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Abstract: The healthcare resources supply network design for resilience is an effective way to deal
with uncertainty disruption. In this article we propose a model of supply network self-organization
evolution, and establish self-organized criticality as a cause of cascade failure. Our main purpose is
to keep the system in a resilient range, i.e., critical state. A network structural design with smaller
degree distribution exponent can achieve better absorptive capacity at macro level. An interactive
rule design with extremal optimization has better adaptive capacity at micro level. Using macro
statistic and indicator micro performance indicator, we demonstrate that our design can slow the
development to a supercritical state and can improve the resilience of the supply network.
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1. Introduction

A novel coronavirus (2019-nCoV)-infected pneumonia has been detected in over 10 million patients
and has claimed more than half a million lives as of 30 June 2020. As this virus propagates rapidly,
any failure in dealing with its prevalence increases the number of infected people. One of our critical
tasks is to address the shortage of healthcare resources. In the epidemic situation, desperate need for
medical supplies will emerge in a few days. That is why rapid distribution of medical supplies plays
an important role in public health management [1]. Due to the lack of healthcare resources, the reliable
design of healthcare resources supply network (HRSN) has attracted significant attention [2].

With the development of the epidemic, healthcare resources, such as testing kits, masks, and gloves
could be relatively inadequate. If hospitals are faced with a shortage of healthcare resources, an increase
in the number of infected people could cause an incredible disaster. Therefore, it is important to
optimize the use of the available healthcare resources. Recently, the healthcare resources supply
network in most countries is a primary endeavor to maximize the populations” health and minimize
healthcare costs. But considering the uncertainties, it is of greatly difficult to improve the design and
the management of healthcare resources supply networks.

HRSN can be defined as a set of interconnected, autonomous agents with self-interested goals
that interact to enable the flow of tasks, physical goods, and information [3]. HRSN is becoming more
complex and simultaneously more vulnerable to disruptions. The disruption risks are different from
the operational risks. The latter are related to inherent uncertainties, e.g., uncertainty in demand,
supply and lead times. Despite of a slim chances to occur, the unexpected disruptions, such as epidemic,
earthquakes, fires, and even terrorist attacks, could cause a significant business impact [4]. Designing a
resilient supply network is an effective way to cope with disruptions [5]. A resilient supply network
(SN) has the ability to react to an unexpected disturbance and to return quickly to an original or
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improved state after a disturbance [6]. Several design strategies have been proposed and studied to
optimize supply network performance [7].

In general, supply network design includes the numbers, locations, and capacities of enterprises
and the quantity of flow between them. These designs mainly pay attention to improve the network
performance, rather than to improve the SN resilience. Disruptions are constituted by internal cause
and external cause. The internal cause is the vulnerability of SN, which are influenced by the structure
and characteristic of itself. The external cause is emergency, which are difficult to expect. Therefore,
the design of resilient SN by identifying the structure and characteristic is a universal method.

A disruption may initially disable one or a few nodes. However, impacts may propagate further
through logistics, information flow, and capital flow. Therefore, the failure of any node may cause a
catastrophic failure of the whole supply network. As a typical case, the global supply chain of personal
protective goods has been disrupted in April 2020.

Self-Organized Criticality (SOC) describes a property that consists of a critical state formed by
self-organization at the border of order and chaos. One of the characteristics of SOC is that small
disturbances can lead to small or large avalanches, which show a power-law proportion in the size [8].
SOC has become a theory to explain the cascading failure, and can effectively influence the design of
supply network to maximize its resilience.

The study is that how to mitigate epidemic impact on the healthcare supply network to control
the outbreak of an epidemic. The rest of the article is organized in the following ways. In Section 2,
the resilience and the design of HRSN are summarized. In Section 3, the relationship between the
resilience and SOC is discussed to elucidate that the resilience range is the self-organizing critical state.
In Section 4, a self-organization evolution model is introduced to reveal the HRSN cascade failure
mechanism. The principle and the methods of HRSN design, and cases are illustrated in Sections 5
and 6, respectively. Conclusions are drawn in Section 7.

2. Literature Review

2.1. Supply Network Resilience

Resilience is regarded as a property that allows SN to react to internal/external vulnerabilities [9],
and to guaranty high performance by quickly recovering to an equilibrium state. Tukamuhabwa et al. [10]
define SN resilience as “The adaptive capability of a SN to prepare for and respond to disruptions,
to make a timely and cost effective recovery, and therefore progress to a post-disruption state of
operations—Ideally, a better state than prior to the disruption”. They demonstrated that SN resilience
has many characteristics of a complex adaptive system, including adaptation, self-organization,
non-linearity, and emergence.

In terms of how SN affecting the resilience, Soni et al. [11] proposed a model using graph theory to
measure resilience. In this interpretive structural modeling approach, all the major factors of resilience
were taken into account. Depending on the levels of affecting the resilience, major factors are arranged
as follows: Collaboration, agility, visibility, risk management culture, adaptive capability, risk and
revenue sharing, trust among players, information sharing, sustainability, corporate social responsibility,
information security, supply network structure, strategic risk planning, and knowledge sharing.

