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Abstract: This paper forecasts the future spread of COVID-19 by exploiting the identified lead-lag
effects between different countries. Specifically, we first determine the past relation among nations
with the aid of dynamic time warping. This procedure allows an elastic adjustment of the time axis to
find similar but phase-shifted sequences. Afterwards, the established framework utilizes information
about the leading country to predict the Coronavirus spread of the following nation. The presented
methodology is applied to confirmed Coronavirus cases from 1 January 2020 to 28 March 2020.
Our results show that China leads all other countries in the range of 29 days for South Korea and
44 days for the United States. Finally, we predict a future collapse of the healthcare systems of the
United Kingdom and Switzerland in case of our explosion scenario.

Keywords: Coronavirus; COVID-19; epidemiology; incidence; dynamic time warping; lead-lag
effects; forecasting; control strategies; risk management

1. Introduction

The outbreak of the COVID-19 undoubtedly poses the biggest public health challenge since the
Spanish flu in 1918 and 1919 [1]. Multiples states, including Spain, the United States of America,
and Portugal, declared the state of emergency following a rapid surge in SARS-COV-2 infections [2–4].
According to the Johns Hopkins University [5], the virus already infected 660,706 people and killed
30,862 people worldwide (date: 28 March 2020), overwhelmed hospitals in Italy and brought the global
economy to a halt [6,7]. Also in the financial world, COVID-19 caused havoc, resulting in the worst
trading day of the S&P 500 (−9.5%) and FTSE 100 (−10.9%) since 1987 [8]. States around the world
are taking drastic countermeasures, such as complete lockdowns and social distancing, to contain the
spread [9,10].

First cases of COVID-19, which is caused by the Severe Acute Respiratory Syndrome Coronavirus 2
(SARS-CoV-2), were reported on 8 December 2019 in Wuhan, China. Most of the initial patients
had exposure to the local Huanan South China seafood market that sells a variety of wild animals,
suggesting that the zoonotic Coronavirus crossed the barrier from animal to human at this wet
market [11–13]. Notable, researcher already described in 2007 the time bomb of combining
SARS-CoV-like viruses together with the southern Chinese culture [14]. Over the last two decades,
two main epidemics were caused by other two Coronaviruses, namely the Severe Acute Respiratory
Syndrome (SARS-CoV) and Middle East Respiratory Syndrome (MERS-CoV) [15,16]. The ticking bomb
eventually exploded on 11 March 2020, when the World Health Organization declared COVID-19 as
pandemic, the first of its kind caused by a Coronavirus [17].

The dramatic effects of COVID-19 on our daily life and the economy has led to a major scientific
interest in this novel virus. At this point in time, multiple substantial questions about this pandemic
are still unanswered [18]. Besides medicine, microbiology, and bioinformatics, the outbreak of the
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COVID-19 also draws attention in the field of epidemiology and statistics. Particular focus within
those disciplines lies on time series analysis and forecasting models [19–22]. With the help of a precise
prediction of the further course of development, important countermeasures can be taken in the area
of risk management and communication. Surprisingly, the existing literature about forecasting the
Coronavirus solely considers individual, country-specific time series in their forecasting models and
neglects the lead-lag effects between countries.

This manuscript contributes to the academic world in three ways. First, we develop a novel
statistical approach to forecast future developments by taking into account lead-lag effects between
different time series. Specifically, the concept of dynamic time warping is employed to determine
non-linear relations between nations. Therefore, we are in a position to identify similar, but time-shifted,
time sequences. Next, the implemented algorithm predicts the future development of the following
time series by exploiting the information about the leading time series. Second, we apply the
algorithm to COVID-19 cases of the 10 most affected countries from 1 January 2020 to 28 March 2020.
We observe that the underlying methodology is able to detect causal relationships, e.g., China is the
worldwide source of the Coronavirus as well as Italy is the forerunner in Europa. Third, we forecast the
Coronavirus spread of each country based on the past development of China. Naturally, people and
public authorities want to be prepared for all possible scenarios to ensure the best disease prevention
and risk management. Therefore, we introduce three possible scenarios, namely, recovery, growth,
and explosion of the Coronavirus. We find that an explosion would lead to a collapse of the healthcare
systems in the United Kingdom and Switzerland.

