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Abstract: Coronavirus (COVID-19) is a potentially fatal viral infection. This study investigates 

geography, demography, socioeconomics, health conditions, hospital characteristics, and politics as 

potential explanatory variables for death rates at the state and county levels. Data from the Centers 

for Disease Control and Prevention, the Census Bureau, Centers for Medicare and Medicaid, 

Definitive Healthcare, and USAfacts.org were used to evaluate regression models. Yearly 

pneumonia and flu death rates (state level, 2014–2018) were evaluated as a function of the 

governors’ political party using a repeated measures analysis. At the state and county level, spatial 

regression models were evaluated. At the county level, we discovered a statistically significant 

model that included geography, population density, racial and ethnic status, three health status 

variables along with a political factor. A state level analysis identified health status, minority status, 

and the interaction between governors’ parties and health status as important variables. The 

political factor, however, did not appear in a subsequent analysis of 2014–2018 pneumonia and flu 

death rates. The pathogenesis of COVID-19 has a greater and disproportionate effect within racial 

and ethnic minority groups, and the political influence on the reporting of COVID-19 mortality was 

statistically relevant at the county level and as an interaction term only at the state level. 

Keywords: COVID-19; geospatial regression; health disparities; public health 

 

1. Introduction 

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of the 

coronavirus (COVID-19) pandemic. As of 31 August 2020, the associated death toll in the United 

States is reported to have surpassed 180,000 [1], the highest of any country in raw numbers but 

equivalent to many other developed countries when adjusted for population [2]. The proper 

recognition and remediation of the disease are pressing concerns and each will likely be subject to 

debate in the months prior to the 2020 presidential election [3,4]. However, there is some concern 

surrounding the veracity of the data and factors contributing to COVID-19 deaths. Media outlets 

provide daily updates on the number of cases and deaths but draw this information from data 

collection and reporting agencies that have adjusted their methods over time [5]. The resulting 

inconsistencies have led to charges of underreporting [6,7] and overreporting [8,9], and have 

contributed to the politicization of the pandemic. 

COVID-19 data inconsistencies and potential political bias in data reporting can have significant 

implications. If the data that politicians rely on are faulty, subsequent policies may harm public 

health, the economy, and other aspects of society. Testing differences, false positives, false negatives, 
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and other factors that likely differ from state-to-state and county-to-county make the underlying 

official deaths with COVID-19 reports somewhat suspect; however, this study leverages the official 

data used by the Centers for Disease Control and Prevention (CDC). There are several county level 

studies about COVID-19 available from recent research. Badr et al. (2020) evaluated mobility patterns 

and COVID-19 transmission [10]. This study provided county level spread data but did not focus on 

deaths. Scannell et al. (2020) demonstrated racial disparities at the county level for COVID-19 cases 

and deaths [11]. Cases, unfortunately, suffer from severe measurement problems, as will be 

discussed. Ives and Bozzuto (2020) analyzed county level estimates of R0, the basic reproduction 

number for COVID-19 [12]. Altiera et al. (2020) estimated county level deaths used in estimating 

required medical supplies [13]. Two articles consider political factors—Flanders et al. (2020) assessed 

voter turnout as related to COVID-19 [14], and Makridis and Rothwell (2020) evaluated the effects of 

political polarization but not in terms of death rates [15]. We found no other paper that addresses 

death rate disparities by including a political variable. Thus, given the novel nature of the virus and 

its progression and the known inconsistencies in the reported data, we sought to gain a deeper 

understanding of the factors that contribute to reported deaths from COVID-19. 

1.1. Research Questions 

We investigated three research questions. First, what attributes of geography, demography, 

population density, economy, population health, hospital characteristics, and politics might explain 

the deaths per 100,000 (death rate) at the county level as of 31 August 2020? Second, did COVID-19 

death rates at the state level differ based upon governor party affiliation after accounting for other 

relevant variables? As a control for our second line of inquiry, we also examined whether variation 

existed in previous flu/pneumonia death rates (2014–2018) based upon the governor’s party 

affiliation. 

1.2. Significance and Motivation 

To our knowledge, this research is the first to evaluate COVID-19 using combined data from 

multiple areas covering demographic, socioeconomic, health system, population health, and political 

factors using a spatial regression. It is also the first study to evaluate the effects of state and county 

political affiliation on COVID-19 death rates. The motivation behind this study is to address the 

media promulgation of explanatory factors that may or may not be scientifically verifiable (e.g., 

population density and political factors), particularly when placed in the context of other known 

factors established at the individual unit of analysis (e.g., race). 

2. Methods 

2.1. Sample Sizes and Data Sets 

Sample sizes for the research questions were 3116 (county), 51 (states plus Washington D.C.), 

and 250 (50 states by 5 years). The dependent variable was the death rate per 100,000 population. 