Despite of some overlapping in definition, the resilience has the following components:

(1) Three core abilities: Absorptive capacity, adaptive capacity, and restorative capacity.

Absorptive capacity plays a role as a buffer in emergencies by resisting the disruption impacts
to any further. Adaptive capacity implies the ability of SN to develop different responses to match
different threats. This implies that the enterprise can provide an appropriate response to a disruptive
event rather than pre-existing response. Restorative capacity is the ability of recovering to its original
performance level, which greatly depends on the resilient measures, such as adding or changing
relations between supply and demand and introducing new firms.
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(2) A supporting condition: Vulnerability.

Vulnerability is another factor which concerns us. Serious disturbance can make the operation of
SN deviate from the normal state.

Flexibility reflects the adaptive capability. Flexible strategy is a kind of “alteration according
to changes” strategy. Robustness reflects the absorptive capability. It characterizes the stability of
the system. Robust strategy is a kind of “responding to changes with invariability” rigid strategy.
Robustness is not adaptive, while resilience is adaptive. This adaptability refers to the ability to quickly
return to the initial state or a more favorable state after an interruption. Robustness is impact resistant.
Resilience is the ability to recover quickly from impact.

Flexible strategy and robust strategy have their own advantages and limitations. Facing the
complex and changeable uncertain environment, it should have both adaptability and stability.
“Temper force with mercy” or “Couple hardness with softness” can effectively avoid risks. From this
comes the concept of resilience. Resilience includes flexibility and robustness, and has restorative
capability [12,13].

How to measure the resilience of SN is a hot topic. For instance, Munoz and Dunbar [14] built a
multi-dimensional and multi-level SN resilience index. The resilience triangle is the most accepted
method to assess the resilience. Resilience is depicted as a process in which a SN experiences disruptive
events and makes a series of responses. As shown in Figure 1, fj is the time when a disruption begins,
to—t1 is the buffer phase, fp—t; is the absorption phase, t,—f3 is the recovery phase.

Take measures

A Emergency
p .
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Performance| ¢ ----- o e [0 P LR L LR
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Figure 1. Measure of supply networks resilience.

It is using the degree of curvature of performance curve to measure the resilience of SN. As shown
in Figure 1, convex curve has better resilience than the concave curve. So, we propose a indicator to
measure the resilience from microscopic performance change.

2 [P(to) - P(t)]at
R =1~ P(to) X (t3 = to) g
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Therein, ftf [P(tg) — P(t)]dt denote the performance decline which is the area at the above of the
performance curve. This method can evaluate not only the loss in performance after a disruption but
also the time it takes to recover.

In addition, we can measure the resilience from the macro statistics. (2) express that the smaller
probability of large-scale avalanche incidents, the bigger resilience of SN. Therein, s denote a big
avalanche size, P(s) denote the probability of this avalanche size.

P1® < Pg(g), so that Ry > Ry (2)

2.2. SN Resilience Design

The interests in SN design are driven by the economic benefits. The design of Altiparmak et al. [15]
is to satisfy the customer demand with minimum cost, which presents a steady-state genetic algorithm
for the design of a single-source, multi-product, multi-stage SN. The design of Pishvaee et al. [16]
proposes a mixed-integer linear programming model for handling the inherent uncertainty of input
data in a closed-loop SN. The design of Wang et al. [17] is to captures the trade-off between the total cost
and the environment influence, which presents a multi-objective optimization model for the classical
facility location problem. The design of Nickel et al. [18] is to maximize the total economic benefit and
minimize the overall cost, which presents multi-stage stochastic mixed-integer linear programming
method. The design of Carvalho et al. [19] is to improve the SN resilience by evaluating different
scenarios, which comprehend the mitigation strategies through the simulation analysis of Portuguese
automotive SN. These designs lack in SN resilience although which can optimize from different aspects.
The resilient SN design should consider not only the benefits but also the risk.

Some scholars studied how to improve the resilience, although there has not been any consensus.
As Sheffi [20] considers that building redundancy is one of the most direct methods for creating
resilience. On the contrary, the study by Kim et al. [21] shows that increasing redundancy may not
improve resilience by adding extra nodes or arc. Redundancy is one of the key points in creating
robustness. So, redundancy can create resilience.

Pettit et al. [22] argue that SN resilience increases as capabilities increase and vulnerabilities
decrease. As shown in Figure 2, SN can be designed from two aspects to improve resilience. On one
hand, SN reduces vulnerability. On the other hand, SN enhances the absorptive capacity, adaptive
capacity, and restorative capacity. As to spreading the negative impact of the emergency, it depends on
the macro SN topology structure and the microscopic rules of interaction between enterprises.

Adaptive capability + SN resilience + Performance +

Restorative capacity +
Vulnerability —

Figure 2. Supply chain design strategies for supply network (SN) resilience.

Network topology optimization is to search the appropriate network structure, which can reduce
the effects of cascading failure. Rivkin and Siggelkow [23] summarize some basic network structure.
Based on this concept, Kim, et al. [21] Supply network structure can be divided into 4 classes:
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(1) Block-diagonal.

