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Abstract: The novel COVID-19, detected in Wuhan, China, has reached almost every city across
the globe, and researchers from many countries have used several epidemiologic models to describe
the epidemic trends. In this context, it is also important to know the geographic extent of the
infected population. Following this approach, a Gumpertz model was adapted with official data from
the state of Hidalgo, Mexico, in order to estimate the people infected during this COVID-19 pandemic.
We found, based on the adjusted data, the highest value in infected people according to official
and theoretical data. Furthermore, using a geographical analysis based on geostatistical measures
related to density of demographic and economic data, traffic level and geolocation, raster files were
generated to estimate probability of coronavirus cases occurrence using the areas where the contagion
may occur. We also distributed the maximum contagion obtained by the epidemic model, using
these raster files, and a regression model to weight factors according their importance. Based on this
estimated distribution, we found that most of the infected people were located in the southern border,
a trend related to the economic strip in the southern part of Hidalgo State, associated with its vicinity
to the Megacity of Mexico.

Keywords: COVID-19; spatial analysis; density metrics; epidemic; modeling

1. Introduction

Since the appearance of the novel coronavirus COVID-19 in December 2019 in Wuhan, the World
Health Organization has issued an alert on the “transmissibility, consequences and manifestation of
COVID-19 infection” [1]. Since then, due to its rapid spread throughout the world in the first months
of 2020, this virus has been the subject of multiple studies, including geographical distribution of
infections [2], the most vulnerable areas and the variables [3] that promote greater contagion.

Governments of subregions (states) and nations need to know the contagion dynamics in order to
make decisions [4]. They must also know how the occurrence of cases in the territory will be, in order
to manage their resources and attend to the emergency according to the geographical conditions that
define the territory [5].

Any infectious disease has a distribution component of the susceptible, infected and exposed
population related to its density [6]. However, not only the population density is capable of increasing
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the possibility of contagion. Factors such as the concentration of services and work centers, and the
contact caused by public and private transport, have been considered places where contagion
mainly occurs.

Although there have been several approaches that attempt to reconcile the possible number of
infected with the occurrence of their spatial patterns, as shown in the following table, it is necessary to
mention that there are few published approaches for developing countries; this is generally due to the
limited availability of data for sub-national levels within the developed countries studies.

Before the COVID-19 outbreak, several studies studied the spread of other diseases: among the
most studied cases was the AH1N1 influenza. In this case, we take as background two of the main
approaches included in these previous studies: (a) studies where simulations or geostatistical tools
were performed to estimate the geographical spread of infectious diseases; (b) assessments of how
some socioeconomic factors are related to the presence of infections in a given space. Table 1 describes
main studies in both.

Table 1. Spatial approximations for the COVID-19 and other diseases spread.

Author Case Study Approaches

Mao and Bian, 2010 a [7] Buffalo Metropolitan Area and
Niagara Falls

An individual spatially explicit model is established
to replicate a network of urban contacts and simulate
influenza epidemics. The resulting epidemic curves
and infection intensity maps are used to analyze
transmission dynamics.

Liang Mao, 2014 a [8] Applicable to any city with 1
million inhabitants.

It proposes a spatially explicit agent-based model to
simulate a triple diffusion process in a metropolitan
area of 1 million people.

S. Zhao, 2020 b [9] Mainland China The association between Wuhan’s domestic
passenger load and the number of confirmed
2019-nCoV cases in different cities in China is
examined and explored.

Desjardins, M.R., (2020) b [10] United States A foresight space-time analysis detecting statistically
significant space-time clusters of COVID-19 at a
federal level in USA is conducted.

Kang, D. (2020) b [11] Mainland China This study explored the spatial epidemic dynamics of
COVID-19 in mainland China. The Moran I Spatial
Statistic with various neighbor definitions was used
to perform a test to determine if there was a spatial
association of COVID-19 infections.

Botá, A. et al., 2020 a,b [12] Sweden The Generalized Inverse Infection Method (GIIM) is
performed to identify socioeconomic, travel, and
environmental factors contributing to the spread of
H1N1 in Sweden.

Mameulnd, S.E. et al., 2019 b [13] Review to several cases in
many countries, mainly in
Europe.