Cumulative COVID-19 deaths were obtained from USAfacts.org [1] for 31 August 2020. Flu data were 

from the Centers for Disease Control and Prevention, CDC, from 2014–2018 [16]. Definitive healthcare 

data provided descriptive hospital-related information [17]. Population and demographic data were 

from the Census Bureau [18]. The Centers for Medicare and Medicaid Services (CMS) provided the 

source for relevant patient morbidity proportions by state and county [19]. Geographic variables in 

the analysis included the shapefiles from the Census Bureau’s state and county Tiger Files [20]. 

2.2. Variables 

The race and ethnicity variables included the proportion of African Americans, Native 

Americans, Asians, and Hispanics. The proportion of Caucasians was omitted due to collinearity 

considerations. Population density (population per square kilometer), and the proportion of people 

aged 65 and older served as additional control variables, although we anticipated (correctly) that the 
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former might not enter the model, particularly when geospatial effects were considered. Economic 

variables included the median household income and unemployment. Population health status 

variables included the population proportions with chronic obstructive pulmonary disease (COPD), 

heart failure, diabetes, obesity, and cancer, all of which have been identified by the CDC as risk factors 

at the individual level [21], as well as other health-related variables including smoking, obesity, 

alcohol abuse, Alzheimer’s Disease, asthma, atrial fibrillation, depression, drug abuse, HIV, hepatitis 

B, and stroke. Health system capability variables included the number of acute beds in the county or 

state and the average case-mix index in the county or state. The case-mix index, or CMI, adjusts 

inpatients based on severity, with 1.0 being the “typical” visit and higher average numbers meaning 

more acute visits than would be expected. 

2.3. Reasons for Variable Inclusion and Expected Effects 

Geography was included as a known predictor of COVID-19 [22]. Similarly, demographics 

[23,24], population density [25], proportion of people aged 65 and older [21], economic considerations 

[26], population health status (comorbidities) [27], and political considerations [28] are also known as 

hypothetical factors that affect infection and death rates, although the reasons for the associations 

between individual variables and death rates are not fully understood [24]. We include hospital 

system characteristics to account for the possibility that lack of resources increase death rates [29]. 

Based on these research studies, we surmise that higher population densities might initially be 

associated with higher death rates, but that the effects of including spatial models will remove these 

effects. Increases in population density may place individuals at an increased risk of exposure. A 

better economic status (e.g., lower poverty rates) should result in better access to healthcare systems 

and thus lower death rates. Poverty, for example, results in reduced compliance with COVID-19 

protocols [30]. Higher rates of comorbidities (e.g., health status) are likely to be associated with higher 

death rates [31]. An improved hospital capability and lower patient severity might reduce death rates 

[29]. Finally, there is much speculation that political considerations are influencing both death rates 

and the reporting of death rates, where Democratically affiliated geographies are anticipated to have 

higher death rates [32]. 

2.4. Transformations 

Quantitative variables were standardized. At the state level of analysis, the small number of 

observations (51) necessitated data reduction. We used the first three principal components of all 

health status variables to proxy the effects of population health. These three components accounted 

for 75% of the variability of the original 19 variables. 

2.5. Models 

We evaluated least absolute shrinkage and selection (lasso) models [33] to generate a subset of 

variables associated with deaths per 100,000 using adaptive p-values as presented by Lockhart et al. 

[34] and implemented in the covTest package [35] in R [36]. The adaptive p-values address Lindley’s 

paradox, which often requires that the significance level changes as sample size increases [37]. We 

also used 10-fold cross-validation to evaluate R2 and the root mean squared error (RMSE) along with 

associated standard deviations (SDs). Appendix A Table A1 is a list of the independent variables 

evaluated. 

After fitting the Ordinary Least Squares (OLSs) model and constrained models, we repeated the 

same process to fit geospatial models. Specifically, we used a residual analysis to fit appropriate 

geospatial models with all of the variables and the subset suggested by lasso. Moran’s I and 

Lagrangian multiplier diagnostics were used to recommend the appropriate geospatial model to be 

fitted (none, spatial lag, or spatial error). 

We also investigated reporting differences that might exist for flu and pneumonia deaths at the 

state level. Using a repeated measures analysis, we modeled the logarithm of flu and pneumonia 
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deaths as a function of year and governor party. All analyses were performed in R Statistical Software 

[36]. 

3. Results 

All code is available for replication. County level R code (updated through 31 August 2020) is 

available online [38]. State level code (also updated through 31 August) and influenza analyses are 

available online as well [39] .  

3.1. Descriptive Statistics 

Table 1 summarizes the descriptive statistics at the county level of analysis. At the county level 

(as of 31 August 2020), the mean COVID-19 death rate is 33.84. The mean county population was 9% 

African American, 2% Native American, 9% Hispanic, 1% Asian, and 20% aged 65 and over. 