This SN structure has clusters of nodes between the source and sink, where connections occur
within clusters but not between clusters. It comprises a final assembler and various module suppliers,
each of which is fully responsible for designing and manufacturing the assigned module, such as
personal computer SN [24].

(2) Diagonal.

In this SN structure, most of the nodes in between the source and sink can be partitioned into
subsets, in which the connections primarily occur across different tiers, such as military logistics
networks [25].

(3) Centralized.

In this structure, a few nodes connect to (almost) all other nodes, while the other nodes link only to
a few highly central nodes. In this “winner-take-all” structure, the top-tier suppliers plan and manage
all the necessary steps. Such as textile supply network in the Prato (Italy) [26].

(4) Scale-free.

In this structure, the node degree distribution follows a power-law. A few nodes contain
disproportionately too many connections, while most of the other nodes have only a few connections.
That is a small number of “core” firms jointly control and manage larger numbers of “peripheral”
firms, such as Toyotacity [27] and the aerospace industry around the Seattle region [28]. Comparing
four kinds of structure, the scale-free network has better robustness, so it is more resilience in one way.

In 1996, USA branch of Honda launched a set of supply chain solutions named “MOVE”, which can
change the order according to the actual need. It reduces the time of order and inventory, and has saved
a lot of money. It shows the importance of the interactive process. Interactive rules optimization is to
adjust the relationship between satisfaction and saturation, which can slow down the development
to supercritical.

3. The Relationship between Self-Organized Criticality and Resilience

The concept of self-organized criticality was proposed by Bak when he studied system complexity.
From the point of view of the function mechanism, interaction is the source of system evolution.
SOC explain the behavior characteristic of the complex system which contains a large number of short
range interaction components. According to this view, a system can be divided into the subcritical
state, critical state, and supercritical state. Under normal condition, systems naturally evolve towards
the critical state. However, systems may enter the supercritical with a massive avalanche facing to
disruption. The supply chain resilience is described as a macroscopic property that generates from
self-organizing behavior of each enterprise on the microlevel [29]. Korosh proposes a social model of
spontaneous self-organization generating criticality and resilience [30].

We consider that resilient range is self-organizing critical range based on the following:

(1) In the self-organized critical state, system has the highest efficiency, which can both benefit
and risk.

SN has been considered as a complex adaptive system. Both SOC and complex adaptive system
theory regard complexity originated from the “edge of chaos”. The difference lies in the methodology.
SOC is a new kind of statistical theory. Complex adaptive system theory is trying to find mechanism of
evolution from micro to macro outside statistical theory. In self-organizing critical state, system has
enough stability to maintain its own survival, also have enough energy for development. In this
condition, system not only has better adaptive capacity but also can effectively reduce vulnerability.
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(2) In the self-organized critical state, the avalanche sizes can reflect the vulnerability.

The essence of self-organized criticality is the global response of space and time caused by small
fluctuation. Vulnerability is to look at resilience from an opposite viewpoint. The essence of the
vulnerability is the cascading failures phenomenon. This is similar to the collapse of the chain reaction
when the system is in SOC. Based on the facts that:

e  Vulnerability and SOC have the characteristic of large-scale collapse.
e  The sizes and frequency of collapse is power-law distribution.

e  Each component has a strong correlation.

e  Exciting cause is beyond the threshold.

So, in the self-organized critical state, different avalanche size can reflect resilience from
the opposite.

(3) The performance of system fluctuates in the self-organized critical state.

The evolution process of SN can be explained as follows. On one hand, in order to improve
efficiency, the vulnerability increases and the large-scale avalanche more easily occurs. On the other
hand, small avalanches release some of the load, that relieve the development to supercritical. It will
absorb some influence of disruptions and reduce the risk of accidents. The two opposite forces make
the performance of a system fluctuate in a certain range. After a small-scale avalanche, the performance
will descend, but then the performance will slowly ascend due to the ability of self-organization.

Resilient supply network is neither in a stable subcritical state, also is not in the chaotic supercritical
state, rather in the self-organized criticality state. It is the state that not only has local interest
maximization, but also prevents whole the system from collapsing. As shown in Figure 3, the resilient
range is the self-organizing critical range.

Small-scale-avalanche Large-scale-avalanche
e e N

Subcritical state Critical state Supercritical'state

Resilientrange

€ e »>

Reducqefficiency Improve -e#cie11cy

Decreaje vulnerability  Increase-vijlnerability

Figure 3. The relationship between Self-Organized Criticality (SOC) and resilience.

The resilience of supply network based on SOC is expressed as follows. In order to maximize
their own interests, the enterprises will maximize actual operation ability, that is a full load operation.

The supply network will develop from the subcritical state to the critical state. If we seek efficiency
blindly, vulnerability will increase. The supply network will develop to the supercritical state. Asshown
in Figure 4, the load grow process is slow and dynamic. When the supply network reaches a certain
load, cascading failure may occur. Cascading failure is a fast dynamic process. Slow self-organization
process and cascading failure process alternating fluctuates in a certain range, which constitute the



Healthcare 2020, 8, 245 7 of 20

resilience of supply network to balance the benefits and risks. In the resilient range, the supply network
not only has strong absorptive capacity, adaptive capacity, and restorative capacity, but also can
effectively reduce vulnerability.

