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Abstract: The validity of self-reported medication use in epidemiological studies is an important issue in
healthcare research. Here we investigated factors influencing self-reported medication use for multiple
diagnoses in the seventh wave of the Survey of Health Aging and Retirement in Europe (SHARE)
dataset in n = 77,261 participants (ages: mean = 68.47, standard deviation = 10.03 years). The influence
of mental, physical, and sociodemographic parameters on medication self-report was analyzed
with logistic regressions and mediation models. Depression, memory function, and polypharmacy
influenced the self-report of medication use in distinct disorders to varying degrees. In addition,
sociodemographic factors, knowledge about diagnosis, the presence of several chronic illnesses,
and restrictions of daily instrumental activities explained the largest proportion of variance. In the
mediation model, polypharmacy had an indirect effect via depression and memory on self-reported
medication use. Factors influencing medication self-report vary between different diagnoses, high-
lighting the complexity of medication knowledge. Therefore, it is essential to assess the individual
parameters and their effect on medication behavior. Relying solely on medication self-reports is
insufficient, as there is no way to gage their reliability. Thus, self-reported medication intake should
be used with caution to indicate the actual medication knowledge and use.

Keywords: self-report; medication adherence; medication knowledge; depression

1. Introduction

The Survey of Health Aging and Retirement in Europe (SHARE) is a cross-national
panel study that includes data on health, social and economic status, and social and family
networks of the representative samples of community-based populations from many Eu-
ropean countries [1]. So far, several studies have explored the aspects of polypharmacy
or the association between distinct medication records and clinical or social factors, e.g.,
sleep medication use with a sleep disorder or pain medication use with musculoskele-
tal pain [2–4]. However, the primary factors driving the knowledge of medication and
behavior remain unidentified [5]. In SHARE, medication use and medical diagnoses are
recorded via self-reports for predefined selection of drug classes or disorders, e.g., drugs
for hypertension [6,7]. However, this approach has some limitations that must be acknowl-
edged when using self-reported data to proxy for actual medication knowledge or usage.
Studies based on self-reported medication use highly depend on the accuracy of those
self-reports to draw accurate and reliable conclusions from the available data [8]. However,
self-reported medication behavior can be measured using a large bandwidth of different
methods [8–10], and no consensus has yet been reached regarding its reliability and best
practices. For instance, some studies found self-report of medication to be reliable and
comparable to objective measures such as pill count, whereas other studies raise the issue
that self-report is subjected to recall errors and bias [9,11–13]. Errors in self-reporting of
medication are linked to general knowledge about medication, attitudes toward health and
treatment, and adherence to medication [14]. Particularly, knowledge about the prescribed
and self-reported medication is influenced by cognitive function, mood disorders, and the
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number of drugs taken [12–16]. As an alternative, the accuracy of self-reported medication
use can be verified by comparing it with other measures, e.g., prescriptions, healthcare
insurance claims, or general practice medical records [10,17–19].

However, although available, these objective reports are not frequently used in clinical
research and furthermore do not necessarily capture actual medication intake either [19].
Therefore, it is crucial to understand the parameters that influence self-reports of med-
ication [12,13,20]. Several influential factors have previously been proposed, including
cognitive deficits (poor recall) or intended nondisclosure, age, polypharmacy, poor health,
and social desirability bias or stigmatization [12,13,21–26]. However, the influence of these
factors varies between studies and diagnoses, and no consensus has been reached regarding
their effects [5,14]. Given the high impact of cognitive deficits, mood disorders, physical
functioning, and polypharmacy on medication knowledge and behavior [14], we aimed
to study the effect of these factors on self-reporting of medication for several diagnoses
provided in the SHARE dataset [6].

2. Materials and Methods
2.1. Study Sample

SHARE is a biennial longitudinal survey of the aging process in individuals in several
European Union countries and Israel. The survey collects a multitude of information
regarding health, socioeconomic status, and social and family networks. Details about the
sampling procedure have been published elsewhere [1]. So far, SHARE has conducted
eight panel waves. Here, we analyzed data from the seventh wave (release 7-1-1), which
were collected between March and October 2017. SHARE targets all persons above 50 years
of age who speak the country’s primary language, who are physically and mentally able to
participate, and who are not institutionalized/in hospital or out of the country during the
sampling time. Further details about the sampling procedures and criteria can be found in
the respective documentation files [1,6,7]. An overview of the study cohort included in the
present analyses is provided in Table 1.

