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Abstract: The prevalence of diabetes mellitus is increasing worldwide, causing health and economic
implications. One of the principal microvascular complications of type 2 diabetes is Distal Symmetric
Polyneuropathy (DSPN), affecting 42.6% of the population in Mexico. Therefore, the purpose of this
study was to find out the predictors of this complication. The dataset contained a total number of 140
subjects, including clinical and paraclinical features. A multivariate analysis was constructed using
Boruta as a feature selection method and Random Forest as a classification algorithm applying the
strategy of K-Folds Cross Validation and Leave One Out Cross Validation. Then, the models were
evaluated through a statistical analysis based on sensitivity, specificity, area under the curve (AUC)
and receiving operating characteristic (ROC) curve. The results present significant values obtained
by the model with this approach, presenting 67% of AUC with only three features as predictors. It is
possible to conclude that this proposed methodology can classify patients with DSPN, obtaining a
preliminary computer-aided diagnosis tool for the clinical area in helping to identify the diagnosis
of DSPN.

Keywords: type 2 diabetes; distal symmetric polyneuropathy; feature selection; boruta; Random Forest

1. Introduction

Diabetes Mellitus (DM), defined as a group of metabolic diseases characterized by hy-
perglycemia, resulting from defects in insulin secretion, action or both [1], is a multifactorial
chronic disease that became a worldwide concern because of its epidemic proportions and
complex management [2]. Especially, type 2 diabetes (T2D) because it is characterized by
insulin resistance that induces organ dysfunction, and over 90% of DM are T2D [3]. Further-
more, T2D is associated with long-term complications (microvascular and macrovascular)
involving tissue damage and organ failure. The most common microvascular complication
is Diabetic Neuropathy (DN), because all types of diabetic patients insulin-dependent DM,
non-insulin-dependent DM and, secondary diabetic patients can develop DN [4]. Diabetic
neuropathies are a heterogeneous group of pathological manifestations with the potential
to affect every organ with clinical implications, such as organ dysfunction which leads
to low quality life and increased morbidity [5]. There are clinical classifications of DNs:
symmetric and asymmetric. Distal Symmetrical Polyneuropathy (DSPN) which is the
commonest type of DN, representing approximately 75% of cases [4]. DSPN is defined
as peripheral nerve dysfunction with positive and negative symptoms and it is present
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in approximately 10% of recently diagnosed diabetic patients [5]. DSPN should not be
diagnosed on the basis of one symptom, sign or test. In practice, the clinical area usually
recommends five measures to be used in the diagnosis of DSPN [6]:

• Clinical measures
• Morphological and biochemical analyses
• Electrodiagnostic assessment
• Quantitative sensory testing
• Autonomic nervous system testing

This diagnosis include a family history of neuropathy particularly outside the context
of diabetes, hammer toes, high arches, symptoms that slowly progress over many years,
and neurologic examination abnormalities that are more pronounced than the patient’s
symptoms [7]. Methods regarded as gold standards in clinical trials are not useful in clinical
settings, because they are time consuming and require special devices [8] which are not
common in all the public health services.

In Mexico, the prevalence of chronic complications in patients with T2D has increased.
Sabag et al. [9] showed that DSPN affects 42.6% of the population. Furthermore, it is the
complication that significantly impacts the quality of life of those affected.