In real systems self-organization as an emerging property can rarely be fully predicted. However,
local rules can be designed to adjust the behavior of self-organization by taking advantage of its
characteristics. The design of local rules is to control the performance within the resilient range as
Figure 4. Overall resilience emerges through the regulation of local rules. Resilience is the tendency to
change to remain within a stability domain, continually changing and adapting, yet remaining within
critical thresholds such as the resilient range as Figure 4. As the system approaches thresholds, it has
to be controlled.

Performan :,4

Self-organizing evolution, slow

Resilient rang

Cascading failure, fast

Figure 4. The resilience of supply network (SN) based on SOC.

4. Self-Organized Criticality of Supply Network

4.1. The Model of Supply Network Self-Organizing Evolution

The purpose of the supply network operation is to profit and to meet customer requirements,
and ultimately to achieve good performance. In the supply network, each enterprise abstract as a node,
and the relationship among supply interactions such as integrated logistics consisting of information
flow, cash flow, material flow, etc., abstract as side.

From a logistics perspective, supply network is a hierarchical network. The high-level customer
sends information of purchasing expectation to the low-level supplier, and low-level supplier sends
goods according to the actual purchasing quantity to the corresponding high-level customer. Expected
purchasing quantity and actual purchasing quantity are integrated logistics generated during interaction
between supplier and customer [31], as shown in Figure 5. The names of all the variables in the model
are defined as shown in Table 1.

Tierl 1 Tier2 | Tier3 | Tier4

Suppliers I Manufacturers i Distributors ; Retailer

Figure 5. Structure of a supply networks.
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Definitions of the variable in the model as shown in Table 1.

Table 1. Parameters for supply network.

Denotation Definition
G (V,E) Supply network
1% The set of tier, V ={T; [ I=12,... , N}, T|NT;j=0
Ty Tier T
N The total number of tiers in supply network
M The number of enterprises in T}
E The set of relations between supply and demand, E = {<i,j> |i € T}, j € T 41}
i Enterprise i
h; Load (operational ability of enterprise)
Z; Threshold (ceiling of operational ability)
eij () The expecting purchase quantity, Xe;;(t) = hi(t)
sij () The actual purchase quantity, Xs;;(f) < h;(t)
rij (£) Satisfaction
E; (t) The expecting to purchase quantity of enterprise i, E;(t) = h;(t)
Si (t) The actual purchase quantity of enterprise i, S;(f) = Zs;;(t) < h;(t)
R; (t) Satisfaction of enterprise i
A; Saturation of enterprise i, A; = h;/z;
k; The number of enterprises associated with enterprise i

4.1.1. The Parameters of the Model

Each enterprise has certain practical operation ability at every moment, known as load. Set as
hi = ak'™,0 < n < 1, k; is node degree value, a, ) are variables. Each enterprise also has a maximal
ability of load, called capacity. Setas z; = (1 + 0) h;, 0 < 0 < 1. For simplification, when t = 1, let expected
purchasing quantity equal to load amount of customer. Ze;;(t) = h;(t), the expected purchasing quantity
from i to j, ei]-(t) = hi X ]’l]/Zl/l]

With changes in the actual operational capabilities, customers want to buy the amount to match
their actual operating capabilities to produce. However, the actual purchasing quantity is limited by
the supplier’s load, and can only be distributed in the range of less than or equal to the load to meet the
needs of customers. The distribution principle of the actual purchasing quantity is a crucial problem in
the whole process of interaction.

If the actual purchasing quantity of the superior customer is not more than the supply ability of
the supplier, the customer’s purchasing quantity is assigned according to the customer’s expectation,
rij(t) = e;i(t). If not, the customer’s purchasing quantity is assigned according to the supply ability of
the supplier. Distribution probability is:

E;(t)
pi(t) = T EAD 3)

For each pair of supply (side), its satisfaction is the ratio of the actual purchasing quantity and the
expected purchasing quantity:

rij(t) = e;j(t)/sij(f) 4)
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For a node, its satisfaction can be expressed as:

Ri(t) = Si(t)/Ei(t) ©)
4.1.2. Normal Self-Organization Evolution

Enterprises will adjust their expected purchasing quantity and actual purchasing quantity to
improve their satisfaction by themselves. The load of customer is the sum of expected purchasing
quantity, the load of supplier is the sum of actual purchasing quantity.

