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Abstract: Nowadays, the use of diagnosis-related groups (DRGs) has been increased to claim re-
imbursement for inpatient care. The overall benefits of using DRGs depend upon the accuracy of
clinical coding to obtain reasonable reimbursement. However, the selection of appropriate codes is
always challenging and requires professional expertise. The rate of incorrect DRGs is always high
due to the heavy workload, poor quality of documentation, and lack of computer assistance. We
therefore developed deep learning (DL) models to predict the primary diagnosis for appropriate
reimbursement and improving hospital performance. A dataset consisting of 81,486 patients with
128,105 episodes was used for model training and testing. Patients’ age, sex, drugs, diseases, lab-
oratory tests, procedures, and operation history were used as inputs to our multiclass prediction
model. Gated recurrent unit (GRU) and artificial neural network (ANN) models were developed
to predict 200 primary diagnoses. The performance of the DL models was measured by the area
under the receiver operating curve, precision, recall, and F1 score. Of the two DL models, the GRU
method, had the best performance in predicting the primary diagnosis (AUC: 0.99, precision: 83.2%,
and recall: 66.0%). However, the performance of ANN model for DRGs prediction achieved AUC of
0.99 with a precision of 0.82 and recall of 0.57. The findings of our study show that DL algorithms,
especially GRU, can be used to develop DRGs prediction models for identifying primary diagnosis
accurately. DeepDRGs would help to claim appropriate financial incentives, enable proper utilization
of medical resources, and improve hospital performance.

Keywords: deep learning; artificial intelligence; diagnosis-related groups; hospital expenditure

1. Introduction

Healthcare spending has consistently been increasing globally. Inpatient care is one
of the most expensive hospital services, accounting for approximately 31% of the total
expenditure [1]. With the limited resources and increased complexity, policymakers are
facing immense challenges of reducing health care costs while improving financial pro-
tections, high-quality care, and lowering out-of-pocket (OOP) costs for people [2]. The
Fee-for-service (FFS) is a basic payment system for both national and private hospitals in
which all care providers are reimbursed for each service provided [3,4]. To rein in excessive
healthcare costs and maintain sustainable procedures for inpatients, prospective payment
policies are often implemented to foster risk-sharing between insurers and providers [5,6].
Nowadays, the governments of several countries have already reformed their hospital
payment policy by shifting from FFS to diagnosis-related groups (DRGs).
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The concept of DRGs has now been widely adopted and become the principal means
of reimbursement for inpatient services globally [7]. Previous studies have shown that the
implementation of DRGs helped to shorten the length of hospital stays and lower OOP
by efficiently allocating hospital resources [8,9]. DRGs, a prospective payment system, are
used to effectively classify and combine diseases with similar characteristics into different
diagnostics and treatment groups. Indeed, DRGs are set to achieve greater equality of
financing based on the homogeneity of the clinical process and the similarity of resource
consumption [10]. The diagnostics codes should be accurately matched with DRGs codes
to claim actual reimbursement, but this is a time-consuming process and requires expert
knowledge to manually retrieve information from patients’ clinical records. Selection
of appropriate DRGs codes depends on several factors, such as patients’ comorbidities,
complications, treatments, age, discharge status, and the principal diagnoses provided by
physicians. Therefore, the quality of DRGs coding is a key factor that influences a hospital’s
ability to receive reasonable reimbursement and its overall profits.

DRGs coding errors can influence hospitals’ income, hamper proper planning, and
often lead to unfair distributions of resources. Ayub et al. [11] evaluated coding accuracy
and its impact on hospital costs, reporting 9.6% miscoding with a total lost billing oppor-
tunity of $587,799. Cheng et al. [12] reviewed the causes and consequences of miscoding
in a Melbourne tertiary hospital, finding that 16% of the 752 cases audited reflected a
DRG change and caused a loss of hospital revenue of nearly AUD 575,300. Furthermore,
the incorrect selection of the principal diagnosis accounted for an additional 13% of the
DRG changes, which is due to the poor quality of documentation [12]. A previous study
demonstrated that the overall rate of incorrect DRGs coding was up to 52%, which may be
due to a lack of professional experience, work load, and lack of automation [13].

The widespread application of electronic health records (EHRs) has generated large
amounts of patient data and created immense opportunities to predict the primary diag-
nosis using deep learning (DL). In this study, we developed and validated DL models to
predict the primary diagnosis for appropriate reimbursement and improve the quality
of care.