In recent years, the research of diabetes care and the rapid advances in Artificial
Intelligence (AI) has been a relevant topic. Four main categories aim to transform health-
care in the field of diabetes: Automated Retinal Screening, Clinical Decision Support,
Predictive Population Risk Stratification, and Patient Self-Management Tools [10]. Due
to this several studies have been using Machine Learning algorithms for the detection,
identification, and monitoring of comorbidities such as neuropathy, nephropathy, wounds,
and retinopathy. Alcalá-Rmz et al. [11] implemented an Artificial Neural Network (ANN),
to determine if a patient presents diabetes based on a set of 19 para-clinical features. The
model obtained statistically significant values with an AUC of 0.98 and an accuracy of 0.94.
Moreover, Alcalá-Rmz et al. [12] proposed an implementation of Convolutional Neural
Network (CNN) for classifying the four different stages of diabetic retinopathy using a
total of 2644 images. The final model achieved an accuracy of 0.8065. Further, each class
was evaluated under the statistic metric AUC: no diabetic retinopathy (0.79), mild (0.67),
moderate (0.65), severe (0.69), and proliferative (0.79). In the work of Blobel et al. [13]
it is proposed the implementation of Machine Learning (ML) methods, for early risk
identification of diabetes polyneuropathy, based on structured electronic medical records.
The dataset contains 238,590 laboratory records including episode identifiers, timestamp,
varying number of measured parameters, laboratory test, retinopathy, nephropathy, age
and, gender. The feature selection in this work was based on correlation analysis of the
target class; the most significant features were glucose level in the blood and the urine. A
comparison of five algorithms (Support Vector Machine [SVM], Decision Trees [DT], ANN,
Linear Regression, and Logistic Regression[LR]) was done under different metrics. They
concluded that ANN provides a better performance obtaining 89.88% of Area Under the
Curve. Likewise, Metsker et al. [14] developed a structured procedure for predictive mod-
eling, which includes data extraction, pre-processing, model adjustment, performance, and
selection of the best models. The dataset comprises information about 5,846 patients with
diabetes. Finally, the models showed different results in terms of interpretation significance,
Random Forest confirmed that the most important risk factor for polyneuropathy is the
increased neutrophil level, on the other hand, linear models, showed linear dependencies
of the presence of the disease on blood glucose levels and neural networks demonstrate
the contribution of comorbidities to the development of polyneuropathy. Furthermore,
Dagliati et al. [15] developed distinct models for microvascular complications, taking into
account a temporal threshold for risk prediction of three, five, or seven years. They consid-
ered variables include demographic, clinical, and administrative data. The classification
models used were LR, Näive Bayes (NB), SVM, and Random Forest. The feature selec-
tion was based on the Akaike information criterion. The validation of the results was in
terms of Area Under the Curve, specifically, neuropathy demonstrated that Random Forest
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and SVM obtained the best performance when the datasets are balanced 88.4% (3 years),
79.2% (5 years), 78.6% (7 years), and 79.6%, 76.3%, 70.5% respectively. Callaghan et al. [16]
determined the associations between individual metabolic syndrome components and
peripheral neuropathy. The authors used multivariable models to assess for associations
(LR and classification tree). The results showed a need for effective interventions that
target these metabolic factors to prevent or treat peripheral neuropathy. In the clinical
area, Sanchez et al. [17] analyzed the performance of eight different variable selection
methods, of which stand out: regression-based methods and tree-based methods. The
prediction performance was measured using the area under the ROC curve of the model
on the testing set. In conclusion, Boruta was the most accurate model with 79.6% of AUC.
Another approach for feature selection is that proposed by Chen et al. [18], which presents
an analysis of various features that are useful for the classification data by implementing
Machine Learning models such as Linear Discriminant Analysis (LDA), SVM, Random
Forest and K-Nearest Neighbor (KNN). The research showed that by combining feature
selection methods with the aforementioned models, Random Forest achieves a better per-
formance in all experimental groups. Rghioui et al. [19] proposed and developed a 5G
architecture for continuous monitoring of diabetic patients using machine learning algo-
rithms (Naïve Bayes, ZeroR, OneR, LR, RF and Sequential Minimal Optimization [SMO])
for data classification. Finally, the SMO algorithm exhibited an excellent classification
with the highest accuracy of 99.66%, giving a superior classification compared to other
algorithms. Chen et al. [20], evaluate an automated software tool for nerve fibre detection
and quantification in corneal confocal microscopy (CCM) images. The evaluation of the
model used 888 images from 176 subjects. Then a ROC analysis was made, obtaining an
AUC of about 0.77 and 72% sensitivity-specificity at the equal error rate point. Additionally,
Pourhamidi et al. [21], compare the diagnostic usefulness of tuning fork, monofilament,
biothesiometer and skin biopsies in peripheral neuropathy in subjects with T2D. The au-
thors conclude that the tuning fork was a relatively good method to identify DSPN cases in
terms of sensitivity obtaining 46%, otherwise, the biothesiometer achieved 67%, also, an
intraepidermial nerve fibre densitity showed 74% and specificity of 70% in detection of
DSPN. Ultimately, concluding, that using a biothesiometer in clinical routine might be a
sensitive method to detect large nerve fibre dysfunction.