2.2. Extracted Variables

Data on medication use were collected by asking participants, “Do you currently
take drugs at least once a week for (1) high blood cholesterol, (2) high blood pressure,
(3) coronary diseases, (4) other heart diseases, (6) diabetes, (7) joint pain, (8) other pain,
(9) sleep problems, (10) anxiety or depression, (11) osteoporosis, (12) stomach burns,
(13) chronic bronchitis, (14) suppressing inflammation (only glucocorticoids or steroids),
(15) none, (16) other?” Participants had the option to choose “refuse,” “don’t know,”
“select,” or “not select.”

In addition, the following variables were extracted from the dataset:
The presence of distinct disorders “ever diagnosed/currently having”: (1) heart attack,

(2) high blood pressure or hypertension, (3) high blood cholesterol, (4) stroke, (5) diabetes or
high blood sugar, (6) chronic lung disease, (7) cancer, (8) stomach or duodenal ulcer, peptic
ulcer, (9) Parkinson’s disease, (10) cataracts, (11) hip fracture or femoral fracture, (12) other
fractures, (13) Alzheimer’s disease, dementia, senility, (14) other affective/emotional disor-
ders, (15) rheumatoid arthritis, (16) osteoarthritis/other rheumatism, (17) chronic kidney
disease, (18) none, (19) other. Participants had the option to choose “refuse,” “don’t know,”
“select,” or “not select.” The variable “Number of chronic diseases” was based on the
number of chronic diseases reported by each individual.

Regarding sociodemographic factors, age was calculated according to “Year of birth”
subtracted from 2017, when wave 7 was conducted. Gender had “male” or “female” as
possible answers.

In addition to sociodemographic factors, based on the previously cited literature,
cognition, restrictions in performance of daily activities, and mood were included as
further covariates to understand how self-report of medication can be influenced.
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To estimate patients’ cognition, the 10-word recall test was used for immediate and
delayed episodic memory [27,28]. The test consisted of verbal registration and recall of a
list of ten words immediately (first trial) and once after a delay time (delayed recall). The
total scores of the two tests ranged from 0 to 10 and corresponded to the number of words
the respondent could recall. Baseline cognitive function in SHARE was also measured in
verbal fluency and numeracy. Based on previous studies, forgetting to take medication was
identified as the most common reason for nonadherent behavior [25]; therefore, we used
delayed episodic memory (delayed recall) as a cognitive measure in our study. Patients
were categorized into poorer memory (<5 words correct) and better memory (≥5 words
correct) groups [6,7].

The limitations with instrumental activities of everyday life (IADL) index [29] was
used to describe the number of limitations with seven instrumental activities of everyday
life [30]. It ranges from 0 to 7, with higher values indicating more difficulties with these
activities and thus impaired mobility of the respondent.

Depression was defined using the total score on the EURO-D scale [31]. It covers
12 symptom domains: depressed mood, pessimism, suicidality, guilt, sleep, interest, irri-
tability, appetite, fatigue, concentration, enjoyment, and tearfulness. Each item is scored 0
(symptom not present) or 1 (symptom present), and the item scores are summed to produce
a scale ranging from 0 to 12. Respondents were divided into non-depressed (EURO-D <3)
and depressed (EURO-D ≥4) groups [6,7,31–33].

2.3. Statistical Analysis

All statistical analyses were performed with R version 3.6.2 (R Foundation for Statisti-
cal Computing, Vienna, Austria), with a p-value < 0.05 indicating statistical significance.
Values were given as means and standard deviations, and categorical variables were pre-
sented as numbers or percentages. Descriptive statistics were used to characterize the
cohort. The association between several parameters and self-reported medication use
was studied using univariate Spearman’s correlation and binomial logistic regression
models (backward selection). The significance levels for variables entering the linear re-
gression model and removing from the model were set at 0.05 and 0.1, respectively. We
excluded autocorrelation and multicollinearity prior to analysis (variance inflation factor
and tolerance) [34].

