (3, 4, 5, and 7) for participant 19 was 14.13%. The Tables 6–8 give an overview over
the results. The Receiver Operating Characteristic (ROC) curves in Figures 3 and 4 show
high true positive and low false positive rates at high decision thresholds. The average
ROC curves (blue) and the ROC curves for each class are showing similar progress and
overlap. The AUCs of the TUG model and scores are 0.99 and the AUCs of the SPPB model
are 1 except for the classes 7 and 9, where the AUCs are 0.99. The confusion matrices for the
SPPB and TUG models are shown in Tables 9 and 10. The SPPB model classified score 11
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best with 573 false classifications (sensitivity: 96.14%, specificity: 99.27%) and score 9 worst
with 1381 false classifications (sensitivity: 90.69%, specificity: 98.85%). The TUG model
classified score 3 best with 771 (sensitivity: 96.44%, specificity: 97.93%) false classifications
and score 2 worst with 1082 false classifications (sensitivity: 95.01%, specificity: 97.25%).
The most false classification of the TUG model is for adjacent classes, e.g., 614 samples of
class 1 were classified as class 2, but only 268 samples as class 3.

The Figures 5 and 6 are showing the progress of the loss during training and the
Figures 7 and 8 are showing the accuracy during training. The validation loss and the
validation accuracy are fluctuating in the beginning, but become stabilised after epoch 25.
Overall, the loss and accuracy graphs showed the desired behaviour, increasing fast in
the early epochs and stabilising during the later epochs. The graphs for both models are
similar, but the SPPB model shows a little less performance and little higher loss than the
TUG model.

Version January 22, 2021 submitted to Healthcare 9 of 15

Figure 3. The loss of the TUG model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.
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the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 5. The accuracy of the TUG model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 95.89
% at epoch 52.
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According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 94.29
% at epoch 67.

Figure 7. The ROC curve of the TUG model. Figure 8. The ROC curve of the SPPB model.Figure 3. The ROC curve of the TUG model.

Version January 22, 2021 submitted to Healthcare 9 of 15

Figure 3. The loss of the TUG model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 4. The loss of the SPPB model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 5. The accuracy of the TUG model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 95.89
% at epoch 52.

Figure 6. The accuracy of the SPPB model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 94.29
% at epoch 67.

Figure 7. The ROC curve of the TUG model. Figure 8. The ROC curve of the SPPB model.Figure 4. The ROC curve of the SPPB model.



Healthcare 2021, 9, 149 9 of 17

Version January 22, 2021 submitted to Healthcare 9 of 15

Figure 3. The loss of the TUG model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 4. The loss of the SPPB model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 5. The accuracy of the TUG model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 95.89
% at epoch 52.

Figure 6. The accuracy of the SPPB model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 94.29
% at epoch 67.

Figure 7. The ROC curve of the TUG model. Figure 8. The ROC curve of the SPPB model.

Figure 5. The loss of the TUG model. For the first 25 epochs the loss indicates that the learning rate is
slightly too large. From epoch 25 the progress shows an asymptotic behaviour.

Version January 22, 2021 submitted to Healthcare 9 of 15

Figure 3. The loss of the TUG model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 4. The loss of the SPPB model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 5. The accuracy of the TUG model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 95.89
% at epoch 52.

Figure 6. The accuracy of the SPPB model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 94.29
% at epoch 67.

Figure 7. The ROC curve of the TUG model. Figure 8. The ROC curve of the SPPB model.

Figure 6. The loss of the SPPB model. For the first 25 epochs the loss indicates that the learning rate
is slightly too large. From epoch 25 the progress shows an asymptotic behaviour.



Healthcare 2021, 9, 149 10 of 17

Version January 22, 2021 submitted to Healthcare 9 of 15

Figure 3. The loss of the TUG model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 4. The loss of the SPPB model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 5. The accuracy of the TUG model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 95.89
% at epoch 52.

Figure 6. The accuracy of the SPPB model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 94.29
% at epoch 67.

Figure 7. The ROC curve of the TUG model. Figure 8. The ROC curve of the SPPB model.

Figure 7. The accuracy of the TUG model. According to the progress of the loss, the accuracy
fluctuates in the first 25 epochs and shows an asymptotic behaviour after epoch 25. The best
validation accuracy score was 95.89% at epoch 52.