In particular, T2D and complications have contributed to the burden of mortality
and the suffering of a single patient. Medical care, treatment options, care needs, and
associated cost are complicated by existing comorbidities and chronic conditions [22]. The
significant problem lies in the difficulty that exists in the identification and early detec-
tion of undiagnosed DSPN. Additionally, the lack of non-invasive tools necessary in the
public and private health institutions cause a late identification of factors associated with
chronic diseases, which are strong contributors to the timely prevention, prediction, correct
decision-making in the treatment provided to the patient and finally in the reduction cost.
The main contribution of this paper focuses on identifying possible predictors of DSPN.
The aim of feature selection is to find out which features are useful for the classification
data and Random Forest is essential for classifying the subjects with this condition. Finally,
this work provides a description and analysis for future research which could be of great
help to the medical field.

The remainder of the paper is organized as follows: Section 2 presents the dataset
description and methodology to study the relationship of features to classify patients
with and without distal symmetric polyneuropathy. The Section 3, shows the experiments
performed using Boruta and Random Forest and additionally, the evaluation of the model
with receiver operating characteristic curve (ROC curve), AUC, sensitivity and specificity.
Finally, a discussion and conclusion of the results are presented in Section 4.

2. Materials and Methods

The methodology proposed in this work is contained in four main stages. A data
pre-processing step was performed to avoid any problem related to missing data or outliers
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that could affect the later stages. Then, a feature selection method is presented, which
was carried out using Boruta [23], it can select sample group relevant features effectively.
To evaluate how well the selected features can classify the sample, one algorithm was
applied: Random Forest (RF). Finally, all the models were evaluated on the basis of different
parameters: sensibility, specificity, and area under the curve (AUC).

2.1. Data Description

The dataset for this study was acquired from “Unidad de Investigación Médica en
Bioquímica, Centro Médico Nacional Siglo XXI, IMSS”, with the information of Mexican
patients. All Mexican patients signed an informed consent letter and the protocol meets the
Helsinki criteria which were approved by the Ethics Committee of Instituto Mexicano del
Seguro Social under the number R-2011-785-018. The dataset is comprised of 32 features
listed in Table 1 which includes clinical, para-clinical, and additional information of patients
with T2D (HbA1c, GFR, and drug treatment). The total number of patients used for
this work is 140 of which 70 corresponds to diabetic patients without any microvascular
complications (controls) and 70 to diabetic patients with Distal Symmetric Polyneuropathy
(cases). It is important to mention that the diagnosis of DSPN was made under family
history and clinical evaluation. The age of the patients are between 31 and 84 years old,
65 are males while 75 are female.

2.2. Data Pre-Processing

For the pre-processing stage, several features were eliminated from the original dataset
(ID, retinopathy and nephropathy cases) because the information was not relevant for
this work. Furthermore, there were some missing values (GFR, SBP, DBP, SBPU, DBPU)
represented as NA and were imputed with the value calculated using the mean of the
non-missing observations. Finally, the 32 features were normalized through the standard
score, where xi represents the original value, x̄ is the mean of the sample, and s, is the
standard deviation value of the feature (sample). The aim of this stage is to transform the
data to a normal distribution with mean 0 and standard deviation 1.

zi =
xi − x̄

s
(1)

2.3. Boruta Feature Selection

Boruta is a feature selection method based on Random Forest. This algorithm consist
of the following steps [23]:

• Generate copies of all variables.
• Shuffle the added variables (attributes) to eliminate their correlations

with the response.
• A RF classifier is executed and gather the Z scores computed.
• Find the maximum Z score among shadow attributes (MZSA) and then assign a value

to each attribute that scored better than MZSA.
• For each attribute of undetermined importance, a two-sided equality test should be

performed with the MZSA.
• Consider the attributes which have importance significantly lower that MZSA as

unimportant and permanently remove them from the system.
• Consider the attributes which have importance significantly higher than MZSA

as important.
• Eliminate all shadow attributes.
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Table 1. Features description.