A systematic review and meta-analysis on the link
between socioeconomic status and pandemic
outcome are carried out.

Rader B. et al., 2020 b [2] China Spatial variables for cities in China are analyzed
alongside case count data to investigate the role of
climate, urbanization, and variation in interventions
across the country.

Copiello and Grillenzoni, 2020 b

[6]
China The relationship between demographic,

socio-economic, and environmental conditions and
the spread of the novel coronavirus COVID-19 in
China is analyzed with spatial regression models

Hamidi et al., 2020 b [14] USA Using SEM analysis, the relationship between county
density and COVID-19 mortality and infection rates
is investigated.

a Simulations or geostatistical tools to estimate the geographic spread of infectious diseases; b assessments of how
some socioeconomic factors are related to the presence of infections in a given space.
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Several predictive models have been applied to forecast and describe the tends and outbreak
of COVID-19 pandemic. These methods explored the estimation of infected, recovered, or deaths,
mainly during this pandemic. The most common methods are explored by using the SIR method and
its variants: SEIR or SIR model [15,16]; other methods have reported improved results by using the
Gumpertz model or logistic models [17].

The aim of this work is to investigate the mechanics of spread of COVID-19 in a subregional area
(Hidalgo State), located in Mexico, focusing on geographical spreading and the relationship between
socioeconomic indicators and spreading, by using GIS and statistical tools.

To do so, firstly, the pandemic trend in Hidalgo state was described, defining the most fitting
model (1) and then carrying out a geographical approach (2), based on the probability of infection
(3) as well as density. Finally, a regression model, with Box-Cox transformation was used (4) in order
to identify the main variables which could have any impact on COVID-19 geographical spread.

We found that we were able to use the Gumpertz model, and by using official data, we found a
peak on day 136; then, we defined, by using the Montecarlo model, the highest possible probability of
each age group and place of contact: we found that the highest values of probability of infection are for
adults who attend workplaces. Finally, the assessment of the relationship between the spread of cases
and the socio-economic factors showed that population density and the workplaces in each locality are
factors that impact COVID-19 spreading.

2. Study Case

Developing countries are often more vulnerable to health risks, and the spread of the pandemic
can occur in spatial trends related to weak controls that are different to those from developed countries.
Additionally, lack of data is a common problem; in this study we explore the spread of COVID-19 as a
spatial variable related to the density of demographic factors, defining which are the main factors in a
subregional area: The State of Hidalgo, México.

The state of Hidalgo is located in central Mexico, in the northern part of the periphery of Mexico
City (Figure 1). The municipalities in the southern part of the state belong to the Megalopolis of
Mexico City and, therefore, have a strong dynamic of goods, services, and people mobility towards
the center of the city and the rest of peripheral cities such as Puebla, Querétaro, Cuernavaca, Toluca,
and Tlaxcala [18]
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Due to this high dynamic of interactions, the level of contact is very high, and thence infectious
diseases such as the new type of Coronavirus have a high spread from Mexico City to peripheral cities,
as other studies that discuss the geographical scope of the epidemics have shown [9].

Since the first cases appeared in Mexico City on 28 February 2020, an attempt was made to
establish models that explain the monitoring of the pandemic. However, most of the approaches have
been carried out at a federal level, and the geographic definition has been limited to the realization
of thematic maps, in some cases including municipalities, which constitute an effort to inform the
population but do not provide a greater level of analysis for decision-making, which have been
reported in [19].

3. Materials and Methods

3.1. Materials

To define how COVID-19 would be transmitted, it is necessary to establish a contact network.
This network is used to represent how individuals interact and have contact with other people
in different places. According to Bian [20], and referred to by Mao and Bian [7], there are four
types of places (homes, workplaces, service locations with transportation). To define data for the
analysis network, another Latin American case of study was used. Grijalva, C. et al. [21] performed a
contact network where the nature of the contacts by age is defined.

Data collection from Table 2 is necessary to define the spaces where these contacts can occur,
and the level of contact for each age group and produce the geographical approach of probability,
and also to assess how COVID-19 could spread in the State of Hidalgo and how some socioeconomic
and demographic factors are related to this spread.