2. Literature Review

Taiwanese residents have been benefited from the nationwide health-care coverage
through the compulsory National Health Insurance (NHI) scheme since 1995 [14]. The in-
troduction of this system has ensured high-quality care, and NHI provides reimbursement
for nearly all medical fees [15]. However, given the limited resources, global health care
systems are facing immense challenges in responding to burgeoning healthcare expendi-
tures [16,17]. Therefore, several strategies have been implemented to reduce unnecessary
costs and minimize financial risks from insurers to providers [5,18]. In 2010, Taiwan intro-
duced the diagnosis-related group (DRG) payment system, aiming to improve efficiency
and minimize costs. This DRG payment system has an evident impact on current health
care services, including the length of hospital stay and the intensity of inpatients care [19].

Artificial intelligence (AI) has shown great promise in improving patient care and
making fruitful clinical decisions [20,21]. The availability of EHRs data has created an
opportunity to calculate DRGs and associated costs at the time of admission using AI
algorithms. The Taiwan National Health Insurance (NHI) Research Database is one of the
largest nationwide population databases in the world, which has been used to produce
high-quality research [22–26]. As a result, the NHI database can be used to predict DRGs
using AI algorithms to accurate reflecting the costs incurred by hospital treatments and
stays. Using two cohorts, a prior study applied a deep learning model to automatically
predict DRGs and the corresponding costs [27]. Moreover, another study from Germany
examined the effectiveness of statistical machine learning in the early prediction of DRG
and resource allocation at a 350-bed hospital [28].
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2.1. Artificial Neural Networks

Artificial neural networks (ANNs) are also simply called neural networks. ANNs are
a subset of machine learning and are at the heart of DL algorithms that are inspired by
the biological neural network. The main concept of an ANN was described by McCulloch
and Pitts [29] and was finally developed in 1958 [30]. An ANN consists of three layers: the
input layer, which receives data, the output layer, which generates valuable information
from provided data, and one or multiple hidden layers that are connected to the input and
output layer (Figure 1).
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For example, each input xi in the input layer is multiplied by a connection weight wij
between the neuron i in the input layer to the neuron j in the hidden layer. However, bias
bj is formerly summarized as net input SJ and passes it to the hidden layer by a nonlinear
activation function, sigma to generate an output, yj.

Sj = ∑ xiwij + bj

f (S) = (1−e−2S)
(1+e−2S)

yj = f
(
Sj
)

However, yi signal from the hidden layer to all k neuron in the final output layer Fk.
and calculate the input to the k neuron of the output layer is F′k.

F′k =
h

∑
j=1

yjw′jk + b′k

where w′jk is the weight of the connected between the j neuron in the hidden layer to the k
neuron of the output layer; b′k is the bias.

Finally, it calculates the output layer signals by using an activation function, sigmoid.

Fk = f
(

F′k
)
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The error between the target outcome and the observed data is measured as follows:

Errork =
1
2

n

∑
k=1

(targetk − observedk)

This process, utilized in all pairs in the training dataset and the training cycles, is known
as epoch. The number of epochs is selected by users and repeated to reach minimum error.

The error gradient for output layer is calculated as follows:

Gradient errork = (targetk − observedk) f ′
(

F′k
)

Rosenblatt [30] first proposed the idea of perceptron, which was used in a gradient
descent-based learning algorithm. The perceptron is centered on single neuron and can
be considered the primary basis of feed-forward ANNs. Perceptron is more generally a
computational model, and it takes an input, aggregates it and returns 1 only if the weighted
sum is more than some thresholds, otherwise it gives 0. The equation is given below:

f (net) =

 1 i f
n
∑

i=0
wixi > 0

0 otherwise

However, there were several limitations of using perceptron, which were raised by
Minsky and Papert [31], who mentioned that it cannot be used to implement the sample
data which are not linearly separable. In the modern era, using backpropagation has
immense advantages over traditional gradient descent methods. It provides a way to train
networks with any number of hidden units arranged in any number of layers. In fact,
the networks do not need to be organized in layers. It provides multi-layer feed-forward
ANNs with a highly competitive supervised algorithm. The backpropagation helps to
reduce the predefined loss function through updating the weight and bias values [32].