Feature Description Possible Values

Education Studies concluded by the patient

1 - Elementary School
2 - Secondary School
3 - Technical level
4 - High School
5 - Professional
6 - Postgraduate

Salary Monthly income
1 - Less than $2000.00
2 - Between $2000.00 and $5000.00
3 - More than $5000.00

Sex Patients sex
0 - Male
1 - Female

Age Age in years Numeric Integer

Age DX Diagnosis age of diabetes Numeric Integer

WHR Waist Hip Ratio Numeric

BMI Body Mass Index Numeric

Glucose Blood glucose levels Numeric

Urea
Waste product resulting from the breakdown of
protein in the patient body. The test can provide
important information about the kidney function

Numeric Integer

Creatinine
Waste product produced by muscles as part of
regular daily activity. The test is used to see if the
kidneys are working normally

Numeric

Cholesterol
Fat-like substance that is found in all cells of
the patient body Numeric

HDL
Stands for High Density Lipoprotein (corrected
for medication) Numeric

LDL
Stands of Low Density Lipoprotein (corrected
for medication) Numeric

Triglycerides Type of fat found in the patient body Numeric

TCHOLU Total Cholesterol (uncorrected) Numeric Integer

HDLU High Density Lipoprotein (uncorrected) Numeric Integer

LDLU Low Density Lipoprotein (uncorrected) Numeric Integer

TGU Triglycerides (uncorrected) Numeric Integer

SBP
Systolic Blood Pressure (corrected for
medication) Numeric Integer

DBP
Diastolic Blood Pressure (corrected for
medication) Numeric Integer

SBPU Systolic Blood Pressure (uncorrected) Numeric Integer

DBPU Diastolic Blood Pressure (uncorrected) Numeric Integer

HA-TX Hypertension Treatment
0 - No
1 - Yes

Lipids TX Lipids Treatment
0 - No
1 - Yes

HbA1c Glycated Hemoglobin Numeric

GFR
Glomerular Filtration Rate (blood test that checks
how well the kidneys are working) Numeric Integer

Glibenclamide Drug Treatment
0 - No
1 - Yes
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Table 1. Cont.

Feature Description Possible Values

Metformin Drug Treatment
0 - No
1 - Yes

Pioglitazone Drug Treatment
0 - No
1 - Yes

Rosiglitazone Drug Treatment
0 - No
1 - Yes

Acarbose Drug Treatment
0 - No
1 - Yes

Insuline Drug Treatment
0 - No
1 - Yes

Output Neuropathy State
0 - No
1 - Yes

The benefits of Boruta are to decide the significance of a variable and to assist the
statistical selection of important variables [18]. In other words, Boruta compares the per-
formance of numerous models with successive variables replaced by shadow features.
Then, this features are compared to each original feature that consistently outperform the
collective maximum of the shadow versions. Finally, the features are classified as important
and unimportant considering the MZSA value [24].

2.4. Classification Method

The supervised Machine Learning algorithm is selected to perform binary classification
of the dataset described above. To predict whether a patient is diabetic and has DSPN or
diabetic without this complication, we have used Random Forest (RF).

Random Forest

In 2001 Breiman et al. [25] developed the popular RF machine learning algorithm,
which is based on classification and regression trees. The benefits of using RF are that this
algorithm provides higher accuracy compared to a single decision tree, it has the ability to
handle datasets with a large number of predictor variables, and can be used for variable
selection [26]. It is important to note that RF has been successful in various areas, including
the classification and identification of the most important variables in ecology [27], the
diagnosis and prognostic for breast cancer [28], the applications in genomic data [29],
among others. The RF algorithm consists of the following steps [30]:

• Fist, the dataset D1 having m x n is given. Then, a new dataset D2 is created from D1
by sampling and eliminating a third part of the row data.

• The RF model is trained to generate a new dataset from the reduced samples, estimat-
ing the unbiased error.

• At each node point, the column n1 is selected from the total n columns.
• Finally, several trees are growing and the final prediction is calculated based on

individual decisions to obtain the best classification accuracy.

2.5. Validation

The performance of the proposed method is evaluated by comparing the two models
with different metrics. In this study, the patients were labeled with 0, which are those who
have development diabetes, and the case patients were labeled with 1, which are those
who have DSPN. These outputs are represented within a confusion matrix, which is a table
that shows the differences between the predicted classes for a set of labeled (reference)
examples. It contains True Positives TP, True Negatives TN, False Positives FP and False
Negatives FN. The diagonal is associated to the observations that are correctly classified.
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• TP: number of instances that are positive and are correctly identified.
• TN: negative cases that are negative and classified as negative.
• FP: defined by the negative instances that are incorrectly classified as positive cases.
• FN: number of positive cases that are misclassified as negative.