Population density, income, and unemployment averages were 106.45 per square kilometer, USD 

53,000 per county person and 4% per county, respectively. The largest comorbidity proportion 

average was adult obesity (32.85%), and the mean number of acute beds was 215 with a median of 

35. The average CMI was 1.06 with a median of 1.17. Sixteen percent of counties voted for the 

Democratic candidate in 2016. 

Table 1. County level descriptive statistics. 

Variable (n = 3116 Counties) Mean SD Median Minimum Maximum 

Population in 2020 105,237 334,733.38 26,163.00 169 10,039,107 

Population Density (persons 

per km2) 
106.45 696.94 17.50 0 27755 

Native American % 1.57% 6.48% 0.30% 0.00% 89.60% 

Hispanic % 9.30% 13.84% 4.10% 0.00% 99.10% 

African American % 8.99% 14.51% 2.20% 0.00% 87.40% 

Asian % 1.31% 2.59% 0.60% 0.00% 43.08% 

% 65 or older 19.79% 4.76% 19.40% 4.90% 58.20% 

Unemployment % (2019) 3.96% 1.39% 3.70% 0.70% 18.30% 

Household Income USD (2018) + 
USD 

52,714.43 

USD 

13,851.63 

USD 

50,531.00 

USD 

25,385.00 

USD 

140,382.00 

Poverty % 15.17% 6.11% 14.10% 2.60% 54.00% 

Smoke % 17.44% 3.56% 16.95% 5.91% 41.49% 

Adult Obesity % 32.85% 5.43% 33.10% 12.40% 57.70% 

Alcohol Abuse % 2.24% 1.01% 2.21% 0.00% 10.36% 

Alzheimer’s % 10.17% 2.18% 10.15% 0.00% 25.02% 

Asthma % 4.31% 1.34% 4.35% 0.00% 11.64% 

Atrial Fibrillation % 8.03% 1.61% 8.12% 0.00% 17.50% 

Cancer % 7.41% 1.40% 7.43% 0.00% 12.10% 

Kidney % * 22.85% 4.51% 22.94% 0.00% 51.45% 

COPD % 12.81% 3.77% 12.44% 0.00% 32.15% 

Depression % 17.44% 3.57% 17.48% 0.00% 35.87% 

Diabetes % 26.93% 5.09% 27.11% 0.00% 49.62% 

Drug Abuse % 3.14% 1.83% 2.93% 0.00% 16.70% 

HIV % 0.11% 0.25% 0.00% 0.00% 4.51% 

Heart Failure % 14.39% 3.28% 14.15% 0.00% 33.75% 

Hepatitis B % 0.47% 0.42% 0.49% 0.00% 4.10% 

Hyperlipidemia % ** 38.04% 8.80% 39.35% 0.00% 67.55% 

Hypertension % 56.51% 8.77% 58.30% 0.00% 74.95% 

Ischemia % *** 26.84% 5.44% 26.68% 0.00% 46.91% 

Stroke % 3.32% 1.09% 3.35% 0.00% 9.46% 

Number of Acute Beds 215 720.47 35 0 19274 

Case Mix Index 1.061 0.587 1.170 0.000 2.710 
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2016 Winning Party (1 = 

Democrat) 
0.158 0.364 0.000 0.000 1.000 

Deaths/100K 34.030 46.753 17.753 0.000 461.156 

+ collinear with poverty, r = −0.771, * collinear with diabetes, r = 0.78, ** collinear with hypertension, r 

= 0.80, *** collinear with heart failure and hypertension, r = 0.71 for both. 

Figure 1 is a notched boxplot of the death rate of Democratic counties versus Republican 

counties. The notch indicates the statistical significance (median test) at the α = 0.05 level. There 

appears to be a statistically significant difference between the two group’s death rates per 100,000 

people. 

 

Figure 1. Boxplots of Republican versus Democratic county death rates per 100,000. 

Figure 2 provides a scatterplot of the proportion voting Democrat in a state versus the deaths 

per 100,000 with symbols showing which states voted for Clinton versus Trump. Seven states have 

at least 75 deaths per 100,000. Of those states, six voted for Clinton. The red and blue dots indicate 

the current party of the state governor. 
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Figure 2. Coronavirsu (COVID-19) death rates per 100,000 (y axis) as a function of proportion voting 

for Clinton in 2016 (x axis) and the current party of the governor as a red or blue dot. 

Table 2 presents a county level summary of the association between 2016 presidential election 

results, population density, and deaths from COVID-19. The population density is higher for counties 

that voted Democratic (116.2 versus 23.5), as are the death rates (71.0 versus 36.8). 