A mediation model was used to study the impact of polypharmacy on self-reported
medication use [35,36]. Memory and depression were used as moderator(s) of the rela-
tionship between polypharmacy and self-reported medication use. Additionally, age, sex,
IADL, and the number of chronic disorders were entered as covariates. The statistical
significance of the direct and indirect effects was evaluated using 10,000 bootstrap samples
to create bias-corrected confidence intervals (CIs; 95%). The relationship between all vari-
ables involved in the mediation analysis was approximately linear, as assessed by visually
inspecting the scatterplots after LOESS smoothing. Since the pure effect of mediation is de-
scribed by the indirect effect, this is the most important criterion for mediation, regardless
of the other prerequisites [37,38].

3. Results

The descriptive statistics of the investigated cohort are provided in Table 1 and detailed
in the initial dataset publications [6].
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Table 1. Summary of cohort characteristics.

Variable M Mdn SD IQR

Age (years) 68.5 68 10.0 61–76
Depression (EURO-D) 2.4 2 2.3 1–4

Memory (delayed recall for ten words list learning) 3.7 4 2.2 2–5
n %

Sex
Male 33,150 42.9

Female 44,111 57.1

Number of chronic diseases

Refusal 39 0.1
Don’t
know 118 0.2

0 16,061 20.9
1 21,187 27.6
2 16,463 21.4
3 11,096 14.4
4 6233 8.1
5 3123 4.1
6 1455 1.9
7 627 0.8
8 295 0.4
9 116 0.2

10 42 0.1
11 18 0.0
12 7 0.0
13 2 0.0

Limitations with instrumental
activities of daily living

Refusal 35 0.0
Don’t
know 107 0.1

0 61,575 80.6
1 5919 7.8
2 2367 3.1
3 1592 2.1
4 1158 1.5
5 827 1.1
6 679 0.9
7 633 0.8
8 487 0.6
9 980 1.3

Taking at least five different drugs on
a typical day

Refusal 20 0.0
Don’t
know 135 0.2

Yes 18,320 30.5
No 41,615 69.3

Note: M = mean, Mdr = median, IQR = interquartile range, SD = standard deviation.

The most common self-reported disorders and conditions were hypertension, high
blood cholesterol, and osteoarthritis (Figure 1A). Accordingly, most self-reported drugs
were prescribed for these conditions (Figure 1B).
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Figure 1. (A) Frequencies of self-reported diseases and (B) frequencies of self-reported medication use (selected) or nonuse 
(not selected) in the entire cohort (n = 76,876). 

In the univariate analyses, the frequency and ratio between selected and not-selected 
drugs differed between people with poor and better memory (Figure 2A) and between 
those with and without depression (Figure 2B). 

Figure 1. (A) Frequencies of self-reported diseases and (B) frequencies of self-reported medication use (selected) or nonuse
(not selected) in the entire cohort (n = 76,876).

In the univariate analyses, the frequency and ratio between selected and not-selected
drugs differed between people with poor and better memory (Figure 2A) and between
those with and without depression (Figure 2B).
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Figure 2. (A) The ratio of drugs not selected/selected for use depending on memory function as indicated by the ten-word 
list learning delayed recall (poorer memory <5 words correct, better memory ≥5 words correct). (B) The ratio of drugs not 
selected/selected for use depending on their depression status (EURO-D <3 or ≥4). 

The reports of distinct disorders and—if available—the use of corresponding drugs 
were highly correlated, indicating that people who can select the correct diagnosis can 
also select the appropriate medication (Table 2). These correlations were comparable be-
tween patients with good and poor memory function (Supplementary Materials Table S1).

Figure 2. (A) The ratio of drugs not selected/selected for use depending on memory function as indicated by the ten-word
list learning delayed recall (poorer memory <5 words correct, better memory ≥5 words correct). (B) The ratio of drugs not
selected/selected for use depending on their depression status (EURO-D <3 or ≥4).

The reports of distinct disorders and—if available—the use of corresponding drugs
were highly correlated, indicating that people who can select the correct diagnosis can also
select the appropriate medication (Table 2). These correlations were comparable between
patients with good and poor memory function (Supplementary Materials Table S1).
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Table 2. Correlation between the reporting of distinct disorders and drug use.