There are many metrics that can be estimated to measure the performance of the mod-
els. However, in this work it was used to calculate two metrics: sensitivity and specificity.

Sensitivity corresponds to the accuracy of positive examples, it refers to how many
examples of the positive classes were labeled correctly. This can be calculated with
Equation (2).

Sensitivity =
TP

TP + FN
(2)

The specificity corresponds to the conditional probability of true negatives given a
secondary class, which means that it approximates the probability of the negative label
being true. It is represented by Equation (3).

Speci f icity =
TN

TN + FP
(3)

Also, a statistical analysis was conducted, obtaining the Receiver Operating Charac-
teristic Curve (ROC), known as Area Under the Curve (AUC). Mostly, the quality of the
algorithms (models) is evaluated by analyzing how well it performs on a test data [31]. The
AUC, widely used to measure the performance in the supervised classification, is based on
the relationship between the sensitivity and specificity [32]. The ROC analysis has become
a popular method for evaluating medical diagnosis systems. This metric can discriminate
two patient states, in this case with or without DSPN [33]. Furthermore, it has an important
statistical property, in practice the value of AUC varies between 0.5 and 1, indicating the
probability that the classifier will rank a randomly chosen positive instance higher than a
negative instance.

All the methodology was performed using R (version 4.0.3), which is a free software
environment for statistical computing and graphics [34]. The libraries used were Boruta
(version 7.0) [23], caret (version 6.0-86) [35], and MLeval (version 0.3) [36].

3. Experiments and Results

This section presents the experiments and the results obtained in the development of
this research. The entire structure of the proposed methodology can be shown in Figure 1.

First, a feature selection was performed using Boruta algorithm, that is implemented
to finding all relevant attributes. Then the selected variables (confirmed features) serve as
the input variables for RF technique. In the present work, RF create numerous independent
decision trees, combining many decision trees produce more accurate classifications. More-
over, it includes calculation of variable importance and measures of similarity of data. The
principal approach was to include all the 32 features and make an evaluation of the model,
as mentioned in Table 2. RF needs some additional information (hyper-parameters) that
should be considered. In this case, mtry, the number of random variables as candidates in
each branch. The aim of this step is to choose a subset of predictors randomly and then
splitting each node of trees with the best subset of all predictors. Secondly, with the aim of
feature selection method, the RF model was trained and evaluated by statistical metrics.

Table 2 shows the hyper-parameters of the RF models, that were trained to classify
DSPN patients.

RF can be used for solving regression or classification problems. In this case, the y
variable is a factor value that applies to the classification. Then, the numbers of trees (ntree)
are 500, which means that 500 trees were grown.The third parameter is the number of
predictors sampled for splitting at each node (mtry), for the model with 32 features the
mtry was 2, 17 and 32, and for the model with three features were 2 and 3 predictors.
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Figure 1. Flowchart of the proposed methodology.

Table 2. Random Forest parameters.

Parameters

Type of Random Forest (y): Classification
Number of trees (ntree): 500

No. of variables tried at each split (mtry): 2, 3, 17 and 32

The dataset used for the development of the methodology contains 32 features that
include 140 observations of 32 variables and one output class. A total of 140 subjects
were included in this study and were classified into a non-DSPN group and a DSPN
group. To evaluate the performance of the RF model, a K-Fold Cross-Validation (CV)
was performed, Leave One Out Cross Validation (LOOCV) and calculated its sensitivity,
specificity, confusion matrix, ROC curve, and AUC value.

To test the efficiency of the classification, K-Fold CV and LOOCV were used, these
are the most widely used methods for predictor evaluation. The K-Fold CV is repeated
for K times, and the results can be calculated with a mean value and with a standard error
rate. One of the advantages of performing a K-Fold CV is that with a small dataset, it
could acquire a relatively stable evaluation of the model [37]. Secondly, LOOCV is a special
case of K-Fold CV, where LOOCV divides the dataset into the number of instances in the
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dataset. Thus, LOOCV is applied for each instance, using all other instances as a training
set and using the selected instance as a single test set [38]. For example, “140” subjects were
collected. Firstly, “139” subjects as training set executed RF, then we had the first result
and the “140” subject is back to the complete data, after, the second person as a testing set,
leaving “139” patients as a training set, and we obtain the result of each subject. In this
case, 10-Fold CV was used. Therefore, the training dataset was divided into 10 subsets,
with one subset for the validation. This process was repeated three times.