Version January 22, 2021 submitted to Healthcare 9 of 15

Figure 3. The loss of the TUG model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 4. The loss of the SPPB model. For
the first 25 epochs the loss indicates that
the learning rate is slightly too large. From
epoch 25 the progress shows an asymptotic
behaviour.

Figure 5. The accuracy of the TUG model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 95.89
% at epoch 52.

Figure 6. The accuracy of the SPPB model.
According to the progress of the loss, the
accuracy fluctuates in the first 25 epochs and
shows an asymptotic behaviour after epoch 25.
The best validation accuracy score was 94.29
% at epoch 67.

Figure 7. The ROC curve of the TUG model. Figure 8. The ROC curve of the SPPB model.

Figure 8. The accuracy of the SPPB model. According to the progress of the loss, the accuracy
fluctuates in the first 25 epochs and shows an asymptotic behaviour after epoch 25. The best
validation accuracy score was 94.29% at epoch 67.

Table 6. The accuracy on the test set and the two excluded participants.

Assessment Test Set P16 P19

SPPB 94.27% 6.39% 14.13%
TUG 95.79% 98.84% 26.15%
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Table 7. The specificity and sensitivity for each TUG score on the test set.

Score Sensitivity Specificity

1 95.93% 98.50%
2 95.01% 97.25%
3 96.44% 97.93%

Table 8. The specificity and sensitivity for each considered SPPB score on the test set.

Score Sensitivity Specificity

3 95.72% 99.67%
4 95.62% 99.38%
5 94.48% 99.45%
6 93.61% 99.06%
7 92.23% 99.25%
8 94.09% 99.31%
9 90.69% 98.85%

10 95.93% 99.31%
11 96.14% 99.27%

The confusion matrices for participant 16 and 19 are shown in Tables 11–14, respec-
tively. The accuracy of the model is lower for the unknown participants. The accuracy
for the class 2 of the TUG assessment is 98.93% and 99.49% for participant 16 and 19
respectively. The accuracy for the class 3 of the TUG assessment is 2.50% and 0.81% for
participant 16 and 19 respectively. The class 1 is not available for the two participants. The
best class for the SPPB score of participant 16 is class 4 with an accuracy of 12.51% and
the best class for participant 19 is class 6 with an accuracy of 17.23%. The worst classes
are 10 for participant 16 and 3 for participant 19 with an accuracy of 0.000641% and 0.00%
respectively.

Participant 16 (76 y) was undergoing chemotherapy two months after the study
began and deceased two months before the study ended. Therefore, values of only three
assessment dates were available. Facing a severe loss of physical condition following
inactivity, functional performance decreased very fast - especially in gait speed, but not in
total scores of the SPPB. The interesting part is that, the intra-individual range varied from
4 to 10 points within the short period of time. TUG stopwatch measurements showed a
more linear decline and a category change from 2 to 3.

The TUG results for participant 19 (90 y) were very close to the decision boundary of
classes 2 and 3. The time of 3 of 6 TUG assessments were of an average of 0.39 s slower
than the maximum of 19 s needed for scoring 2 points. The participant scored 3 in those
assessments.

Table 9. The confusion matrix of the TUG model. The class with the least false classifications is 1 and
the class with the most false classifications is 3. t = true label, p = predicted label.

t\p 1 2 3

1 20,780 614 268
2 455 20,580 627
3 193 578 20,891
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Table 10. The confusion matrix of the SPPB model. The class with the least false classifications is 3
and the class with the most false classifications is 9. t = true label, p = predicted label.

t\p 3 4 5 6 7 8 9 10 11

3 14,195 98 35 147 80 95 123 47 10
4 39 14,181 44 163 111 40 157 69 26
5 27 67 14,012 205 72 76 187 155 29
6 99 153 136 13,883 107 116 140 107 89
7 61 154 70 118 13,677 123 229 86 312
8 73 43 52 154 121 13,954 188 97 148
9 62 144 169 173 211 189 13,449 221 212

10 13 46 117 88 47 73 180 14,226 40
11 12 25 24 73 136 106 155 42 14,257

Table 11. The confusion matrix of the TUG for participant 16. The participant scores 2 and 3, but not
1. The most values are in class 2. Due to the imbalance the accuracy is high, but the performance is
low. t = true label, p = predicted label.

t\p 1 2 3

1 0 0 0
2 8 87,782 943
3 1 77 2

Table 12. The confusion matrix for SPPB of participant 16. The only class with correct predictions is
class 4. t = true label, p = predicted label.