Table 2. Information sources for the study of the State of Hidalgo.

Data Data Type Source

Polygons of localities of Hidalgo
(INEGI)

DB * and geo-referenced polygons Directorio estadístico nacional de
unidades económicas 2015 [22]

Population characteristics by locality

- Housing by locality
- Total population
- Population from 0–14 years
- Population from 15 to 59
- Population from 59 and over

DB Directorio estadístico nacional de
unidades económicas [23].

Working Centers DB and geo-referenced polygons Directorio estadístico nacional de
unidades económicas [23].

Service Centers DB and geo-referenced polygons DENUE [23]

Average vehicle capacity DB Secretaria de comunicaciones y
transportes. [24]

Cumulative positive cases of
COVID, officially detected

DB Secretaría de Salud de Hidalgo.
[25]

SEIR model data for Mexico City Parameter values Gobierno de la Ciudad de México
[26]

* DB: Database.

To do this, data were collected from the sources in Table 2.
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3.2. Methods

To investigate the mechanics of geographical spread of COVID-19 and the relationship between
socio-economic indicators and spread, we first described the pandemic trends in the state of Hidalgo,
defining the most suitable model (1) and then carrying out a geographic approach (2), based on the
probability of infection (3). Finally, a regression model, with Box-Cox transformation, was used (4) in
order to identify the main variables which could have any impact on COVID-19 geographical spread.

3.2.1. Estimation of Pandemic Trends

Two models were used to describe the trend of the pandemic in the state of Hidalgo.
(a) SEIR and SEIRS+ model. First, a SEIR model in its standard form requires the parameters

of infectious, incubation, and recovery rates. In our first approach with the SEIR model, we considered
the parameters 0.626, 0.19, and 0.344, respectively.

After that, we used the SEIRS+ Network Model package that includes an implementation of the
Extended SEIRS model in stochastic dynamical networks. In this approach, individuals are represented
as nodes in a network, and parameters, contacts, and interventions can be defined according to Ryan,
S.E, cited by Hoque, M. E. and Das [27].

When using the SEIRS+ module, we assigned same values, so beta = 0.626, sigma = 0.19,
and gamma = 0.344 were used to run the epidemiological model on the demographic network; this
demographic network is computed using the proposed python function mentioned above. This includes
demographic data from Hidalgo state, such as household size, age of members, and household statistics.

(b) Gumpertz model. The official data were fitted by using the Gumpertz model. This model
has a self-regulated growth function, where growth rate decays exponentially, after reaching an
inflection point. Gumpertz function is similar to a logistic function, but its less symmetrical nature
makes it more suitable for biological phenomena. This is expressed as:

Ca = ae−be−ct
(1)

where a is the growth and is a maximum asymptote; b is a constant adjusted with initial data and
defines the function displacement on x. c is a constant related to intrinsic growth capability.

Subsequently, the first derivation of Equation (1) was obtained, to be interpreted as the curve that
defines new daily cases, as in Equation (2).

Pi = ae−eb(t−c)
+ e (2)

Equation (2) allows estimating future covid-19 cases between the following days of pandemic,
considering the maximum point of this function as the pandemic peak in Hidalgo.

With the data of new cases in the state of Hidalgo, an adjustment of the behavior of the curve was
carried out. The adjustment of the theoretical curve was reviewed, considering that the official data in
the initial 150 days were required to define the initial parameters a, b, and c, in order to integrate them
into the Python code that was previously made.

3.2.2. Geographical Approach

Most infectious diseases have a direct and positive correlation with population density and other
socio-economic factors related to density. Especially COVID-19 has demonstrated this characteristic [8].
For this study, calculations of different densities were made: (a) of total population; (b) of housing
(c) and workplaces, (d) which are service locations; (e) of age groups such as children (0 to 14 years),
economically active population (15 to 59 years), and older adults (60 years and older).

To calculate these densities, we used the Kernel algorithm, which calculates a magnitude per unit
area from point or polyline entities using a Kernel function to fit a smoothly tapered surface to each
point or polyline.
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We considered 3 age groups and 4 contact areas mentioned in the previous paragraphs.
According to the network of contacts defined by Bian [3], we geographically referred these spaces
through the ArcGis software using the following method:

(a) Workplaces: The economic units defined in the DENUE national directory of economic
units [23] were assigned to each locality through a proximity analysis that assigned each workplace to
the closest locality.