The Table 3 shows the performance of the RF model with 10 -Fold CV joined by
LOOCV. This approach is used for doing a test that guarantees a greater number of tests
without the computational cost. Performing more combinations allows evaluating the
models in different situations to try to avoid the over fitting. For real-word datasets
Kohavi [39] recommends 10-Fold CV, and LOOCV estimates the generalization ability of a
predictive model, and the computational cost can also be high for a large dataset [40]. The
parameter mtry is the number of variables tried at each split, where the final value used
for the optimal model was 17. The results of this classification demonstrate that sensitivity
values oscillate from 63.80% to 64.91%. Nevertheless, in terms of AUC, the best model was
32, because it obtained 65.71% of AUC, representing a fair model performance.

Table 3. Performance parameters for the model with 32 features.

mtry Sensitivity Specificity AUC

2 63.80% 55.71% 61.42%
17 64.91% 62.85% 62.85%
32 64.27% 62.85% 65.71%

Table 4 presents the confusion matrix of the model with the best outcome based on the
performance measures. The performance of the classifier can be evaluated visually, and to
determine which classes are highlighted. The correct predictions are located in the diagonal
of the table, and the off-diagonal correspond to the incorrectly classified observations.

Table 4 gives a brief description of the classification error in each class used in RF.

Table 4. Confusion Matrix-32 features.

Reference

0 1 Class. Error

Prediction 0 43 27 0.3857
1 26 44 0.3714

Figure 2 presents the ROC Curve obtained based on the performance of the RF using
10-Folds CV and LOOCV with 32 features. This model shows an AUC value of 65%. In
general, an AUC of 0.5 indicates no discrimination, it means that the result of Figure 2 (65%)
can model the problem or has the ability to diagnose patients with or without the condition.

The belief that “the more the variables, better the performance” is no longer accept-
able. The application of feature selection has been gaining popularity in the field of data
mining [41] and, the clinical area is no exception. The prediction of clinical outcomes is a
common medical information need that is particularly adept to the use of clinical datasets,
making predictive clinical modeling a promising area of study in digital healthcare [17].

The microvascular complications of DT2, especially DSPN, and can result in significant
increase in morbidity, chronic pain, foot ulcerations, amputations and mortality [42]. The
delay in the diagnosis of DSPN makes it difficult to treat and the early intervention is
essential to prevent the progression. Feature selection plays an important role since it will
obtain the relevant features to classify and identify the subjects with this condition.
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Figure 2. Receiving operating characteristic (ROC) curve obtained for the model based on the total
set of features.

Figure 3 describes the importance for each variable of the dataset. Boruta performed
499 iterations. In this process, three attributes was confirmed important: GFR, Creatinine
and Glibenclamide (green boxplot represent confirmed attributes), one attribute was con-
firmed as tentative: Urea (yellow bloxplot), 28 attributes was confirmed unimportant (red
boxplot) and the blue bloxplots correspond to minimal, average and maximum Z score of a
shadow attribute.

Figure 3. Variable Importance.

Table 5 presents a summary of the three features that are relevant for the classification
of DSPN.

Table 5. Three key features identified by Boruta.

Features

1 GFR
2 Creatinine
3 Glibenclamide

Figure 4 and Table 6 present the Pearson correlation of the variables used in the model,
playing an important role in descriptive analysis. Taking into consideration, the correlation
ranges from −1 to 1. Figure 4 shows the different values of the correlation coefficient of
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the variables. The correlogram shows correlation for all pais of variables, the more intense
colors are for more extreme correlations.

Figure 4. Correlation plot between the output and the three most important features.

On the other hand, reaffirming the criteria, that correlation coefficient is a simple statis-
tical measure of relationship between the variable dependent and one or more independent
variables. The results show that the three features selected by Boruta, independently show a
correlation as shown in Table 6, all having a negative correlation with respect to the output.
This indicates that GFR, Glibenclamide and Creatinine have a low negative correlation, but
they support the model in a joint way.

Table 6. Correlation Matrix.