Ever
Diagnosed/Currently

Have

Drugs for

High Blood
Cholesterol

High
Blood

Pressure

Coronary
Diseases

Other Heart
Diseases Diabetes Chronic

Bronchitis
Anxiety or
Depression Joint Pain Stomach

Burns
Other
Pain

Sleep
Problems Osteoporosis Suppressing

Inflammation None

High blood
cholesterol 0.704 0.243 0.145 0.121 0.170 0.052 0.074 0.094 0.119 0.067 0.095 0.073 0.037 −0.229

High blood pressure
or hypertension 0.255 0.825 0.153 0.163 0.190 0.053 0.056 0.128 0.088 0.084 0.083 0.049 0.041 −0.421

Heart attack 0.182 0.174 0.437 0.513 0.107 0.076 0.052 0.098 0.087 0.073 0.096 0.042 0.053 −0.174
Diabetes or high

blood sugar 0.221 0.213 0.128 0.101 0.882 0.052 0.057 0.088 0.072 0.056 0.073 0.022 0.035 −0.189

Chronic lung disease 0.052 0.063 0.097 0.100 0.052 0.524 0.070 0.103 0.102 0.080 0.087 0.074 0.096 −0.082
Other affective/

emotional disorders 0.057 0.045 0.062 0.066 0.041 0.078 0.537 0.119 0.122 0.133 0.257 0.081 0.074 −0.098

Rheumatoid arthritis 0.069 0.107 0.073 0.093 0.069 0.084 0.093 0.359 0.113 0.171 0.114 0.155 0.134 −0.123
Osteoarthritis/other

rheumatism 0.081 0.088 0.063 0.072 0.041 0.076 0.088 0.338 0.141 0.173 0.123 0.224 0.114 −0.137

Stomach or duodenal
ulcer, peptic ulcer 0.059 0.057 0.072 0.074 0.040 0.090 0.089 0.111 0.330 0.116 0.098 0.084 0.078 −0.064

Alzheimer’s disease,
dementia, senility 0.037 0.036 0.088 0.055 0.051 0.047 0.146 0.060 0.043 0.069 0.114 0.049 0.045 −0.057

Stroke 0.109 0.128 0.313 0.150 0.084 0.066 0.081 0.070 0.068 0.077 0.098 0.050 0.051 −0.087

Corresponding drug use and disorders are highlighted in bold. n = 76,743, for all correlations p < 0.001.
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Logistic regression was used to further study the association between selected/not
selected distinct drug classes, with memory (delayed recall of ten-word list), depression
(EURO-D), gender, age, the number of chronic disorders, polypharmacy (yes/no), and
selected corresponding diagnosis (present/absent) as independent variables. Correlations
between predictor variables were low (r < 0.70), indicating that multicollinearity was not a
confounding factor in the analysis. Exemplary findings on hypertension are presented in
the paragraphs below; further analyses on other diagnoses are given in the Supplementary
Materials.

As one example, the explained variance of memory, depression, and polypharmacy
was 6% for antihypertensive drugs (Nagelkerke’s R2 = 0.057) (Model 1 in Table 3). After
entering age, the number of chronic disorders, IADL, gender, and report of hypertension
as a diagnoses as additional independent variables, the explained variance increased to
72%. However, in the final model, memory and depression were no longer the significant
predictors of the self-reported use of antihypertensive drugs (Model 2 in Table 3). Findings
for drugs used for diabetes, chronic lung diseases, high cholesterol, anxiety, pain, and
stomach problems are provided in Supplementary Materials Tables S2–S7. Results for drugs
where no single corresponding disorder was recorded are provided in Supplementary
Materials Tables S8–S15.

Table 3. Exemplary binomial logistic regression: drugs for hypertension.