2.2. Gated Recurrent Unit

A gated recurrent unit (GRU) uses a gating mechanism in the recurrent neural net-
works and was first introduced in 2014 by Cho [33]. The GRU is quite similar to long
short-term memory (LSTM) with a forget gate, but GRU has only two gates (reset and
update,) and LSTM has three gates (input, output, and forget). GRU is less complex,
faster, requires less memory and less time to train compared to LSTM because it has less
parameters than LSTM. The main advantage of using GRU is that it solves the vanishing
gradient problem, which comes with a standard recurrent neural network (RNN). Figure 2
presents the inputs for both the reset and update gates in a GRU where the input of the
current time step is xt, the hidden state of the previous time step is ht−1, and output is
calculated by activation function.

Assume that, in a given time step t, the number of provided inputs of a small batch
xt ∈ Rn×h (h is the number of hidden units). Then, the reset gate rt ∈ Rn×h and update
gate zt ∈ Rn×h are calculated as follows:

rt = σGRU(xtwxr + ht−1whr + br)

zt = σGRU(xtwxz + ht−1whz + bz)

Here, wxr, wxz ∈ Rv×h and whr, whz ∈ Rh×h are weight parameters, br, bz ∈ R1×h

are biases, and σGRU is an activation function, which converts values in both gates into 0–1.
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Later, the candidate hidden state h̃t ∈ Rn×h is generated in a series of operations
between the output of the reset gate and the hidden state ht−1 of the previous time step. It
is calculated as follows:

h̃t = tanhGRU(xtwxh + (rt ⊗ ht−1)whh + bh)

where wxh ∈ Rv×h and whh ∈ Rh×h are weight parameters, bh ∈ R1×h is the bias, ⊗ is
the elementwise product operator, and tanhGRU is a nonlinear activation function, which
converts value between −1 and 1. In this stage, the influence of previous states can be
minimized with the elementwise multiplication of rt and ht−1. The unique part of this
equation is how the element value of the reset gate controls how much influence of previous
hidden state ht−1 can have on the candidate state. If the value of reset gate rt is equal to
1, then all the information from the previous hidden state ht−1 is considered. Likewise,
if the value of reset gate rt is 0, then the information from the previous hidden state is
completely ignored.

After obtaining the result of the candidate state, it is used to generate the current
hidden state. This is where the update gate comes on board. However, the equation here is
slightly different from LSTM (input and forget gate are complementary and have certain
redundancy). GRU directly uses a single update gate to control both historical information,
which is the hidden state ht−1 of the previous time moment, and the candidate hidden state
h̃ of the current time. The final updated equation for the GRU is as follows:

ht = zt ⊗ ht−1 + (1− zt)⊗ h̃t

When the update gate zt is close to 1, it will retain the old state. In this case, the
information from xt is completely ignored. When zt is close to 0, then the new latent state
ht approaches the candidate latent state h̃t.
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3. Materials and Methods
3.1. Study Approval and Propose Methodology

This study was conducted in the multiple center according to the tenets of the Decla-
ration of Helsinki. This study was approved by the Taipei Medical University Institutional
Review Board, which waived informed patient consent because all patient records and
information were anonymized and deidentified before the analysis. Figure 3 shows the
data analysis framework for DRGs prediction in this study.
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3.2. Data Source

This current study retrieved data from the Taiwan National Health Insurance Research
Database (NHIRD) between 1999 and 2013. NHIRD offers the most comprehensive clinical
information, such as demographics, diagnosis records, medication records, surgical records,
and laboratory information from 23 million people in the Taiwanese population [34,35].
International guidelines were followed to record and collect data, e.g., diseases and med-
ication prescriptions were coded and retrieved by using the International Classification
of Diseases, Ninth Revision (ICD-9), and Anatomical Therapeutic Chemical (ATC). The
quality and completeness of the NHIRD database is excellent, and it is used to conduct
high-quality clinical research. In our study, we collected 2 million random samples from
NHIRD. Afterwards, we carried out a retrospective cohort study of individuals who visited
the urinary department’s inpatient care between 1999 and 2013. Patients were eligible for
inclusion in this study if they were labelled as discharged and had a primary diagnosis for
admission, resulting in 132,035 episodes. After filtration (e.g., missing data and infrequent
comorbidities), the final study sample included 128,105 episodes from 81,486 patients.

3.3. Data Descriptions

In the era of big data, AI models have potential to make advanced clinical decision
support and assist clinicians to deliver optimal care. Clinical decision support systems
(CDSS) have the ability to analyze large volumes of data and recommend appropriate
primary diagnosis for improving efficiency and sustainable care. However, to make a
feasible implementation of a DL algorithm to predict DRGs, we included patient and
clinical factors readily available in electronic health records (EHRs). More specifically,
we collected patients’ sociodemographic, admission status, admission history, admission
diagnosis, discharge diagnosis, medications, comorbidities, operations, and procedures
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history to support real-time, proactive decision making related to selecting appropriate
primary diagnosis for effective cost management.