Assuming that the capacity of supplier 1 and supplier 2 respectively is zs; = 8, zgy = 4, the capacity
of customer 1 and customer 2 respectively is z.; = 8, z.p = 4. Initially, the expected purchasing quantity
of customer 1 and customer 2 respectively is 6 and 2. As shown in Figure 6, the load of supplier 1 and
supplier 2 is 6 and 2, both satisfaction are 1. At this time due to customer satisfaction to achieve the
desired effect, customer will increase the expected purchasing quantity. Both customer 1 and customer
2 expected purchasing volume increased by 1, respectively, 7 and 3. As shown in Figure 7, the load
of supplier 1 and supplier 2 is 23/3 and 7/3. The load of each enterprise has increased, more and
more close to the capacity. That is to say, with the enterprise self-organization to improve satisfaction,
the system is becoming more and more critical. This is a slow dynamic process.

Supplier 1

Supplier 2

Customer 2

Figure 6. Initial situation.

----- 7
Supplier 1 Customer 1
Supplier 2
3

7/3

Customer 1

Figure 7. The case of self-organizing evolution.

The self-organization evolution of the system is as follows:
Assuming t moment, the satisfaction of customer i is R;(t), if it is greater than a threshold value of
Sth. Then the t + 1 moment, it is the expected purchasing quantity:

Ei(t) = min{(E;(t) + w) X h;, z;} (6)

The w is a constant, adjust the specific satisfaction of the time, the increase in expected
purchasing quantity.

According to (3) distribution, the actual purchasing quantity is obtained with the change of the
expected purchasing quantity. With the increase of system satisfaction, network load also gradually
increases, more and more close to the capacity. Systems are becoming more and more close to the
supercritical state, which can easily cause a large avalanche.
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4.1.3. Cascade Failure

The supply network works well only when enterprises” load capability is lower than capacity.
Otherwise the company suspended it in a supply network function to wait for recovery. The enterprises
will distribute some of its load to related enterprises. This will increase the load of other enterprises,
and may cause a cascading failure, resulting in a large-scale supply network crash.

Based on the self-organization evolution, the cascading failure process of the system is as follows:

1. Occurrence of unexpected events: The moment ¢ a node i failure, the load of the node reached
or exceeded the capacity of z;, the node crashes, bear the part of the function assigned to the
interrelated enterprise to complete.

2. Load distribution: When the node failure, the node will be assigned to the average distribution of
connected nodes, the node in the network disconnect to other nodes.

3. After the load is pushed and the node j has more than its own capacity, the node j fails.

4.  Repeat 2-3 until there is no node failure, the system reaches a stable state.

The basic operation mechanism of this model is the interaction between the enterprises. Enterprises
self-organization adjust their supply relations to change their expected purchasing quantity, the change
of expected purchasing quantity alters the actual purchasing quantity, and enhance the satisfaction.
The incremental change increases enterprise load. The system becomes more and more critical,
which leads to the occurrence of cascading failure.

4.2. The SOC of Cascade Failure

Branching process [32] method is a useful tool to study the avalanche dynamics, which is valid
when avalanche trails do not form any loop. Each avalanche can map a corresponding tree. The node
where an avalanche is triggered is viewed as the originator of the tree. The other nodes in the avalanche
correspond the descendants. The avalanche proceeds can be identified with that of trees grown.
The avalanche size s is the tree size. As shown in the Figure §, s = 6.

Figure 8. Branching process.

The threshold of node enterprise determined by degree of node: z; = k1M, (0 < n < 1). We consider
the degree distribution of SN follow p;(k)~k =7. The branching probability g(k) that a node topple to its
adjacent k nodes is the only parameter of a given branching process, which is composed of two factors:

(1) g1(k) is the probability that a node has the threshold k—1 < z; < k. Only when the height of a
node is k-1, load transfer can be triggered.

. [t/ (1=m) | R ACma MAC)
(k) = k':r(k—l)““”’ﬁkpd(k)/ <k~ k 7

(2) g2(k) is the probability that the node has height k—1 when gaining the load from one of its
neighbors. Because of every number of load from 0 to k-1 is equally probable.

q2(k) = 1/k (8)



Healthcare 2020, 8, 245 11 of 20

The branching probability (k) for large k is given asymptotically as:

4(k) = n(k)g2 (k) ~ k7" [y" = (y =20)/ (1= 1) )
Using the independence of the branching from different parent-nodes, one can derive the following
relation for distribution of avalanche size p(s) (i.e., the distribution of tree size).

o

pls) = Zq<k>f f f p(s1)p(s2) - p(si) (10)
51=0s,=0 sg=0

k=0

By introducing the generating functions of q(k): L(w) = ¥;>,q(k)w" and the generating functions
of p(s): P(y) = X221 p(s)y°, this relation can be written in a compact form:

P(y) = yL(P(y)) (11)

Then w = p(y) is obtained by inverting y = p_l (w) = w/L(w).
The avalanche size s can be expressed by generating functions of p(s). Mean value avalanche size
can get from generating functions of p(s):

<s>= Z;";lp(s)s =P'(1) (12)
From (5), P'(y) = %, combine (6) thus:
oy - @) L)
<s>=P) =15 ~ - 13)
When L'(1) = 1, <s> is diverging, which means happening large-scale avalanche.
C=1L/(1) =) 2 kqk) =1 (14)

C =1 is the critical point which can cause large-scale cascading failure [33]. It means that the
model of SN reveals the basic principle of cascading failure and shows the SOC.