GFR Glibenclamide Creatinine Output

GFR 1.0 0.0840 −0.5616 −0.2091
Gliblenclamide 0.0840 1.0 −0.1585 −0.2572

Creatinine −0.5616 −0.1585 1.0 0.1219
Output −0.2091 −0.2572 0.1219 1.0

Table 7 shows the most accurate model using only three features, implementing Boruta
as feature selection model joined by RF applying 10-Folds CV and LOOCV. The results of
the classification demonstrate that AUC values oscillate from 66.05% to 67.01%. Although,
the sensitivity and specificity have the same values, the AUC includes all the possible
decision thresholds offering a more complete assessment.

Table 7. Performance parameters for the model with three features.

mtry Sensitivity Specificity AUC

2 55.71% 65.71% 67.01%
3 55.71% 65.71% 66.05%

The confusion matrix of the model with the best outcome is presented in Table 8. The
final model achieved a sensitivity of 55.71% and specificity of 65.71%, with a minimum
classification error.
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Table 8. Confusion Matrix—three features.

Reference

0 1 Class. Error

Prediction 0 39 31 0.4428
1 25 45 0.3571

Figure 5 shows the statistical model performance obtained by implementing Boruta +
RF with 10-Folds CV and LOOCV. This method showed an AUC of 67% and an Out-Of-Bag
(OOB) error of 37.14%; this metric is an unbiased estimated of the true prediction error.

Figure 5. ROC curve obtained for the model based on the selected three features.

Figure 6 presents the stabilization of the model developed with three features. As the
number of trees grow, the stabilization occurs when 500 were reached. The error rate is
0.40, which means that 0.60 of the samples were correctly classified by RF.

Figure 6. Random Forest (RF) stabilization.

4. Discussion and Conclusions

In this section, the discussion and conclusion of the results obtained for the different
stages applied in this work are presented. Initially, the dataset contains 47 features. Never-
theless, a pre-processing stage was performed, removing the features that are not relevant
to this work. Thus, the final dataset was comprised of 32 features listed in Table 1. The



Healthcare 2021, 9, 138 13 of 17

total number of patients used is 140 of which 70 (controls) corresponds to diabetic patients
and the rest (70 cases) corresponds to diabetic patients with DSPN. Then, all the variables
(features) were normalized through the standard score.

The classification algorithm of Random Forest was selected. This algorithm has
been extensively used in bioinformatics, genetics, clinical, and other areas, and has been
demonstrated to be an effective modeling technique [43]. For this purpose, the 32 features
were submitted to the modeling using LOOCV and 10-Fold methods. A peculiarity for
the evaluation in selection problems, is a topic known as CV and has been described for
decades [44]. As mentioned earlier, proposals and evaluations have been made mixing
the previous techniques [45–47], as well as a Multifold CV (MCV) and r-fold-CV proposal
described by Zhang [44], which analyzes the essential test method as a bootstrap making
a resampling of the observations. Retaking Zhang’s approach (bootstrap method and
MCV) it is proposed LOOCV and 10-Fold CV. First, LOOCV is an expensive method,
likewise, 10-fold CV wastes 10% of the data. However, using the proposed method, where
LOOCV does not waste data, that means that 10% of lost data is recovered in each fold by
using LOOCV.

Besides, sensitivity, specificity, ROC Curve, and AUC were used to verify the perfor-
mance of the algorithm. Here, the AUC and ROC Curve are widely used in biomedical
research literature [48–50], because it is the way to demonstrate the performance of a
medical diagnostic test to detect or classify if a subject has the disease [51]. An ideal test
has an AUC of 1, nevertheless, a value < 0.5 is above the diagonal in the ROC Curve, so, it
is considered to have a reasonable discriminating ability, and it is useful to describe and
model the problem [52].

According to the Fawcett criterion, the interpretation of the AUC values is as fol-
lows [53]: (0.5, 0.6) = bad test, (0.6, 0.75) = regular test, (0.75, 0.9) = good test, (0.9, 0.97)
= very good test, and (0.97, 1) = excellent test. These values were used to interpret the
performance of the models.

All the AUCs oscillate from 63.80% to 65.71% (Table 3) indicating that the models can
model the problem. In other words, they have the ability to diagnose or classify patients
with DSPN.