t\p 3 4 5 6 7 8 9 10 11

3 0 0 0 0 0 0 0 0 0
4 1814 5643 7484 4245 3043 9421 9322 4041 92
5 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 0
9 0 0 0 0 0 0 0 0 0

10 3921 15 2977 814 7112 22,327 4832 28 1682
11 0 0 0 0 0 0 0 0 0

Table 13. The confusion matrix for TUG of participant 19. The model is not able to distinguish
between score 3 and score 2 for this participant. t = true label, p = predicted label.

t\p 1 2 3

1 0 0 0
2 3 28,191 142
3 86 81,259 665

Limitations

The cohort does not represent the complete scale of the SPPB and the scores 1, 2, and
12 are not learned by the model and hence the validated assessment is not completely
represented by the model. Another point is the IMU, which was used by the participants
independently. Using filtering approaches some invalid data was filtered, but certainly not
all, e.g., if a participant would have given the IMU to another person, the invalid data of
that person remains in the dataset. Inactivity covered by noise in the sensor signal will also
remain in the dataset.
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Table 14. The confusion matrix for SPPB of participant 19. This participant was the only one with a
SPPB score of 2. Since the model was not trained to classify this score, the values for score 2 were not
considered for classification. t = true label, p = predicted label.

t\p 3 4 5 6 7 8 9 10 11

3 197 1 37 1 13 3 0 1 3
4 39 1,756 11 235 1753 328 403 99 4009
5 28 14 19,027 299 6143 444 1255 778 198
6 2276 219 15,315 974 363 2388 14,474 30,534 860
7 0 0 0 0 0 0 0 0 0
8 8 594 70 267 220 398 4234 75 2
9 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0 0 0

5. Discussion

The results showed that the models were performing well on all classes on known
participants, but significantly worse on unknown participants. Finding one patient the
network is not performing well for already proofs that the model cannot be used for
unknown participants without further adjustments like fine tuning. The reason why the
SPPB model performs slightly worse than the TUG model is that assessment has more
classes and is more complex in execution than the TUG. Moreover, the score of balancing
test of the SPPB is subject to the impression of the supervising professional, rather than
an objective measurement. The models learned the variety amongst the participants of
the OTAGO study, even though the cohort was very heterogeneous. The heterogeneity is
expected to be the reason for the low model performance for the unknown participants
16 and 19. The TUG assessment results of participant 16 were very close to the decision
boundary of two classes. This made it even more difficult for the model to distinguish
the data of those classes for an unknown participant correctly. Considering Table 9, this
seems to be a general problem of the TUG model. That shows the limitations of the
assessment scores and boundaries. The scores are defined using full seconds, but with
today’s technology much more precise measurements up to milliseconds are possible. The
low accuracy on the SPPB data is mainly due to the exclusion from the training set, i.e. the
participant is unknown to the network.

Even though the ROC curves, the AUCs and the accuracy show a high performance
of the model, inferring reasons for score changes are not possible. A change in one item
of SPPB changes the score of the assessment, so the change could be due to decreasing
gait speed, a declining balance or decreasing lower limb strength. The same holds for the
TUG test, because the same aspects are implicitly assessed. Standing up from a chair is
dependent on the balance and lower limb strength, and the walking part assesses the gait
speed. So, the TUG score incorporates the same dimensions like the SPPB.

The results showed that the models were performing well on all classes on known
participants, but significantly worse on unknown participants. The loss and accuracy
graphs showed the desired behaviour of increasing fast in the early epochs and stabilising
during the later epochs. The graphs for both models were similar, but the SPPB model
showed a slightly lesser performance and slightly higher loss than the TUG model. Since
the SPPB assessment has more classes and is more complex in execution than the TUG, this
is a reasonable finding. Moreover, the score of balancing test of the SPPB is subject to the
impression of the supervising professional, rather than an objective measurement. The
models learned the variety amongst the participants of the OTAGO study, even though the
cohort was very heterogeneous. However, this heterogeneity is expected to be the reason
for the low model performance for the unknown participants 16 and 19 as well.

Participant 16 (76 y) was undergoing chemotherapy two months after the study
began and deceased two months before the study ended. Therefore, values of only three
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assessment dates were available. Facing a severe loss of physical condition following
inactivity, functional performance decreased very fast - especially in gait speed, but not in
total scores of the SPPB. The interesting part is that, the intra-individual range varied from
4 to 10 points within the short period of time. TUG stopwatch measurements showed a
more linear decline and a category change from 2 to 3.