Potential predictor selection was guided by previously published works and data
availability. Predictor variables include the following: (i) patient demographics (age,
gender), (ii) procedures (1636 types), (iii) drugs (461 types), (iv) operation (927 codes),
and (v) the 200 most common comorbidities. Admission and discharge diagnoses were
determined using the primary International Classification of Diseases, 9th edition (ICD-9).
Moreover, drugs were determined using Anatomical Therapeutic Chemical (ATC), and
operation and procedure codes were determined using standard protocol.

3.4. Data Preprocessing

Data preprocessing comprised the following steps: (1) data cleaning, (2) variable
selection, and (3) one hot coding/embedding formation. NHIRD collects a vast number
of variables; however, not all the variables were important to this study. In this process,
we deleted irrelevant variables and kept only demographics, admission data, visit date,
date of birth, department identification, medications, diseases, operations, laboratory, and
procedures information. Afterwards, patients’ age was calculated using their birth date and
admission date information. There was no age limit included in our work. For medication
information, we used the five-digit Anatomical Therapeutic Chemical Classification Sys-
tem., e.g., five-digit ATC code: B01AC, platelet aggregation inhibitors excluding heparin,
including drugs such as B01AC01 (Ditazole), B01AC02 (Cloricromen), and B01AC04 (Clopi-
dogrel). Additionally, seven characters (e.g., A10BA02) were considered for the chemical
substances, even though five characters were used to describe the chemical substances, and
all the drugs included in this group were prescribed for almost the same purpose. There
were 1317 types of primary diagnosis during the study period, but all were infrequent. We
therefore calculated the frequency and percentage of primary diagnoses and considered
200 primary diagnoses as our primary outcome. Those 200 diagnoses covered approxi-
mately 97% of total diagnoses. The reason for considering the top 200 primary diagnoses as
targeted outcomes was because the DL algorithm needs sufficient data to train the model;
otherwise, it may perform poorly.

3.5. Model Development

We split the data set into a training set (80%) and a testing set (20%). The GRU model
was developed to train all the variables, and the model was assessed using the validation
set to predict the primary diagnosis. GRU is a high-performing recurrent neural network.
It is similar to the LSTM and RNN algorithms, but GRU consists of only two gates—a reset
and an update gate [36,37]. The input of GRU moves through the layers, calculating the
probability of each output. For the activation function, sigmoid was used in the hidden
layers, and Softmax was used in the output layer. The activation function is an integral
part of a neural network that is often known for non-linearity, i.e., describing the input
and output relations in a non-linear way. The architecture of the current model is shown
in Figure 4. Six types of inputs (sex, age, drug, second diagnosis, procedure, and surgery)
enter the embedding layer first. Afterwards, the embedding of sex and age enter the
bilinear layer and PReLU. The output of the last step is multiplied with other embeddings
of inputs. However, the other four are multiplied with embeddings, then enter the linear
layers and GRU layers and calculate four statistic values for each output from step 4 and
concatenate them. Finally, GRU gives the output as the probability using the activation
function and residual layer.

In our study, we used 25 epochs; however, the model performed well while consider-
ing only 15 epochs (Figure 5).
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3.6. Evaluation Matrices

We evaluated the performance of the DL models on the internal validation set for
primary diagnosis recommendations using the following metrics.

Accuracy: It averages the entire set of data as an aggregate result, and calculates
1 metric rather than k metrics.

Accuracy =
TP + TN

TP + TN + FP + FN

where TP = True Positive; TN = True Negative; FP = False Positive, and FN = False Negative.
Micro-F1: It measures the F1-score of the aggregated contributions of all classes. The

equation is given below:

micro− F1 = 2
Micro− Precision × Micro− Recall
Micro− Precision + Micro− Recall
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Micro Precision and Recall: Average precision summarize the fraction of relevant
labels ranked higher than the other relevant label. The equation is presented below:

Precision = ∑c TPc
∑c TPc+∑c FPc

Recall = ∑c TPc
∑c TPc+∑c FNc

where c is the class label.

4. Results
4.1. Patient Characteristics

A total of 128,105 patients admitted to the urinary department were included in this
study. There were more male patients than female patients (74.65% vs. 25.35). The number
of input and output was 3224 and 200, respectively. Table 1 shows the basic characteristics
of patients.

Table 1. Basic characteristics of patients included.