Table 2. Population density and COVID-19 deaths by 2016 electoral outcome (31 August 2020). 

Candidate Counties Won Avg. Density Deaths Death Rate 

Clinton 491 116.2 126,554 71.0 

Trump 2625 23.5 55,157 36.8 

Total 3116 41.5 181,711 55.4 

At the state level (Table 3), descriptive statistics are provided for variables considered for the 

final model. The deaths per 100,000 for COVID-19 were 45.74 versus flu deaths of 15.10 per 100 K. 

The proportions of African Americans, Native Americans, Hispanics, and people 65 years of age (and 

older) were 11.27%, 1.62%, 12.01%, and 16.39%, respectively. Unemployment in 2019 averaged 3.62%, 

and about 49% of the states had Democratic governors. 

Table 3. State level descriptive statistics. 

Variables (n = 51) Mean SD Median Minimum Maximum 

% African American 11.27% 10.72% 7.50% 0.40% 46.90% 

% Native American 1.62% 2.87% 0.50% 0.20% 14.40% 

% Hispanic  12.01% 10.31% 9.52% 1.43% 49.09% 

% 65 and over 16.39% 1.99% 16.40% 11.10% 20.60% 

% Unemployment 3.62% 0.82% 3.50% 2.40% 6.10% 

% Democratic Governor 49.02% 50.49% 0.00% 0.00% 100.00% 

COVID-19 Deaths/100 K 45.74 39.58 32.95 5.01 179.53 

Flu Deaths/100 K 15.10 3.76 14.65 7.00 29.60 
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3.2. COVID-19 Death Analysis, County 

The four models estimated for the county analysis are depicted in Table 4. Column 1 shows the 

estimates for the full OLS model. The lasso model is shown in column 2. The geospatial models (full 

and reduced based on residual analysis) are shown in columns 3 and 4. 

Table 4. Model results (scaled variables). 

Variable 
OLS 

Full 
p Lasso 

Adaptive 

p 

GIS 

Full 
p 

GIS 

Reduced 
p 

R2 (Predicted R2 for 

Lasso) 
0.377 0.352 +/- 0.800 0.507 0.500 

Rho     0.634 
<0.00

1 
0.589 

<0.00

1 

Intercept 0.000 
0.01

4 
0.000 NA −0.004 0.732 −0.004 

<0.00

1 

Pop. Density 0.163 
0.01

7 
0.138 0.038 0.066 

<0.00

1 
0.051 

<0.00

1 

% Native American 0.090 
0.01

8 
0.057 0.038 0.070 

<0.00

1 
0.059 

<0.00

1 

% Hispanic 0.133 
0.02

2 
0.132 <0.001 0.082 

<0.00

1 
0.071 

<0.00

1 

% Black 0.408 
0.02

9 
0.369 <0.001 0.178 

<0.00

1 
0.169 

<0.00

1 

% Asian 0.008 
0.01

9 
  −0.009 0.581   

% 65 and older 0.022 
0.01

9 
  0.022 0.182   

% Unemployed 0.079 
0.01

8 
0.075 0.007 0.052 0.001 0.062 

<0.00

1 

Poverty 0.018 
0.02

7 
  0.012 0.621   

% Smoke −0.061 
0.02

6 
  −0.006 0.815   

% Adult Obesity −0.045 
0.01

9 
  0.006 0.721   

% Alcohol 0.041 
0.02

0 
  0.024 0.170   

% Alzheimer’s 0.112 
0.02

1 
0.149 <0.001 0.073 

<0.00

1 
0.097 

<0.00

1 

% Asthma −0.049 
0.02

0 
  −0.022 0.217   

% Atrial Fib. 0.017 
0.02

1 
  0.011 0.563   

% Cancer −0.010 
0.02

0 
  −0.016 0.379   

% COPD −0.074 
0.02

7 

−0.10

4 
<0.001 −0.047 0.048 −0.053 0.006 

% Depression 0.036 
0.02

3 
  0.043 0.034   

% Diabetes 0.183 
0.02

7 
0.162 <0.001 0.078 0.001 0.079 

<0.00

1 

% Drug Abuse −0.027 
0.02

2 
  −0.033 0.096   

% HIV −0.074 
0.02

1 
  −0.047 0.011   

% Heart Failure −0.027 
0.02

1 
  −0.009 0.636   
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% Hepatitis B −0.048 
0.02

1 
  −0.031 0.095   

% Stroke 0.092 
0.02

2 
  0.026 0.182   

Number of Acute Beds −0.006 
0.01

8 
  0.009 0.565   

Case Mix Index 0.038 
0.01

7 
  0.045 0.004   

Winning Party 0.029 
0.01

9 
0.024 0.089 0.046 0.007 0.032 0.033 

3.2.1. Ordinary Least Squares (OLSs) Full Model 

The full OLS model (“OLS Full”) is depicted in the first columns of Table 4. The highest variance 

inflation factor (VIF) was 3.706 (poverty). The model accounted for 37.9% of the variability (R2). No 

statistically significant effect for the county’s winning party was apparent in the first model 

evaluation (p = 0.242). Figure 3 shows the map of the residuals for the full OLS model, indicating that 

some spatial autocorrelation exists in the northeast and the southwest areas of the country. Moran’s 

I analysis suggested a geospatial correlation as well (I = 0.253, p < 0.001). 