The remainder of this paper is structured in the following way. Section 2 introduces our underlying
dynamic time warping framework. The optimal causal path algorithm of our analysis approach is
described in Section 3. In Section 4, we provide an overview of the underlying data. Section 5 applies
the developed algorithm to real-world COVID-19 data. Finally, we summarize our work and give an
outlook on future research areas in Section 6.

2. Dynamic Time Warping

Measuring similarities of time series possesses a long tradition in both literature and in practice.
The vast bulk of existing literature uses classic similarity key figures to quantify the strength of
relation [23–28]. In concrete terms, these studies measures the similarity between two time series
x = (x(1), . . . , x(N)) ∈ RN and y = (y(1), . . . , y(N)) ∈ RN by the distance

d(x, y) =
N

∑
i=1

d(x(i), y(i)), (1)

where d(x(i), y(i)) defines the distance at fixed time i (i ∈ {1, . . . , N}). An important
disadvantage of these measures is that the two time series must have the same length (N = M).
Furthermore, the measure shown in Equation (1) is very sensitive to time shifts and misalignments [29].
The concept of dynamic time warping solves these problems by introducing a highly flexible
model to identify the relation structure of two given time series x = (x(1), . . . , x(N)) ∈ RN and
y = (y(1), . . . , y(M)) ∈ RM. In general, it allows an elastic adjustment of the time axis to identify
similar but phase-shifted sequences. From the statistical point of view, we specify the similarity
between x and y by

c(x, y) =
I

∑
i=1

c(x(ni), y(mi)), (2)

where c defines the local cost measure and I ∈ {max(N, M), . . . , N + M− 1}. Dynamic time warping
efficiently finds the most appropriate nonlinear mapping by minimizing the measure shown in
Equation (2). This method is able to handle time series of different length as well as being robust
against migration, noise, and amplitude changes [30]. The concept of dynamic time warping
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is mainly founded on causal paths. Following [31], a sequence of points p = (p1, . . . , pI) with
pi = (ni, mi) ∈ {1, . . . , N} × {1, . . . , M} for i ∈ {1, . . . , I} (I ∈ {max(N, M), . . . , N + M− 1}) is called
causal path (warping path) if it meets the following three characteristics:

1. p1 = (1, 1) and pI = (N, M) (Boundary condition).
2. n1 ≤ n2 ≤ · · · ≤ nI and m1 ≤ m2 ≤ · · · ≤ mI (Monotonicity condition).
3. pi+1 − pi ∈ {(1, 0), (0, 1), (1, 1)}, ∀i ∈ {1, . . . , I − 1} (Step size condition).

Of course, the step size condition implies the monotonicity condition, but this is stated for clarity.
We define P as the set of all possible causal paths between the given time series x and y. The total cost
of a causal path p (p ∈ P) is determined by

cp(x, y) =
I

∑
i=1

c(x(ni), y(mi)), (3)

where c describes the local cost measure and c(x(ni), y(mi)) defines the gap between the realizations
of x at time ni and y at time mi (i ∈ {1, . . . , I}). Usually, the cost measure is based on the Manhattan
distance [32–34] or the Euclidean distance [35–37]. The optimal causal path p∗ between the time series
x and y possesses lowest total cost of any possible causal path:

p∗ = argmin
p∈P

cp(x, y). (4)

The total cost of p∗ is defined as cp∗(x, y), i.e., the sum of all local costs of p∗. Figure 1 illustrates the
local costs and the identified optimal warping path p∗ given two time series. Graphically, the sequence
of points p∗ runs along a “valley” of low cost (light colors) and avoids “mountains” of high cost (dark
color). In this example, p∗ is above the diagonal, i.e., the time series x leads y.

x

y

1 N
1

M
Local cost matrix and optimal causal path

Figure 1. Local costs of two time series x and y and the optimal warping path p∗ (solid line). Regions of
low cost (high cost) are presented by light colors (dark colors).

In addition to the three path conditions described above, academic studies establish local and
global restrictions with the primary purpose of speeding up computing time. Local restrictions vary the
step size condition by changing the set of potential steps or preferring certain step directions [38–41].
Global restrictions aim at limiting the deviation of a causal path from the diagonal–key representatives
are the Sakoe-Chiba-Band [42] and the Itakura parallelogram [43] (see Figure 2). However, we avoid
local and global restrictions, as both require additional parameter settings and deliever inadequate
results in most scenarios [44].
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Figure 2. Sakoe–Chiba band (left side) and Itakura parallelogram (right side) with corresponding
constraint regions.