(b) Places of service provision: The economic units of service provision (sectors 41 to 95) defined
in the DENUE [23] were assigned to each locality through a proximity analysis assigned to each service
provision site.

(c) Housing in each locality: We projected the growth of housing until 2020 based on the growth
rate between 2010 and 2015.

(d) Traffic level: Capacity level of the main state highways, during 2018. In order to determine
the level of capacity in the localities, the Kriging method was interpolated and a road buffer was
established, according to Figure 2.

Representation of population densities and counts based on the kernel algorithm shows that the
concentration of households, population, work centers, service supplies centers, and traffic levels
denoted the impact of main population centers and metropolitan areas. Some of these factors are
represented in Figure 2. In addition, a database obtained collects information on the number of people
in each age range, the average population density of each locality, and the number of economic units in
each sector.

3.2.3. Probability of Infection

We estimated the probability of infection in the State of Hidalgo. According to Mao and Bian [7],
the proportion of infections in a pandemic scenario in households is in a range of 47–51%, while at
workplaces it is estimated at 37–42%, and for service places, 11–12%; we consider these values as
infection rate per place with a uniform probability distribution. On the other hand, Grijalva et al. [21]
estimate the proportion of contacts by category for contact duration and age ranges. This contact
proportion has been interpreted as the Econtact variable with a probability distribution of contacts
per age; as age increases so does the duration of contact. The maximum and minimum values of Econtact

range from 0 to 1.
To obtain the infection rate per age IGedad, the average of the minimum and maximum value

of infection rate per place and proportion of contact per age were calculated for each type of place
(households, workplaces, and service places). Those maximum and minimum values were estimated
by using Oracle Crystal Ball utility.

Once obtained, the Econtact and IGedad values and the infection probability per age and place
were calculated. For this, Monte-Carlo simulations were carried out considering the maximum and
minimum values as well as their probability distributions.

The reception of infection through a contact was simulated based on the probability of infection:

p = Econtact × IGedad (3)

where Econtact is the effectiveness of a contact for infection. In this case, we consider close contacts.
IGedad is the age-specific infection rate and is expressed between 0 and 1. The probability p can be
estimated for IGedad and Econtact. Contact intensity was weighted between 0 and 1 in the defined areas:
work, services, and households, with data from the contact network developed by Grijalva et al. [21].

In this way, infection probability was defined by each age group and by place of contact.
As described by Hamidi, infection probability is highly related to density [14], so maps describing
probability weighted by density were estimated. Additionally, a consideration on mobility restrictions
of 30% (average) according to analytics by Google was applied to contact factors in workplaces
and transportation.
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3.2.4. Relationship Between Socio-Economic Indicators and the Spread of COVID-19 Defined by
Map Algebra

Initially, each case was plotted as a point per locality. As described above, densities were estimated
to population, households, workplaces, and service supply places using the kernel algorithm, as well
as traffic level by krigging. Also, variables such as latitude, longitude, and altitude are implicit in
raster files. Similar approaches were used by Copiello and Grillenzoni [6] and Hamibi, S. et al. [14].

We used the least squares method defining the function that describes the spread in the territory
in order to achieve an accurate estimation of spatially explicit cases. The dependent variables tested
such as latitude, longitude, and altitude were extracted from raster files, and the kernel algorithm was
used to obtain population density, households, work places, places of service provision, and traffic
flow level. Independent variables were tested as the number of cumulative cases.
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A BoxCox transformation was applied to the original model correcting specification
assumption of autocorrelation and normality, which were evaluated with Durbin–Watson and
Kolmogorov–Smirnov tests. Significant variables were used to address the geographic distribution
of cases.

The study used Map algebra to distribute Covid-19 cases along the state of Hidalgo, based
on results of BoxCox regression, weighting variables according to their coefficients as well as their
significant values. Kernel distributions rasters were introduced as factors to estimate the distribution
of COVID cases; this way, the resulting raster is more realistic than the simple kernel distribution cases.