 

Figure 3. Residual plot from the Ordinary Least Squares (OLSs) model shows clusters in the 

Northeast and Southwest. 

3.2.2. Lasso Model 

The best-tuned lasso model RMSE was 0.800 with a standard deviation (SD) of 0.045. The 

predicted R2 was 0.352 with a standard deviation of 0.028. The lasso model (“Lasso”, Table 4) using 

adaptive p-values identified likely predictors such as race, ethnicity, and three health status variables 

(Alzheimer’s Disease, COPD, and diabetes). The model produced a similar R2 as the unconstrained 

model (R2 = 0.374). This constrained regression model also suggested that the political factor (winning 

party) should be considered as a potential explanatory variable (p = 0.089). Residual patterns were 

similar to Figure 2, and Moran’s I was statistically significant, indicative of a spatial correlation (I = 

0.265, p < 0.001). The Lagrange multiplier diagnostics again recommended a lag model. 
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3.2.3. Generalized Spatial Two-Stage Least Squares Model, All Variables 

A generalized spatial two-stage least squares model (GS2SLS) [40] was used on the full set of 

independent variables. This model (“GIS Full”, Table 4) identified that geospatial location was 

important for explaining the death rate (ρ = 0.634). Variables in the model again included the political 

factor (winning party). The residuals from the geospatial model no longer exhibited an 

autocorrelation (Moran’s I = −0.098, p = 0.980). 

3.2.4. Generalized Spatial Two-Stage Least Squares Model, Lasso Variables 

A final reduced model included the variables identified by the lasso as part of a geospatial lag 

model. This final model (Table 4, “GIS Reduced”) also included the political factor, and again, the 

residuals were stable based on a Monte Carlo simulation of Moran’s I (I = −0.070, p = 0.980). For 

interpretability, the unscaled geospatial model is shown in Table 5. 

Table 5. Unscaled geospatial model. 

Variable Estimate p 

Rho 0.598 <0.001 

(Intercept) −35.350 <0.001 

Population Density 0.003 0.001 

% Native American 42.728 <0.001 

% Hispanic 23.226 <0.001 

% African American/Black 52.703 <0.001 

Unemployment Rate 2.112 <0.001 

Alzheimer’s Disease 2.077 <0.001 

Chronic Obstructive Pulmonary Disease (COPD) −0.664 0.005 

Diabetes 0.716 <0.001 

Winning Party, 2016 Election (1 = Democrat) 4.503 0.021 

In Table 5, the reduced geospatial analysis with unscaled variables suggests that geospatial 

effects, population density, ethnicity and race, unemployment, three health status variables, and the 

winning party are important in explaining the death rates per 100,000. Native American, Hispanic, 

and/or African American proportions are associated with a 42.728, 23.226, and 52.703 increase in 

deaths per 100,000 individuals, respectively. County political leaning based on the 2016 presidential 

election is associated with an increase of 4.503 deaths per 100,000 individuals (dichotomously coded 

variable). Moran’s I was not significant (I = −0.070, p = 0.9804). 

An important result is that while we evaluated population density, its standardized effect size 

was almost zero (0.003) when other factors were considered. This county level analysis is congruent 

with Pew Research findings that death rates are higher in Democratic-led counties [32]. This study 

suggests that the racial/ethnic composition and geographic relationships with the outbreak are 

important considerations along with political considerations. Further, we note that the results of the 

spatial analysis are similar to those of the nonspatial analysis. The implication may be that our county 

level models are robust. 

3.3. COVID-19 Death Analysis, State 

Given the results of the political analysis at the county level, we further evaluated political 

leadership at the state level, examining a subset of variables found from the county level analysis. 

Since only 51 observations were available, the analysis was restricted to the minority proportion in 

the state (1-proportion Caucasian only), the first three principal components of health status variables 

(accounting for 75% of the variability), population density, unemployment, the governor’s party, and 

plurality [20]. Plurality was dichotomously coded with 0 = plurality (the 2016 voting consensus 

matching the governor’s party) and 1 = no plurality (voting block different from the governor’s party). 