In the 21st century, theoretical research has focused either on the development of a
generalized model framework or on the optimization of computing time. In the scope of
generalization, [45,46] include the Boltzmann factor proportional to the exponent of the global
imbalance of this path. [47] implement a symmetric variant for identifying the time-dependent
mapping. Finally, [34] quantifies the optimal lead-lag structure between two time series under the
assumption that there is no structural break in the data set. In the scope of optimization, [48] introduces
an amendment of the dynamic time warping that employs a higher order representation of the data.
Furthermore, [44,49] recursively project an alignment path calculated at a coarse resolution level to
the next higher level and then refine it. [50] dynamically exploit the possible existence of an inherent
similarity between two time series. Last but not least, [51] launch a memory constrained alignment
procedure and [52] use an upper bound estimate to limit less promising warp alignments.

Its outstanding flexibility and adaptability enables research studies to use the dynamic time
warping in a wide spectrum of different applications. First, it is employed in speech recognition
to compensate non-linear time shifts between two speech patterns as a consequence of different
pronunciation [53–55]. Most recently, dynamic time warping is mainly used in the field of
chemistry [56,57], gesture recognition [58,59], finance [34,60,61], and medicine [62,63].

3. Methodology

This section determines the lead-lag relation of two given time series x ∈ RN and y ∈ RM and
provides a forecasting based on the gained knowledge. Specifically, we i) identify the optimal warping
path, ii) determine the lead-lag relation, and iii) predict the future development of the following time
series. Following the majority of literature, we define the local cost measure c as the absolute difference
between x(ni) and y(mi) (i ∈ {1, . . . , I}), see Equation (2).

3.1. Step 1: Identify the Optimal Warping Path

First of all, we have to identify the historical non-linear relation between x and y.
Therefore, the local cost matrix is determined, i.e., we calculate all pairwise costs c(xi, yj)

∀i ∈ {1, . . . , N}, j ∈ {1, . . . , M}. Using this matrix, we search for the optimal warping path p∗,
which represents the best possible alignment for the two time series. As mentioned in Section 2, p∗ has
to fulfill the boundary condition, monotonicity condition, and step size condition. Our algorithm is
recursive: In each step, we take into account the cost between the affected points and add it to the
minimum cost we have found so far. This gives us the optimal distance of two sequences to this
position. From a technical point of view, the following recursion scheme is applied:

cp(xi, yj) := c(xi, yj) + min(cp(xi−1, yj), cp(xi, yj−1), cp(xi−1, yj−1)) (i ∈ {2, . . . , N}, j ∈ {2, . . . , M}).

In the marginal areas, i.e., i or j equals 1, we adapt this equation by neglecting not available total
costs. By the recursive procedure we obtain the optimal warping path p∗ between x and y.
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3.2. Step 2: Determine the Lead-Lag Relation

After finding the optimal causal path, we determine by how many lags l time series x leads time
series y—without loss of generality y can also lead x. For this purpose, the optimal lag l is identified
by determining the average between the differences of the indices of p∗. Concretely, we calculate the
median, i.e., the value separating the higher half from the lower half of a data sample. Following [34],
this procedure supports to receive a robust estimation of the optimal lag because temporally noise
terms have almost no influence. In a similar spirit, we calculate the standard deviation of the differences
of the indices of p∗. Consequently, we receive a kind of confidence interval that provides information
that the true lag is in the proposed range. Negative values indicate that time series x leads time series y
and vice versa–zero means that they do not influence each other.

3.3. Step 3: Forecast the Future Development

Last but not least, we use the information from step 2 to predict the future of the
following time series. To be more specific, we know that x leads y by l lags or vice versa.
Consequently, the development of the next l lags of y equals the behaviour of y of the last l days.
Both time series possess a different level which is why we forecast based on cumulative returns of x
and y. Following [64,65], predictions are naturally always associated with uncertainty. Therefore, we
distinguish the following three scenarios:

• Recovery: The forecasts are based on the assumption that the development of the following time
series will be degressive in the future. The time series y increases to a lesser extent in relation to
the change in time.

• Growth: This scenario predicts data taking into account that there is a normal development.
The currently existing circumstances and conditions are projected into the future.

• Explosion: Forecasts are conducted by assuming that things are getting out of hand. Therefore,
the instantaneous rate of change is proportional to the quantity itself.