However, the main contribution of the present work focuses on identifying possible
predictors of DSPN. Feature selection has been used in various domains including genetics,
biomedicine, and informatics [54,55]. The main idea of this technique is that there are
irrelevant features in the dataset which may reduce the classification accuracy, then, choose
a small subset of features. As the small subset is much smaller than the entire one, the
computation time of subsequent analysis is reduced [56]. Boruta, is a wrapper algorithm
that is based on building classification models to determine the importance of features.
The three most important features were calculated, Glomerular Filtration Rate, Creatinine,
and Glibenclamide. Now, these three features comprise a new dataset. Implementing
Boruta + RF applying the approach of 10-Folds CV and LOOCV. Once the model has been
built, it is important to measure the performance of the model, because it provides an
unbiased estimate of errors. The prediction of the model was based on different evaluation
criteria. Sensitivity provides the portion of positive instances that were correctly classified.
Specificity, the portion of negative instances that were correctly classified, and ROC Curve,
a plot of the sensitivity versus 1- specificity, this metric can be considered as the average
value of the sensitivity for a test over all possible values of specificity or vice versa [57].
The model with three features achieved 67% of AUC, thus proving the importance of
“feature selection”.

Secondly, neuropathy manifests in different ways. DSPN, the most common form of
diabetic neuropathy, is a chronic, nerve-length-dependent, that affects at least one-third
of persons with type 1 or type 2 diabetes [58]. To diagnose this condition, the clinical
diagnosis and a physical examination focus on vascular and neurologic tests.

The study has demonstrated the relationship between DSPN and GFR + Creatinine
+ Glibenclamide. Initially, creatinine clearance is an important factor that affects wound
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healing in patients with neuropathic diabetic foot ulcers and is widely used to estimate GFR.
Moreover, these patients have impaired kidney functions, increasing risk for poor wound
healing and amputation [59]. Diabetic Nephropathy is a clinical syndrome characterized
by a decline in GFR, and a high risk of cardiovascular morbidity and mortality [60].

DSPN is directly associated with diabetic retinopathy due to diabetic microvessel
disease is implicated, not considered a risk factor but is part of the same physiopatholog-
ical [5]. The study of Dyck et al. [61] demonstrates that graded severity of retinopathy
is strongly associated with the severity of DSPN. Another serious complication is dia-
betic nephropathy, this is more common in subjects with retinopathy and the severity of
nephropathy increased with severity of retinopathy, and also, DSPN is more frequent in
subjects with nephropathy. At last, nephropathy is univariately closely linked to DSPN
and retinopathy [62].

On the other hand, Glibenclamide, a medication used to treat T2D. However, this drug
has secondary effects such as decrease intake, chronic renal failure, among others [63]. Even
though, the use of Glibenclamide has been decreasing in many countries, it is still used in
Mexico, and the relationship with DSPN is clear, which indicates a direct impact on diabetic
patients who develop DSPN. As mentioned earlier, GFR has been a strong indicator to
identify chronic kidney disease. Additionally, nephropathy is clinically detected if the
following criteria are met: persistent albuminuria and diabetic retinopathy [64].

In conclusion, this paper focuses on identifying the predictors of DSPN based on a
methodology contained in four main stages. The two main models presented in this work,
were 32 - Features and 3 - Features. Statistically, both models are completely different, since
the entire dataset was used in the first model, then Boura was used for feature selection
with the purpose of having only those that really contribute to the model. Finally, it is
shown that using this type of techniques, a statistically significant result is obtained. For
the feature selection, Boruta has confirmed the three important attributes: GFR, creatinine,
and glibenclamide. Then a classification stage was done using RF with a cross-validation
approach. Afterward, the performance measures were calculated. Finally, the model
with three features reached 67.01% of AUC, demonstrating the effectiveness of classifying
DSPN with a lower number of features. Therefore, this allows us to conclude that DSPN
is strongly associated with diabetic nephropathy and diabetic retinopathy based on the
model developed. Also, a timely diagnosis, education of patients, and continuous medical
care are required to minimize the long-term complications. In addition, it should be noted
that this is a preliminary tool that can be of great support for specialists in the diagnosis
of DSPN based on a non-invasive method and may improve their decision making in the
management of diseases and therapy planning. In future works, it would be interesting
to reproduce this analysis with the inclusion of nephropathy and retinopathy data, which
probably allows increasing the performance. Furthermore, we would like to probe more
Machine Learning algorithms with the aim to compare their performance with another
approach of feature selection algorithms which expands the criterion.
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