We also surmised that there might exist an interaction effect between the governors’ party and health 
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status and modeled the interaction terms accordingly. Death rates were mapped, and states in the 

Northeast (New Jersey, New York, Massachusetts, and Connecticut) had higher death rates than 

other areas of the country. These states were omitted in a secondary analysis to ensure that the results 

found were not due strictly to outliers. 

An OLSs model using the aforementioned variables captured 66% of the variability with the 

highest VIF of 3.24. Statistically significant variables included the minority population, all three 

health status principal components, and the interaction term between the governor’s party and the 

first principal component (the linear combination representing the primary comorbidities of the 

population). Moran’s I did not suggest that a spatial model was required at the state level (I = 0.060, 

p = 0.162). A map of the residuals is shown in Figure 4. When removing the outliers of New Jersey, 

New York, Massachusetts, and Connecticut, minority status was the remaining statistically 

significant variable. Health status and the governor’s party interaction with health status fell out of 

the model (Table 6). 

Table 6. Results of the regression analyses for the state models. 

Variable OLS Full p OLS without State Outliers p 

R2 0.655 0.304 

(Intercept) −0.007 0.940 0.007 0.961 

% Minority −0.231 0.083 0.421 0.070 

Plurality 0.049 0.627 0.078 0.609 

Governor’s Party −0.056 0.609 −0.260 0.137 

Unemployment 0.188 0.174 0.159 0.437 

% in Poverty 0.198 0.243 −0.270 0.273 

Population Density −0.258 0.116 −0.013 0.959 

Health PC1 0.201 0.000 −0.074 0.272 

Health PC2 0.388 0.000 0.005 0.977 

Health PC3 −0.213 0.029 0.145 0.263 

Governor’s Party × Health PC1 0.084 0.027 0.053 0.332 

 

Figure 4. Residuals, state level initial analysis.  



Healthcare 2020, 8, 339 11 of 17 

 

 

3.4. Flu Death Analysis, State 

As a final analysis, we investigated death rates from past influenza outbreaks and governors’ 

parties, a proxy for party politics. Since we found an effect at the county level and an interaction effect 

at the state level, we wanted to see if this was constant over time based on another respiratory disease. 

To investigate, we ran a repeated measures (by state) analysis of variance on the log-transformed 

death rate for 2014–2018. The model identified no effects associated with the governor party 

affiliation (F(1, 244) = 1.531, p = 0.217), only the reporting year (F(4, 244) = 2.382, p = 0.040). 

4. Discussion 

4.1. Summary of Results 

In this study, we first ran a county level analysis for death rates based on geographical, 

socioeconomic, health status, health capability, and political groupings. Our investigations were 

reduced to two full OLS models and two geospatial models. From our analysis, it was clear that 

geospatial models with lags were preferred to the OLS models. Further, the reduced GIS model using 

only variables identified from lasso produced nearly the same R2 as the full GIS model (0.500 versus 

0.507, respectively). Thus, the reduced model performs nearly as well as the full model in estimating 

county death rates. In that model, we see significant geospatial effects (ρ), as well as those associated 

with population density, race, and the winning party in the 2016 election. The estimate for Democratic 

counties (untransformed) was 4.503 deaths per 100,000. 

For the state level analysis, we found effects associated with the proportion minority, three 

principal components associated with health status variables, and the interaction between the 

governor’s party and the first health status variable. However, when removing the four states with 

the highest death rates (New Jersey, New York, Massachusetts, and Connecticut), we found that the 

only predictive variable was the minority proportion in the state. Further, an analysis of influenza 

death rates showed no effect associated with political party. 

4.2. Population Density Effects 

Population density has been identified as a predictive factor in disease progression [41,42]. A 

superficial examination of county level data indicates that a relationship might exist between 

population density and death rate from COVID-19 (see Table 2). Consistent with prior analysis 

[43,44], Table 2 also shows urban areas tended to vote Democrat in the 2016 presidential election. Due 

to these associations, media outlets have presented the urban–rural divide as a viable explanation for 

the difference in death rates between counties that voted Democrat in 2016, and those that voted 

Republican [45,46]. This divide has also provided an explanation for the divergent response to the 

disease based on party affiliation. For example, Democrats are more concerned about COVID-19 than 

Republicans, and are more likely to wear a facemask and practice other forms of social distancing 

[28,47,48]. However, the effect size of population density at the county level is negligible when other 

factors are considered. For example, in the reduced GIS model for counties, the standardized 

coefficient is only 0.051. Population density does not appear as a significant variable in the state level 

models. The failure of population density to provide a more significant explanation for deaths from 

COVID-19 has been one of the surprising results from our analysis. 