5. Design for SN Resilience

Cascading failure represents the vulnerability of SN and the satisfaction of system represents the
performance of SN. Our design is to make the vulnerability smallest and the satisfaction largest. It is
equivalent to make it reach the critical state where local profit is largest, but it has no systematical
collapse entirely.

5.1. Network Structure Design

The network’s own absorptive capacity is determined by the network structure. So it affects the
scale of avalanche which is the size of the vulnerability. The motivation of network structure design is
to find the appropriate network structure which could slow down the speed of the system changing to
supercritical state during the loading distribution.

Since:

Ooa S (1=1)? - g — I'(s-¢)
Ly~ (=)0 = g

When P(y) ~ (1-y)®, p(s) ~ s~ %71,

~5%71 (s > 0) (15)
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-1
From y = P~} (w) = w/L(w), set o auEW) = 0, generating function L(w) is singular at w = 1.

the expansion of L(w) around w = 1 is given as:

(1-w)™' 2<y<ye

L) =1-(1-w)+{-(1-w)?"0) 5=y, (16)
(1- w)2 Y >y,
where:
Y =@ -2n/(1-n),and y. =3 —1. (17)

From the relation between L(w) and P(y), we obtain the distribution of avalanche size p(s)~s~" [34]

s~=2/ (=10 2 <y <y,
p(s) ~{s32(ns)™2  y =1y, (18)

5—3/2 Y >

The Formula (16) shows avalanche size distribution obeys power-law distribution, which means
the times of happening of small scale of avalanche are in a majority, and the times of large scale are in a
minority respectively. It is a common phenomenon for supply network in the real case.

The avalanche size distribution is a measure for the resilience. The small probability of large
scale avalanche shows the supply network possesses a relatively strong absorptive capacity to face
the interruption, that is to say it has stronger resilience. The index of the node degree distribution
of supply network has a critical number y.. When 2 <y <y, the index 7 increases as y decreases.
As shown in Figure 9, the probability of large scale collapse decreases when y decreases. It shows that
fault influence is reduced and the resilience is better. Because the major loading is supported by the
hub node, the SN has some resistance for the fault. When y > y,, the index © = 1.5, which means the
distribution of the failure scale is independent of the connecting of node. The scale of avalanche is not
controlled by the index of SN node degree distribution, system in the supercritical state.

As shown in Figure 9, the supply network resilience was better with smaller y and larger .

y

Ln<p(s)>]

Poor resilience with greater 7

Good resilience with smaller 7

Ln<s>

Figure 9. The resilience based on avalanche size distribution.

5.2. Design for Interaction Rules

Every enterprise is seeking itself profit maximization interacting with others. This simplex
self-optimization will usually increase the spread of Cascading failure. The motivation of the design of
interaction rules is to increase customer satisfaction and make the system away from the supercritical
state avoiding the large scale avalanche.

Saturation is systematically considered during the interaction process. A; = 0.958, A, = 0.58
are the original Saturation of suppliers. After changing the interactive rule, as shown in Figure 10,
suppliers’ saturation are A; = 0.875, A, = 0.75. In the condition of maintaining customer satisfaction,
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saturation of the supplierl decreases drastically. Saturation of the supplier 2 is still away from the
critical state although it increases a bit. It shows that the proper optimization of interactive rule can
release cascading failure.

We will design the interactive rule base on SOC. The criticality in SOC is different from the
stationary statistical mechanics, in which the critical point is the place where the behavior of system
or the structure changes drastically. Such as water from liquid state to solid state, the parameter
is the temperature. The phase transition is obtained from adjusting some parameter in the system.
But the factor of drive system to achieve the critical state is internal dynamics mechanism without any
parameters adjustment.

7
Customer 1
Supplier 1
7
Supplier 2
3
3 Customer 2

Figure 10. The case of self-organizing optimization.

Extremal optimization (EO) algorithm is based on SOC theory, without adjusting any parameter.
From the connection of internal variables in the problem, regarding the process of optimization as the
evolution of complex system, EO make the system always evolve to the optimized structure only from
the variation of the worst element. EO is a “deleting worst” algorithm. The evolution mechanism
increases the excellent individuals and have rapid convergence and good accuracy.

Introduce the EO algorithm to the interactive rule.

Define the fitness of node j,:

ﬁt]'u = kju X Rju/A(ju) 19)
Objective function:

max(objg) = Zﬁti (20)

(1)  For the failure node i, compute the fitness of nodes connected with it.
(2) Thenode iy with worst fitness will be optimized by EO. Taking its nearby nodes as its neighborhood,
the actual purchase quantity from nearby node j will become:

sjio (t +1) = (1 + fitjo) sjio (¢). (21)

(3) If the customer’s satisfaction R;(f) is larger than a threshold Sth, then its expecting purchase
quantity at time f + 1 becomes:

E;(t) = min{(E;(f) + w) X h;, z;}. (22)

Here, w is a constant, adjusting the expecting purchase quantity.

(4) Compute the objective function after optimization. If objy(t + 1) > objy(t), then max(objg) = objp(t + 1)
or else max(objy) = objy(t).