4. Data

This section provides an overview of past development and the status quo of the COVID-19
spread across different countries (We thank [66] for providing the data). Figure 3 illustrates the
confirmed COVID-19 case time series of the ten countries where the disease is most prominent, namely
United States, Italy, China, Spain, Germany, France, Iran, United Kingdom, Switzerland, and South
Korea. This data set serves as a crucial test for any statistical methodology since it covers 80 % of all
COVID-19 cases. It is clearly perceivable that China leads the overall trend. This fact is not surprising
as COVID-19 originated in China. Despite the ineffective risk communications of the official authorities,
China managed to drastically slow the spread of COVID-19 in March 2020 [67]. Ultimately, China’s
confirmed cases got surpassed by Italy and the United States in the same month. This is particularly
remarkable under consideration of the population of those countries. China has around 4.26 (23.05)
times the population of the United States (Italy) [68]. This could be partially driven by a lack of testing
in the beginning of the pandemic [69]. The European countries Spain, Germany, and France show
both a similar date of the outbreak and simultaneous developments. All other states, except South
Korea, show an accelerating behavior. Similar to China, South Korea managed to contain the virus by
undertaking strong countermeasures .
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Figure 3. Number of confirmed COVID-19 cases for the 10 most affected countries United States (US),
Italy, China, Spain, Germany, France, Iran, United Kingdom (UK), Switzerland, and South Korea from
1 January 2020 to 28 March 2020.

5. Application to COVID-19

This section applies the methodology outlined in Section 3 to COVID-19 data. Therefore,
we identify the lead-lag relations (Section 5.1) and predict future developments (Section 5.2).

5.1. Lead-lag Relation between Countries

Table 1 shows the pair-wise confidence intervals of the estimated lags between the top 10 countries.
Overall, we observe that China’s time series is the worldwide source of the COVID-19 because all
pairwise combinations with China as first country possess negative values. Therefore, China leads
Italy by 31 days—in other words, Italy’s confirmed cases are around one month behind those of China.
South Korea ranks second in the progression of the trend. Its curve is with China the only one that is
already flattening out. All other nations are still in their growth phase. It is worth mentioning that
regardless of the high number of confirmed cases, the United States is still 44 days in arrears to China.
Iran is ahead of most European countries with the exception of Italy. From a European point-of-view,
Italy is leading the pandemic wave. The United Kingdom and Switzerland are 12 and 44 days behind
Italy and China, respectively. Hence, those countries are more likely to experience strong exponential
growth in the days to come. France, Germany and Spain are despite time shifted containment actions
at the same stage of the outbreak.

Table 1. Pair-wise confidence intervals of the estimated lags between the countries. Negative values
indicate that the first country (row) leads the second country (column) and vice versa.

China Italy France Germany Spain Switzerland UK US S. Korea Iran

China - (−44, −18) (−64, −18) (−50, −26) (−57, −23) (−60, −28) (−59, −29) (−59, −29) (−37, −21) (−46, −24)
Italy - - (−11, −7) (−8, −8) (−10, −8) (−14, −10) (−15, −9 ) (−13, −11) (−3, 7) (−7, −1)
France - - - (0, 0) (0, 0) (−4, −2) (−3, −3) (−3, −1) (7, 15) (3, 7)
Germany - - - - (−2, 0) (−5, −3) (−5, −3) (−3, −3) (9, 15) (2, 6)
Spain - - - - - (−4, −2) (−4, −2) (−3, −1) (9, 13) (5, 9)
Switzerland - - - - - - (0, 0) (−1, 3) (16, 24) (12, 16)
UK - - - - - - - (1, 1) (14, 26) (11, 17)
US - - - - - - - - (12, 16) (6, 10)
S. Korea - - - - - - - - - (−8, −4)
Iran - - - - - - - - - -
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5.2. Forecast of Future Incidence in Countries

Figure 4 displays the projected development of COVID-19 cases in the top 9 countries based on
China—the lead. As mentioned in Section 3, we analyze three potential scenarios, namely explosion,
growth and recovery, and how they affect individual countries. At first glance, we are able to classify
those countries in three stages—early (Switzerland, United Kingdom, and United States), mid (France,
Germany, Spain) and late (Italy, South Korea and Iran). Countries in the first two stages are expected
to face severe exponential growth in the future while late stage states can expect the curve to flatten.