Variable Number/Percentage

Total number of episodes 128,105
Total number of patients 81,486
Age range
Age group
0~20 4.51%
20~40 54.76%
40~60 42.79%
>60 0.02%
Gender
Male 74.65%
Female 25.35%
Operation
Yes 87.78%
No 12.22%
Additional diagnosis
Yes 70.98%
No 29.02%
Procedure
Yes 98.82%
No 1.18%
Drug
Yes 99.58%
No 0.42%
Number of drugs input 461
Number of diseases input 200
Number of procedures input 1636
Number of operations input 927
Number of output 200

4.2. Performance of Deep Learning Model

Table 2 shows the measurement of diagnostic performance (precision, recall, F1-score,
accuracy, and AUROC) used to predict the primary diagnosis. The GRU model predicted
the primary diagnosis with 83% precision, 66% recall, and 73% F1-score. The ANN model
predicted the primary diagnosis with 82% precision, 57% recall, and 67% F1-score. However,
the GRU performed better than ANN in predicting the primary diagnosis.
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Table 2. Performance of deep learning models.

Model Precision Recall F1-Score Accuracy AUROC Ranking Loss

GRU 0.83 0.66 0.73 0.72 0.99 0.01
ANN 0.82 0.57 0.67 0.68 0.99 0.01

#Note: micro-AUROC.

4.3. Sensitivity Analysis

In our study, we also tested our model using different numbers of variables and
achieved high performance when using all the variables (basic information, drugs, proce-
dures, operations, and additional disease information). However, the model performed
worse when only basic information was used. Table 3 shows the performance of the GRU
model using different numbers of variables.

Table 3. Sensitivity analysis.

Basic Info Drug Procedure Operation Additional
ICD Precision Recall F1-Score Accuracy Micro-AUC Label

Ranking Loss

V V V V V 0.83 0.65 0.73 0.726 0.99 0.01
V V V V 0.76 0.60 0.67 0.671 0.99 0.01
V V V V 0.70 0.31 0.43 0.481 0.97 0.03
V V V V 0.55 0.42 0.47 0.465 0.92 0.06
V V V V 0.81 0.56 0.66 0.632 0.98 0.03
V V 0.08 0.02 0.04 0.059 0.79 0.16
V V 0.26 0.04 0.07 0.211 0.92 0.08
V V 0.52 0.33 0.41 0.373 0.88 0.09
V V 0.01 0.005 0.006 0.026 0.75 0.19
V 0.001 0 0.001 0.006 0.73 0.21

4.4. Evaluation

After developing and internally validating our model, we evaluated its effectiveness
using several unknown cases. Table 4 shows five examples of how our model gave
suggestions based on the patients’ inputs. Our model gave the top five recommendations
for primary diagnosis, from which the doctor could choose. If the doctor had wanted
to see more recommendations, our system would have been able to provide more based
on user inputs. However, the top diagnosis was supported by strong evidence. For
example, the original primary diagnosis for patient #1 was calculus of ureter, and our
model predicted the same primary diagnosis. However, our model will provide additional
suggestions for selecting primary diagnosis, and doctor can choose another as either a
primary or secondary diagnosis. For patient#4, the original diagnosis was “Malignant
bladder neoplasm, other specified sites”, and our model suggested “Malignant bladder
neoplasm, part unspecified”. However, the original diagnosis was in our suggested lists,
and the physician could have chosen any one of them. The main advantage of using a
DL-based system is the availability of a list of appropriate suggestions without manual
examination of patients’ documentations.

Table 4. Evaluation of the performance of GRU for predicting primary diagnosis.

Example Age Sex Original Primary Diagnosis Predicted Primary Diagnosis Top 5 Primary Diagnoses

Patient #1 20–40 Male Calculus of ureter Calculus of ureter

1. Calculus of ureter.
2. Calculus of kidney.
3. Urinary tract infection, site
not specified.
4. Calculus in urethra.
5. Acute pyelonephritis without
lesion of renal medullary necrosis.
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Table 4. Cont.

Example Age Sex Original Primary Diagnosis Predicted Primary Diagnosis Top 5 Primary Diagnoses

Patient #2 20–40 Female Calculus of kidney Calculus of kidney

1. Calculus of kidney.
2. Acute pyelonephritis without
lesion of renal medullary necrosis.
3. Urinary tract infection, site
not specified.
4. Pyelonephritis, unspecified.
5. Renal colic.

Patient #3 20–40 Male Malignant bladder neoplasm,
part unspecified.