Predictor. p Odds
Ratio

95% CI
Lower

95% CI
Upper

Model Fit
Measures Overall Model Test

R2
N AIC χ2 df p

Model 1

Intercept <0.001 4.162 3.673 4.715 0.0570 14330 477 3 < 0.001

Depression <0.001 0.956 0.939 0.973

Memory 0.007 0.974 0.956 0.993

Polypharmacy No–Yes <0.001 0.372 0.338 0.409

Model 2

Intercept <0.001 0.0413 0.0206 0.0825 0.7221 6379 8439 8 <0.001

Depression 0.333 0.9846 0.9540 1.0160

Memory 0.395 1.0146 0.9813 1.0491

Polypharmacy No–Yes <0.001 0.3342 0.2849 0.3920

Age <0.001 1.0403 1.0316 1.0491

Number of chronic
Illnesses <0.001 0.8597 0.8137 0.9084

Instrumental activities of
daily life (IADL) 0.022 0.9474 0.9047 0.9922

Sex: Female–Male 0.031 0.8637 0.7559 0.9868

Hypertension:
Selected–Not selected <0.001 156.4674 130.6701 187.3576

Of note, 1885 (2.5%) participants reported having dementia in the list of available
diagnoses. There was a weak correlation between delayed recall of the ten-word list and
the presence of dementia (r = 22,120.16, p < 0.001). As this might cause bias, analyses were
repeated after the exclusion of people with dementia. This did not remarkably change the
former results (Supplementary Materials Table S15).

In summary, the combination of polypharmacy, memory deficits, and depression
contributed in varying degrees to the self-report of medication use (Figure 3).
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Figure 3. Explained variance (R2
N) of self-reported medication use by memory, depression, and polypharmacy in corre-

sponding binominal logistic regressions.

As demonstrated in the logistic regressions for all diagnoses assessed in this analy-
sis, polypharmacy influences self-reported medication. Therefore, we used a mediation
model to explore how polypharmacy exerts this influence. Based on previous literature,
we hypothesized that the effect of polypharmacy could be mediated by depression (i.e.,
nondisclosure) or cognitive deficits (i.e., memory problems).

A simple mediation model is displayed in Figure 4A for the self-report of antihyperten-
sive medication use. In this initial model, polypharmacy had a significant direct effect on
the self-reported medication. In addition, there was an indirect effect of polypharmacy via
depression and memory on self-reported medication (Figure 4). After entering covariates
to the model, only the indirect effect through depression remained significant (Figure 4B).
For diabetic medication as another example of a frequent diagnosis, both depression and
memory mediated the effect of polypharmacy on self-reported diabetes medication use
(Figure 4C) (see Supplementary Materials Table S16 for the full model).
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4. Discussion

Using the SHARE dataset, which contains representative data on many diagnoses, we
were able to demonstrate that various factors, including polypharmacy, several chronic
disorders, knowledge about the diagnosis, depression, memory, restrictions in IADL, and
gender might influence the self-reported medication use to different degrees. As in previous
studies, all the factors, except for polypharmacy and knowledge of diagnosis, varied in
their influence on the diagnoses [12,14,21].

As shown in previous studies, polypharmacy influences the self-report of medication.
An increasing number of daily medications is linked to poorer knowledge when medication
regimes become too complex [12,25,39]. Polypharmacy is also associated with increased
age, depression, memory loss, and poor physical functioning [40] and it can be regarded as
an indicator of general poorer health [14,41]. Therefore, it is possible that patients taking
various medications are more likely to forget some of them when asked to report their
medication. Similarly, as shown in our mediation analysis, polypharmacy itself was linked
to depression, memory, and sociodemographic factors. This relationship also shows that
factors related to medication behavior are not fully separable. Furthermore, they may
be linked to the report itself and to the probability of getting specific prescriptions be-
cause of health reasons. The influence of polypharmacy in particular is highly relevant, as
polypharmacy poses a risk for patients since not all prescribed medications are necessarily
appropriate. Several methods have been developed to detect such inappropriate medica-
tion; however, it is essential to keep in mind the influence of the number of medications
alone on self-reported medication use [42–44], to detect potentially harmful medication
regimes.

Knowledge about the corresponding diagnoses strongly increased the chances of
selecting medications, indicating that both have the same underlying principle of health
knowledge. This is also shown by the correlations between the selection of diagnosis and
corresponding medication in our analyses [5,12,14].

Similar to polypharmacy, the presence of multiple chronic disorders influenced med-
ication reports [14,21]. However, the direction of this influence varied across diagnoses.
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Patients who might be accustomed to having an illness for a long time might remember
them better. However, multiple chronic disorders might be linked to overall poor health
and polypharmacy, again leading to difficulties in reporting all medications [14,45].