4. Results

4.1. Trend of Pandemic in the State of Hidalgo

With the growth model of the state of Hidalgo data, and the following adjustment data: a = 19,370,
as the maximum number of estimated cases for each day; b is the estimated growth rate estimated
for total COVID-19 cases, so b = 0.1426, according to the Gumpertz; c = 136.6 is the days on which
the number of new cases per day can occur. Using the difference of squares, the adjusted measure
result was 0.997. As indicated above, the SEIR approach was useful in the early days of the pandemic,
but the function became excessive, and furthermore its geometric nature does not explain the behavior
of pandemic.

In the SEIR model initially considered, a high number of accumulated cases was predicted
(around 7% of the total population, which means more than 200,000 cases); meanwhile, the maximum
Gompertz curve was forecast at 17,000 cumulative official cases. That is why we consider the SEIR as
difficult to validate with the test rate in México (0.4–11 tests per thousand persons), while we were able
to validate the Gumpertz trends with official data. As well as Gumpertz, the results can be validated,
at least with official data.

To validate the results obtained, data of the next 20 days were analyzed for validation of the
Gompertz model, from which an inference was obtained that has a maximum error of 4% of the
official data. Figure 3 displays our results (see Appendix A).

4.2. Representation of the Areas Where There Is a Greater Probability of Contagion

By applying the Montecarlo model with the purpose of obtaining the most possible probability
ranges for each population group and contact place. We found that for the adult population group with
the highest infection probability, the ranges were 0.06 to 0.26 for workplaces, 0.07–0.27 for service places,
and 0.06–0.27 for households. The seniors group showed a probability of infection of 0.06 to 0.24 in
service places, and 0.05 to 0.23 for workplaces and households. Finally, the children group showed
probability ranges from 0.05 to 0.24 for workplaces (including schools) and service places and 0.05 to
0.23 in households.

To represent these probabilities in maps, Figure 4 was obtained. In each part of the figure,
different assumptions about mobility restrictions were considered. The first part does not consider any
mobility restriction, while part (b) and (c) do.
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Figure 3. The adjustment of the SEIR, SEIRS+ package, and Gumpertz model is observed with the
parameters described above. The resulting curves are shown below, where curve (a) shows the initial
adjustment of SEIR curve, (b) shows the adjustment of SEIRS+ Network Model curve, (c) shows the
infection curve with daily official cases, (d) shows the adjustment of official data with the theoretical
curve development, (e) shows the cumulative death curve, and (f) shows the proportion of theoretical
deaths according to the model and with the expansion factor (8.3) defined by the Federal Ministry of
Health on 4 April 2020 [28] and described by Torrealba et al. [17].
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Regarding Figure 4, in part (a), the infection probability without any restriction measures, where
people attend to work, and use services and public transport according to their geographical location,
was determined. In part (b), infection probability was estimated considering a restriction in mobility
to services by decreasing 30% in transportation. In part (c) of the figure, infection probability was
estimated considering a higher percentage in mobility due to restrictions (more than 35%).

As shown in all cases in Figure 4, metropolitan areas of the southern fringe of Hidalgo have the
highest values; this can be explained by the proximity to Mexico City and its interactions.

4.3. Relationship Between Socio-Economic Indicators and the spread of COVID-19 on Map Algebra

With these last variables, which are based on territorial density, a distribution model was
established, based on a regression with BoxCox transformation. This model allows determining the
main factors that define COVID-19 cases throughout the territory of the state of Hidalgo, according to the
previously modeled Gompertz curve cases and their geographical distribution. COVID-19 cumulative
cases were distributed. The expression that describes this approach is given by:

Ca = 1.11 + 0.05P∗ + 0.0001W∗ + e (4)

where Ca means the accumulated cases, 1.11 is the intercept, P is the population density distributed by
kernel algorithm, and W is the density of workplaces per square kilometer, also obtained by kernel.
The coefficient of determination R2 result was 0.543, and both dependent variables were significant
at 95% (and are marked by the symbol *), as well as the model. Figure 5 shows the geographical
distribution of cases, based on Equation (4), at three different times of the pandemic: day 136, peak on
day 150 and day 300.
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5. Discussion

Regarding the performance of the Gompertz model, although several theoretical curves have been
generated, the one presented in this exercise adjusts to what has happened according to reports from
the Federal Ministry of Health and the state of Hidalgo. In the same way, it is considered a factor of
unknown cases, that according to federal data is set to be 8.3. Hence, cases can officially increase up to
17,000 official cases in 300 days, with 140,000 more unofficial cases considered in the same period.