4.3. Race and Ethnicity/Minority Effects 

At the county level, our study confirms the findings of numerous researchers pertaining to 

healthcare disparities in the United States, particularly with respect to Native American, Hispanic, 

and African American populations [49–51]. We found an increase in the percentage of these 

populations to be associated with an increase in mortality from COVID-19 at the county and state 

levels of analysis. McLaren (2020) attributes this difference to disparities in education, occupation, 

and commuting patterns [51]. The causes of disparity, however, are not explained by the covariates 
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in this study (see Carl, 2020 [52]). Although we did not include these factors in our analysis, we did 

find the mortality disparities do not appear to be attributable to differences in unemployment rates 

or household income. Our county findings suggest that there are healthcare disparities in the United 

States, but may also be indicative of a pathogenesis of COVID-19 that has a greater and 

disproportionate effect within these three racial groups [53,54]. At the state level, increases in 

minority population proportions were also associated with increases in death rates per 100,000. 

4.4. Health Status Effects 

At the state level, health status (measured by three principal components and the interaction 

between the governor’s party and the first principal component) was a predictor for the n = 51 state 

observations. These health status effects disappeared after removing the four outlier states from the 

model. Thus, it would appear that minority status is the predominant predictor such that increases 

in the proportion of minorities are associated with increases in deaths per 100,000. 

4.5. Unemployment Effects 

At the county level (and consistent with prior research), unemployment characteristics were 

identified as having a significant association with COVID-19-related deaths [44,45]. While this 

association is clear, its causation is not. It is possible that unemployment increases exposure to the 

disease; for example, cost-cutting might lead to increased use of public transportation. It is possible 

that unemployment increases vulnerability to the disease through elevated stress levels and poor 

nutrition. The unemployed may also be left without access to healthcare, which increases mortality 

from disease. However, it is also possible that unemployment increases the incidence of deaths of 

despair (deaths due to drug, alcohol, and suicide), and that these excess deaths (defined by the CDC 

as the difference between the observed numbers of deaths and expected number of deaths in a 

specific time period) [55] are being reported as COVID-related. For example, on 13 April 2020, New 

York City added more than 3700 people to the COVID-19 death total – people who were presumed 

to have died of the coronavirus but had never tested positive [56,57]. Without a positive test, it is 

impossible to know if these additional deaths—at the time, 37% of the city’s total—were actually 

COVID-related, were deaths of despair, or were due to other causes.  

Periods of economic downturn have long been found to be associated with declines in health 

status and higher suicide rates compared with periods of relative prosperity [46–48]. Recent research 

has found a 17% increase in drug overdose nationally during April and May 2020 [58].  

Compounding the problem, there are indications that a prolonged and overly restrictive COVID 

response is deepening an already deleterious economic cycle, the result of which is increased 

unemployment [49]. As unemployment increases, so does the mortality rate either directly or 

indirectly from the disease. In short, extended efforts to eradicate the disease may cause additional 

harmful secondary and tertiary effects that may be worse than the disease itself. 

4.6. Political Party Effect 

The influence of politics on the reporting of COVID-19 mortality was a significant finding in our 

analysis. County level Democratic affiliation was significantly associated with increased COVID-19 

deaths, even after controlling for factors such as population density. To the best of our knowledge, 

this is the first time that population density and urbanization are used as controls when evaluating 

death rates between Democratic and Republican states. 

In past years, the CDC retrospectively tabulated the number of flu-associated illnesses, 

hospitalizations, and deaths—a process that takes up to two years to generate an estimate. The 

process relies on estimation modeling in and out of hospitals based on behavioral algorithms [59]. 

The CDC never relies solely on death certificate data because it recognizes that there is never large-

scale testing and that the clinicians do not routinely list influenza data on death certificates if the 

patient died of pneumonia, heart failure, or deteriorating lung disease. According to the CDC, this 

leads to significant underreporting of deaths due to flu every year [59]. 
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On 20 February 2020, the CDC published guidelines for the diagnosis and mandatory reporting 

of COVID-19 for any patients evaluated with “COVID related” illnesses. This applied to all healthcare 

practitioners and included a comprehensive set of instructions and codes to document any 

relationship to COVID-19 on the death certificates [60]. This represents a significant change in 

reporting of the disease and consequently the inclusion on the death certificate. Three separate 

additional guidelines put out in March and April affirmed these measures. In addition, the new CDC 

guidance stated that: “In cases where a definite diagnosis of COVID–19 cannot be made, but it is 

suspected or likely, it is acceptable to report COVID–19 on a death certificate as ‘probable’ or 

‘presumed’” [60]. This change introduced significant potential variations in the tabulation of COVID-

19 death tolls. 