The TUG results for participant 19 (90 y) were very close to the decision boundary of
classes 2 and 3. The time of 3 of 6 TUG assessments were on an average of 0.39 s slower
than the maximum of 19 s needed for scoring 2 points. The participant scored 3 in those
assessments. This made it even more difficult for the model to distinguish the data of those
classes for an unknown participant correctly. The low accuracy on the SPPB data is mainly
due to the exclusion from the training set, i.e. the participant is unknown to the network.
The results show as well that the age is not important itself. Participant 16 is 14 y younger
than participant 19, but the physical condition is much worse. The physical condition
of participant 19 is clinically constant and varies slightly between two classes. The latter
shows the limitations of the assessment categories and boundaries. The categories are
defined using full seconds, but with today’s technology much more precise measurements
up to milliseconds are possible.

6. Conclusions and Future Work

The results showed that it is possible to use machine learning to predict the geriatrics
mobility assessment scores on real-life IMU data, even though the cohort was very het-
erogeneous and the IMUs were not rigidly attached to the body. The models performed
well on known participants and were able to predict the scores of SPPB and TUG with an
accuracy of 95.79% and 94.27% for the TUG and SPPB assessment respectively. The ROC
curves, the specificities and the sensitvities for each class show, that the models performing
well enough to be used by professionals. On the downside, the results showed that the
models are very inaccurate on data of unknown participants.

The most promising approach is to use deep unsupervised learning. In the first step
the network could be trained to approximate the underlying probability distribution of the
training data. In the next step fine tuning for the new participant could be applied. Since
one participant is likely to show only a certain subset of all available scores, the output of
the network is the probability whether the sample belongs the class the network was fine
tuned with. So, changes could be detected.

Another important point is the investigation of the performance on a different cohort.
The cohort used for this research was very special, e.g., study inclusion criteria was being
pre-frail at least. For healthier cohort of older adults an early detection of physical decline
is important for early treatment and prevention as well. Long-term monitoring would
be useful for those cohorts. So the models must be evaluated on data of a healthier
cohort. Moreover, measures to simplify the model without loss of accuracy should be
taken, because the data acquisition is difficult and costly. A less complex model needs less
training data.
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The following abbreviations are used in this manuscript:

AUC Area Under the Curve
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IMU Inertial Measurement Unit
LSTM Long-Short-Term-Memory
ReLU Rectified Linear Unit
ROC Receiver Operating Characteristic
SD Standard Deviation
SPPB Short-Physical-Performance-Battery
TUG Timed Up & Go

Appendix A

Table A1. The layer details of Block 1.

Layer Neurons/Kernel Size Filters Strides Activation Additional Parameters

LSTM 64 - - LeakyReLU LeakyReLU α = 0.001
Batch Normalisation - - - - -

Maximum Pooling 1D - - 2 - -
Convolution 1D 8 64 2 LeakyReLU LeakyReLU α = 0.001

Batch Normalisation - - - - -
Maximum Pooling 1D - - 2 - -

Table A2. The layer details of Block 2.0.

Layer Kernel Size Filters Strides Activation Additional Parameters

Convolution 1D 16 64 2 LeakyReLU LeakyReLU α = 0.001
Batch Normalisation - - - - -

Maximum Pooling 1D - - 2 - -

Table A3. The layer details of Block 2.1.

Layer Kernel Size Filters Strides Activation Additional Parameters

Convolution 1D 32 64 2 LeakyReLU LeakyReLU α = 0.001
Batch Normalisation - - - - -

Maximum Pooling 1D - - 2 - -
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Table A4. The layer details of Block 2.2.

Layer Kernel Size Filters Strides Activation Additional Parameters

Convolution 1D 64 128 2 LeakyReLU LeakyReLU α = 0.001
Batch Normalisation - - - - -

Maximum Pooling 1D - - 2 - -

Table A5. The layer details of Block 3.0.

Layer Neurons Dropout Activation

Dense 48 0.3 Sigmoid
Batch Normalisation - - -

Table A6. The layer details of Block 3.1.

Layer Neurons Dropout Activation

Dense 48 0.0 Sigmoid
Batch Normalisation - - -

Dense 9 (SPPB) /3 (TUG) 0.0 Softmax
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