Malignant bladder neoplasm,
part unspecified.

1. Malignant bladder neoplasm,
part unspecified.
2. Malignant bladder neoplasm,
lateral wall.
3. Malignant bladder neoplasm,
other specified sites.
4. Neoplasms of unspecified
nature, bladder.
5. Benign neoplasm of bladder.

Patient #4 20–40 Male Malignant bladder neoplasm,
other specified sites.

Malignant bladder neoplasm,
part unspecified.

1. Malignant bladder neoplasm,
part unspecified.
2. Neoplasms of unspecified
nature, bladder.
3. Malignant bladder neoplasm,
lateral wall.
4. Malignant bladder neoplasm,
other specified sites.
5. Hematuria.

Patient #5 20–40 Male
Acute pyelonephritis without
lesion of renal
medullary necrosis.

Urinary tract infection, site
not specified.

1. Urinary tract infection, site
not specified.
2. Acute pyelonephritis without
lesion of renal medullary necrosis.
3. Acute cystitis.
4. Hematuria.
5. Orchitis and epididymitis, other,
without mention of abscess.

5. Discussion

To the best of our knowledge, this is the first study to examine the performance of
a DL model used for the prediction of accurate primary diagnosis. This study shows
the rigorous training and testing of a novel deep learning model that has been shown to
achieve a high accuracy for the prediction of DRGs. The rapid rise of AI in healthcare
offers great opportunities to overcome DRGs’ coding limitations and to claim appropriate
reimbursement for inpatient care. The satisfactory performance of DL models using a huge
amount of EHRs data can now be provided as an alternative option to traditional manual
DRGs coding.

The effectiveness of using DRGs in inpatient care is widely assessed because it is
considered as the standard payment management system [38]. The main purpose of
using DRGs in the inpatient care setting are: (a) to improve the transparency of the
service provided by hospitals, (b) to utilize hospital resources efficiently, and (c) to obtain
appropriate reimbursement. Hospital expenditure has increased, and the quality of care
has diminished due to improper use of the current DRGs. A study from Saudi Arabia
reported a coding error rate of approximately 30% for DRGs [39], while a 51% overall
coding error rate was reported in a study from the UK [40]. However, incorrect selection
of the primary diagnosis accounted for more than 13% of the DRG changes, and missing
additional diagnosis codes accounted for 29% [12]. Moreover, Zafirah et al. reported [41]
that the error rate of primary diagnoses was approximately 50%. In addition, the coding
error rate of secondary diagnoses was also higher in Malaysia (81.3%), Saudi Arabia (35.6%),
and Thailand (28.0%) [39,42,43].

If the DRGs’ reimbursement is not correctly defined, then hospitals will lose in-
come. A previous study reported that a potential loss of hospital income due to coding
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errors was equivalent to 39.1% of the total hospital income [42]. Maryati et al. [44] and
Nouraei et al. [45] also mentioned that selection of inappropriate codes leads to a loss of
income rather than making profits. Recoding or reassessing DRGs coding helps to generate
potential income; however, it is time consuming and requires additional manpower to eval-
uate the coding. Our DL-based automated coding system can assist coders or physicians in
selecting the best primary diagnosis for financial return. Moreover, physicians can select a
secondary diagnosis from the top ten suggestions provided by our system.

Our study has several strengths. First, this is the first study to evaluate the DL perfor-
mance for the prediction of DRGs. Second, the performance of our model was clinically
satisfactory, which would help to reduce physicians’ workload, increase accurate coding
for claiming reimbursement, increase hospital income, and improve hospital performance
by using proper allocation of resources. There are several limitations that also need to
be mentioned. First, this study only focuses on the urinary department. However, this
is because the rate of coding error is high in the urinary department and the selection of
appropriate DRGs coding is challenging. Second, while our model was internally validated,
the performance of the model could vary if using other countries’ datasets. Third, our
study did not evaluate how much money it would save or earn if the hospital chose to
implement this model. However, the higher accuracy refers to the ability of our model to
reduce the coding error of DRGs, which ultimately helps to save money, increase income,
and improve the hospital performance for inpatient care.

6. Conclusions

This study revealed that a DL model, especially GRU, has the ability to predict DRGs’
primary diagnosis with high accuracy. Using this automated DRGs coding system would
help to reduce incorrect coding, which can ultimately increase hospital income, ensure the
fair allocation of medical resources, and improve hospital performance. Further studies are
needed to evaluate the performance of the current model using data from other countries
and to assess the financial benefits of this model.
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