At approximately the same time, the Centers for Medicare and Medicaid Services (CMS) 

authorized an additional 20% reimbursement for patients carrying a diagnosis of COVID-19 pursuant 

to Sections 3710 and 3711 of the CARES Act [61]. These changes created a financial incentive for 

hospitals to classify patients as positive for COVID-19. Importantly, at the time these measures were 

introduced, the dominant model used by policy-makers—based on Ferguson et al. [62]—predicted 

an exceptionally high mortality rate [63]. By late March, more accurate estimates predicted a mortality 

rate well below original expectations [64]. This should have triggered a policy reversal from the CDC 

and CMS, but no changes were noted. In short, in the politically charged landscape of 2020, the CDC’s 

new way of collecting data, combined with CMS’ monetary incentives, may have resulted in the 

overreporting of COVID-19 deaths. The introduction of these two new sources of reporting bias 

makes historical comparisons unreliable at best. Without reliable data, it is difficult to effectively fight 

a pandemic. This conundrum associated with the reliability of data on COVID-related deaths 

highlights the need for objective and uniform standards for case identification and data collection. 

5. Conclusions 

During our analysis, we evaluated the data that pointed toward political interference in the 

reporting of COVID-related deaths. As of 31 August 2020, it is clear that the national death rate from 

COVID-19 is higher than from other flu pandemics, but the increase in the reported death rate in 

states with Democratic governors has been greater than the increase in states with Republican 

governors. Much more research in the area of politicization of medical reporting is needed, 

particularly given the political climate of the United States. 

One of the major limitations of this study is that the associated methods are unable to estimate 

causality. Any variable found to be unimportant in this analysis might have its effects mediated out 

by others. The coefficient estimates are associated with the model built, and the associated p-values 

suggest the importance of that model. A second important limitation is that this analysis is current 

only as of 31 August 2020. The analysis will continue to change as the pandemic peaks and subsides. 

Future research should supplement this analysis by investigating whether states with contested 

gubernatorial elections (e.g., those with ballot purges, an issue that is becoming more commonplace 

[65]) report higher mortality rates than those with normal elections. Additional research should focus 

on time series models as well as simulations to generate forecasts with the external regressors 

identified by this research. 

Author Contributions: Conceptualization, I.F. & B.C.; methodology, L.F.; software, L.F.; validation, B.B. and J.H. 

formal analysis, L.F.; writing—original draft preparation, I.F., B.C., J.H., B.B., L.F. All authors have read and 

agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare no conflict of interest. 

  



Healthcare 2020, 8, 339 14 of 17 

 

 

Appendix A 

Table A1. Independent Variables Considered in the Analysis 

Description Source Description Source 

State FIPS Code USA Facts % Hypertension CMS 

State Name USA Facts % Ischemic Heart Disease CMS 

County Name USA Facts % Stroke CMS 

County FIPS Code USA Facts Civilian Labor Force, February 2020 BLS 

Population 2020 USA Facts Employed, February 2020 BLS 

Land Area, square kilometers CB Unemployed, February 2020 BLS 

People per sq. kilometer Calculated Percent Unemployed, February 2020 BLS 

Urban–Rural Classification NCHS Civilian Labor Force, 2019 USDA ERS 

% < Poverty Line USDA ERS Employed, 2019 USDA ERS 

% for Clinton in 2016 MIT Unemployed, 2019 USDA ERS 

Winning Party in 2016 MIT % Unemployed, 2019 USDA ERS 

% Below Poverty Line, 2018 USDA ERS MHI, 2018 USDA ERS 

% Smokers RWF Population ≥ 65, 2019 CB 

% Adult Obesity RWF % age 65 and over, 2019 CB 

% Abusing Alcohol CMS Median Age, 2019 CB 

% Alzheimer’s CMS Total Population, 2018 IPUMS 

% Asthma CMS Racial Data IPUMS 

% Atrial Fibrillation CMS # Hospital Physicians DHC 

% Cancer CMS # Acute Care Beds DHC 

% Chronic Kidney Disease CMS # Intensive Care Beds DHC 

% COPD CMS # Staffed Beds DHC 

% Depression CMS # Discharges DHC 

% Diabetes CMS Sum Average Daily Census DHC 

% Drug Abuse CMS Hospital average length of stay DHC 

% HIV CMS Average market concentration index DHC 

% Heart Failure CMS Average hospital case mix index DHC 

% Hepatitis B or C CMS Geographic shape files CB 

% Hyperlipidemia CMS   

# = Number, CB = Census Bureau [18], NCHS = National Center for Health Statistics [66], USDA ERS 

= United States Department of Agriculture Economic Research Service [67], MIT = MIT Election Lab 

[68], RWF = Robert Woods Foundation County Health Rankings and Roadmaps [69], CMS = Centers 

for Medicare & Medicaid Services [19], BLS = Bureau of Labor Statistics [70], IPUMS = Integrated 

Public Use Microdata Series [71], DHC = Definitive Healthcare [17]. 
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