Depression and cognition have often been recognized as critical factors influencing
medication behavior [5,14,15], although their influence varied across the different diagnoses
reported in this study. It is essential to keep in mind that like polypharmacy, depression
and cognition are reciprocally linked to health and may affect the medication report itself
and actual prescription probability as health factors. Therefore, it is crucial to understand
how depression and cognition influence the medication report itself, e.g., via motivational
deficits, and how they are related to medication behavior and actual health. Our analyses
revealed no difference in the results when excluding people reporting dementia and showed
that cognition had little effect on knowledge of diagnosis and medication. However, it
should be noted that there was no neuropsychological testing involved in the SHARE
data collection, but the proportion of participants with reported cognitive disorders was
low [1,6,7,46]. This comparability of results across people with and without cognitive
impairment suggests that although cognition may influence medication reports, there is a
difference between the general report of the overall presence of medication and more finely
tuned knowledge, such as the exact name, dosage, or time of administration [14,25,47]. The
varying direction of influence of depression and cognition in this study suggests that they
are not exclusively linked to the medication report as would be expected if they had exerted
their influence through nondisclosure due to the lack of motivation or forgetting. However,
as shown in the mediation models, depression, polypharmacy, and cognition may not
only be driving forces influencing medication knowledge but also generally concomitant
symptoms of specific diagnoses and associated health factors.

Accordingly, depression, memory, and polypharmacy did not explain much of the
variance of medication selection on their own. This indicates that other factors must
be considered, such as age, number of diagnoses, gender differences, IADL, and the
knowledge of the diagnosis. However, these factors also varied between different diagnoses,
again highlighting the complexity and individuality of medication knowledge [5,12,45].

One necessary restriction of self-reported medication is the dissociation between med-
ication knowledge, i.e., reporting prescribed medication, and actual medication behavior
(e.g., taking it, adherence). This analysis only assessed self-reported medication knowledge
on a superficial level. The often-cited impact of depression and cognition may act on actual
medication behavior and adherence more than on the report alone. However, there was
no objective measure of medication in this dataset, such as counting pills or comparison
with pharmacy records [5,13]. Therefore, an objective assessment of actual medication for
comparison is not provided; statements can only be made about the overall knowledge
about prescribed medication and not about the medication behavior. Similarly, no assess-
ment can be made for patients who did not select medications because there is no objective
measure assessing if this information is correct. This again highlights the importance of
including objective measures of medication taken to gage the adherence levels of patients.

Although the SHARE dataset presents several advantages, especially the large sample
size and the inclusion of 28 different countries, it also poses certain limitations. First,
SHARE is based on self-report that may not capture the medication knowledge or health
status of the participants accurately [9,10]. Similarly, people who repeatedly agree to
participate in large-scale research projects are more likely to be healthy and motivated.
Thus, it is possible that a large group of people with more severe health problems is not
represented in this survey, mainly as only noninstitutionalized participants were recruited.
In SHARE, the magnitude of nonresponse and panel attrition may generate sample selection
bias, limiting the representativeness of the database and the generalizability of results [7].

Similarly, reports across several countries with varying health systems and living
standards may not be entirely comparable, despite the advantages promised by inter-
nationality and large sample sizes. However, the SHARE data are much more complex
than conventional survey data due to their cross-national and multidisciplinary nature.
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This enables the exploration of the complex relationship between different life domains,
individuals, family, social networks, states, and across the entire life course over time [6,7].
Furthermore, for this study, neither depression nor cognition was assessed in clinical test-
ing. However, both measures have been validated previously and are frequently used in
the literature [28,31,33].

Overall, although self-reports have been reported as relatively comparable to objective
measures that can be helpful to find individual problems with medication [10,11], the
results of this analysis reveal that medication self-reports are influenced by various factors,
suggesting that they do not necessarily portray actual medication behavior [5,13,45]. Fac-
tors influencing medication reports vary between diagnoses, highlighting the complexity of
medication knowledge and adherence and the need for assessing the interplay of parame-
ters and their effect on medication behavior individually [12,13,23,45,47,48]. Relying solely
on medication self-reports is insufficient, as there is no way to gage the validity of those
reports. Based on the self-report alone, it is impossible to tell if the identified variables of
influence affect the self-report alone, the actual health status, or both. Thus, in scientific
research and clinical practice, medication self-reports should be used with caution as single
indicators of medication behavior.
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