(5) When cascading failure occurs, node i will push the loading to the nearby nodes. Consider three
factors: 1 saturation Aj; 2 satisfaction R;; 3capacity ;. The distribution rule is as follows:

B =l + i X fiti] Y AGa). (23)
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(6) Repeat (1)—(5) until the cascading failure ends.

6. Case Study

6.1. Case Background

To illustrate the design can effectively improve the resilience, the methods were applied to the
SN-1 and SN-2 such as the Healthcare Resources Supply Network in Figure 11 [2]. It involves (1)
Backup medical supplies distribution centers, (2) Hospitals, (3) Medical supplies distribution centers,
(4) The set of the affected areas. As shown in Figure 11, patients are transferred to the nearest hospital
via transfer points or directly. Each hospital can receive medical supplies from several medical supplies
distribution centers. The part of hospital needs that is not received from medical supplies distribution
centers can be received from backup medical supplies distribution centers [2]. The degree distribution
of them obeys power law distribution. The parameters of network structure are shown in Table 2.

Figure 11. The sample of healthcare resources supply network.

Table 2. The parameters of two healthcare resources supply networks.

Parameters SN-1 SN-2
Numbers of nodes N 51 79
Layers 5 5
Average degree <k> 2.47 2.38
The power law exponent of degree of distribution y 2.2849 2.4355
Clustering coefficient C 0.023 0.0049
Density D 0.0392 0.0253
The shortest path d 2.96 2.63

6.2. SOC in the HRSN

We observe whether there is a critical value in large cascading failure according to Section 4.1.3
method. Using a simple parameters: &« =1, =0, so h; = k;, z; = (1 + 0) k;. Use the ratio of numbers of
failure node and numbers of total nodes to measure the size of the cascading failure R = n/N.

The results through the simulation as shown in Figure 12, shows that there is a critical value
making the network have large-scale cascading failure. The conclusion is same as the Formula (14).

The following experiment verifies the cause of self-organized criticality from the micro level.

According to the Section 4.1.2, the self-organization evolution of SN-1 is a slow dynamic process
in which the satisfaction increases. As shown in Figures 13 and 14, the load also increases rapidly
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to a certain extent and tends to be steady. The self-organizing behavior makes the supply network
develop in the direction of supercritical state. The process of satisfaction enhancement is the process of
increasing vulnerability.

Conclusion 1. The cascading failure of supply network possesses self-organized criticality. The reason of
cascading failure is the development of self-organizing evolution toward the supercritical state.

017

0.1e5

018

0185

0.145

014

0138 L
[1} 5 10 15 0 % el e} 40 45 50

Figure 12. SOC in SN-1.

average satisfaction

0.68
0

Figure 13. Satisfaction increased in the self-organization evolution.
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Figure 14. Load increased in the self-organization evolution.

6.3. The Influence of Network Structure Design for Resilience

In order to verify the influence of structure design for resilience, we performed a statistical
experiment of the avalanche size. According to the Section 4.1.3, we randomly selected failure node to
observe the size of the cascading failure, namely the size of an avalanche. We did the test 1000 times
for statistical analysis and made a log-log graph of the avalanche size of probability distribution.
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Set 7 = 0.75. The avalanche size of two supply networks is appropriately same as shown in
Figure 15. Same results are obtained by repeating trials. From the formula (17), y. = 3 — 1, we can get
ye = 2.25. Although —y1 and y; are different, they are both greater than y.. Thereby the case y >y, in
Formula (18) is verified. This result implies that y loses the control for resilience of supply network in
supercritical state. At this state, the probability of a massive avalanche is the largest.

To examine the case y < y., we set 1 = 0.1, the power law index y; and y; are both less than
yc = 2.9. As shown in Figure 16, different avalanche sizes obey the power law distribution. Thereby
the case y < y. in Formula (18) is verified. We used macroscopic statistical indicator in Section 2.1 to
measure the resilience.

P1(s = 30) < P,(5=30) 50 Ry > Ry (24)

At this moment, y1 < )3, T1 > 7. SN-1 has a smaller probability of a massive avalanche, i.e., better
resilience. The result is consistent with analysis in Section 5.1.

10 T T
\ —— SN
\ +— SN2

In<Pis)>
=)

In<sz

Figure 15. Avalanche size in supercritical state.

——SN-1
3N-2

10*

In<P(s)>
=)

In<g=

Figure 16. Avalanche size in critical state.

Moreover, we observed the influence of performance change to resilience from microscopic.
According the method of 4.1.2, we selected lower supplier failure node in the two SN respectively.
i(SN1) = 25; i(SN2) = 26. Due to the number of nodes being different, we used the average quantity.
The change of the average load and the average satisfaction over time of the two SNs are shown in

Figures 17 and 18. The rectangle method fu ’ f(x)dx ~Z8(y; + y2 + y) is used to approximate calculate
area above the performance curve. We used micro performance indicator in Section 2.1 to measure the
resilience. Rp(SN1) = 0.732, Rp(SN2) = 0.621.