The low rate of testing in Mexico is still a limitation to more accurate approaches and validations,
as according to OECD and the site in our world in data, from Oxford University, testing rates have
increased from April to September 2020: in April, 0.4 tests per 1000 people were registered, while in
September, 11.11 tests per 1000 people were registered.

Although there are several studies for this purpose, the present work suggests an approach
to subregional areas from developing countries with limited data, where, by using not so complex
geoprocessing methods, we can obtain valuable information for planning and decision-making during
the pandemic. This work describes an estimation of cases based in common models, and describes how
age groups’ probability of infection differs according the place where contacts occur; these infection
probabilities were spatially distributed by using raster data of population densities, and finally,
the raster files produced were used to define by a regression the most significant variables that affect the
spread of COVID. Those methods are commonly used in similar studies, but have not been integrated
to configure a useful work for pandemic management in subregional areas.

Regarding the obtained results, considering the expansion factor of 8.3 obtained by the
epidemiologic analysts of the National Health Council, unofficial cases can be more than 140 thousand
cases until day 300 of the pandemic. Previous estimates were performed by using SIR-based studies (2),
and also Gumpertz, Logistic function, and neural network approaches, by Torrealba-Rodríguez et al. [17],
where Gompertz was found to be an accurate model to estimate COVID-19 cases across the country,
and it was the closest data to the validation date, while the logistic model was no so accurate.
Additionally, in this work, we only report a difference in squares, and not R2, because it is an inadequate
measure for nonlinear models [29]. However, SIR-based approaches have also predicted the pandemic.

The probability of infection showed higher values in the adult group in workplaces,
which corroborates the results reported in the data by the Federal Ministry of Health [25] and
according to maps, the southern fringe is the most affected area in the State of Hidalgo, due to its
interaction with Mexico City. In this work, variables such as population density and presence of
workplaces were also found to greatly impact the spread of COVID-19, as described by Mameulnd,
S.E. et al. [13], Copiello and Grillenzoni [6], and Hamidi et al. [14].

The public policies about pandemic management are still incomplete; although isolation measures
have been applied in many countries and their regions, more approaches are needed to improve public
health policies in the context of this pandemic.

6. Conclusions

Regarding the lack of data for developing countries, logistic efforts can be avoided by using
geostatistical data and models, which are tools for decision makers when resources are not sufficient to
deal with this pandemic or other disease outbreaks.

According to the models, although a first peak has been reached, cumulative cases are still
occurring even 400 days after the pandemic. The probability of infection showed ranges from 0.04–0.23
to 0.06–0.26 with a 90% confidence level; the adult group in workplaces has the highest values.

Population densities, household, workplaces, services supply, and traffic levels are important,
but according to the BoxCox regression performed, population density, work places density, and traffic
levels are the most important variables, although the last one was on the limit of significance.
Those factors can explain COVID-19 case distribution with R2 = 0.543. This accentuates the impact
of workplaces on the pandemic spread in the State of Hidalgo. These data can guide pandemic
management policies in this place.
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The isolation policies can be more effective when people are not attending work and can decrease
the pressure on supply service centers. It is also necessary to decrease traffic levels as much as possible;
this is a challenge because economic activation is necessary. More specific metrics in the state of
Hidalgo would be helpful for this kind of research—for example, travel surveys.

The research was based on several tools such as spatial analysis, map algebra, and modeling,
adjusted to several models; these approaches are critical to tackle the pandemic challenge in subregional
areas of developing countries.
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Appendix A

Databases, raster files and codes in R and python are available at: https://github.com/JairEsc/

Spatially-explicit-potential-transmission-of-COVID-19-in-Hidalgo.
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