Average load implies the overall performance of supply network. More slowly average load of
SN-1 decreases, the better absorptive capacity we have. Average satisfaction implies the agility of
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enterprise to the environment changes. Average satisfaction of SN-1 decrease faster, which illustrates
SN-1 has better adaptive capacity.

The reasons of the network structure causing cascading failure: The hub node in redundancy SN
has strong operational capacity (load), with more links. When the interrupt occurs, scale-free SN is
conducive to disperse load, delaying systems tending to supercritical state.

The resilience of SN-1 is better than SN-2. We verified theoretically Kim’s [21] conclusions:
“The more closely a supply network follows a power-law for the degree distribution of the nodes,
the more resilient the supply network will become.” and further refine the conclusion.

Conclusion 2. Ceteris paribus, for non-core node failure, the network has higher heterogeneity with smaller y,
and has the better resilient. The resilient supply network structure will have the smaller y in a certain threshold.

—+—5N-1
SN-2

average load

100 120 140 160

Figure 17. The contrast of absorptive capacity.

09 . : ! ! ! ! .
—— SN
08 ‘\ Sh-2
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average satisfaction
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= n Bl
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01r

Figure 18. The contrast of adaptive capacity.
6.4. The Influence of Interactive Rule Design for Resilience

In order to verify the influence of interactive rule design for resilience, the experiment of EO
optimization in Section 5.2 was conducted for SN-1. At t = 0, the node i = 10 was selected as a
failure. It has middle node degree which not only can avoid node degree being too large to lose
randomness but also can make the network failure process be obvious. Setting the cycle number T
=100, the evolution curves of the total load in cascading failure were drawn. Contrast result before
and after the optimization was shown in Figure 19. Using the EO, cascading failure extent decreased
significantly. Take t3 = 52, Rp1(SN-1) = 0.752, Rpp(SN-1) = 0.873.

The EO algorithm is optimized for the nodes with the lowest fitness in the network. The setting
of local fitness in the algorithm can make the optimization process of a single node give feedback
to the whole network. This method makes improves enterprise satisfaction, and takes into account
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the saturation and the capability. This bottom-up optimization only changes individual variables.
The variables of the network as a whole do not change.

700
"‘ —+— cascade failure
g00 - - —+—interactive rule design

&00

400

total load

300

200 -

100 F

t

Figure 19. The effect of the interactive rule design.

SN-1 restores a new stable state through microconstant evolution of its self-organizing ability.
Such emergence on the macrolevel is shown as supply chain resilience. This way can eliminate
the influence brought by fluctuations, release energy, and then slow down the occurrence of
large-scale collapse.

Conclusion 3. Interactive rule based on EO algorithm balance the relationship among the satisfaction, saturation
and capacity. The method slows down the development of supercritical system. After adopting interaction rules,
the resilience of SN increased by 16.09%.

7. Conclusions

Our goal in this paper is to introduce the idea that an HRSN design based on SOC could improve
resilience. We believe that this paper has achieved the following objectives.

First, this paper proposed a theory of the supply network resilience based on SOC.

The emergence of the supply network resilience is shown through self-organization evolution.
In order to improve the efficiency and satisfaction, a slow self-organization evolution will enable
supply developing from a critical state to a subcritical state. Cascading failure will ultimately occur
because of the greater vulnerability. The supply fluctuates the critical state repeating the process after
return to the state of low efficiency. In this state the supply network has the highest efficiency to
balance the benefits and risks. We consider that resilient range is a self-organizing critical state.

Second, this paper proposed an idea of the design for supply network resilience based on SOC.

In the critical state, the efficiency is low. In supercritical, vulnerability is high. The goal of our
design is to keep the SN within the critical state. It makes the vulnerability smallest, meanwhile the
efficiency largest.

Third, this paper proposed specific methods of the design for supply network resilience.

At a macro level, network structure design makes the supply network has higher heterogeneity
with smaller y in a certain threshold. It can make the SN have better absorptive capacity to slow down
the development to supercritical. The probability of the large-scale failure will decrease. At a micro
level, the interactive rule design adopts the extremal optimization without adjusting parameters. It can
make the supply network have better adaptive capacity to stay at the critical state.

Fourth, this paper proposed macro statistical indicator and micro performance indicator to
measure the resilience.

In this paper, we study the supply network design for resilience mainly from the aspects of reducing
the vulnerability due to cascading failure. This is achieved through a bottom-up design. Recovery
measures require external intervention, and we have done research recently [35,36]. These studies are
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focused on how to mitigate epidemic impact on the healthcare supply network to control the outbreak
of an epidemic.

The disasters caused by an epidemic are different from other disasters. There are two specific
features: Long-term disruption and increasing propagation. The healthcare supply network is very
vulnerable to collapse in this COVID-19 outbreak. Better supply chain management can enable health
systems to reduce their supply expenses and cut forecasting errors optimizing supply chain management
are significant. This research not only addresses the challenges brought by the pandemic, but also can
be applied to other healthcare sectors, such as emergency medical services, blood supply, etc.
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