Italy already faced their biggest growth. Even in the most adverse scenario, Italy’s cases would
grow around 45%. This is modest compared to the other European countries and illustrates a
characteristic of late stage countries. Italy is one of the most affected states. Hospitals are overwhelmed
and military vehicles are in use to transport coffins to remote cremation sites as morgues collapsed
under the number of Coronavirus deaths [70]. The government took several measures to contain
the virus. Since 9 March 2020 Italy is in total lockdown, extending the existing Northern area
restrictions [71].

The variety of outcomes of our scenarios is still wide as France is at mid stage. In the worst-case,
France could see around 160,000 confirmed COVID-19 cases. Based on the growth case, this number
would be slightly less than half of the explosion scenario. To slow the spread, France extended their
nationwide lockdown until 15 April 2020, disrupting the daily life of 67 million people [68,72].

Germany’s healthcare system is currently preparing for a surge in COVID-19 cases.
Industrial giants like Volkswagen and Daimler support the authorities with deliveries of critical
medical goods, such as face masks, and the production of healthcare wares [73,74]. Despite the general
preparedness, the government tries to curb the number of new infections. Hence, Germany imposed
strict contact restrictions—a general lockdown is only in place in Bavaria [75,76]. Germany could still
see an increase of 130% in COVID-19 cases based on the explosion case. The other scenarios predict an
increase of 50% (growth) and 10% (recovery).

Lockdowns seem to be the preferred action of governments in the fight against SARS-CoV-2.
Spain tightened their lockdown by closing all non-essential workplaces for two weeks as it faces
a potential surge of 200% in the explosion scenario [77]. Even under the more favourable growth
assumptions, cases would double. Only under recovery, the number would flatten out below 100,000.
This seems fairly unrealistic as Spain keeps on topping one sad record after another. So did Spain just
record a new daily death toll of 769 (date: 28 March 2020) [78].

Switzerland, the neighbour country of Italy, Germany, and France, is still at an early stage.
The Swiss government declared the state of emergency on 16 March 2020 and utilized the army to
support medical facilities [79,80]. Nonetheless, the low case number imply rapid growth potential.
The total numbers range from 20,000 (recovery) to 200,000 (explosion), illustrating the huge variety
across scenarios in an early stage nation.

In the United Kingdom, not even the Prime Minister nor the Royals are spared from
COVID-19 [81,82]. The government recently joined other European governments and imposed a
lockdown after less stricter actions did not play out [83]. The nation is still in the beginning of
the outbreak, leaving enormous increase potential for the virus. In the growth case, the Kingdom
would face around 75,000 cases while this would increase to approximately 250,000 in the explosion
scenario. Such horrendous numbers would presumably lead to the breakdown of NHS, the UK’s
public healthcare system.

Looking over the transatlantic, the United States faces a similar challenge as the United Kingdom.
The United States is currently in a bad position to tackle the outbreak. The country is missing
coordinated actions on a federal level, with each every state is undertaking its own measures. New York
completely shut down while Texas’ Lieutenant Governor Dan Patrick said he is willing to die to save
the economy for his grandchildren, indicating no intentions to contain SARS-CoV-2 [84,85]. The United
States could see a seven fold increase in the number of cases. In the best scenario the United States
confirmed COVID-19 infections could stay below 200,000. In explosion, the cases could surpass 800,000.
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South Korea is with China the only country that managed to slow the spread substantially.
Both countries followed well coordinated strategies but with totally different measures. China heavily
restricted domestic movements and immigration while South Korea followed a softer approach. South
Korea’s strategy was since the beginning of the outbreak to test as many people as quick as possible.
To contain the spread at an early stage they came up with innovative ideas such as drive-through
COVID-19 testing facilities and personalized text messages about nearby COVID-19 cases [86].
Through those actions, the spread has never accelerated like in the other nations. Furthermore,
the government imposes mandatory quarantine and tests on all arrivals to prevent a second wave [87].
Hence, South Korea can claim the lowest number of COVID-19 cases in our sample. In all scenarios,
cases stay below 15,000—a number Italy already surpassed in early March. South Korea illustrates
how significant the impact of excellent disease prevention and risk management can be.

Interestingly, Iran is the only middle eastern country under the top affected countries. This seems
odd as Iran is heavily sanctioned by the West which limits international interactions. The downing of
Ukraine International Airlines Flight 752 in January did certainly not help either to boost international
travel [88]. According to the Iranian health ministry, every 10 minutes one person dies from COVID-19
and 50 people are infected every hour [89]. The early and rapid spread of the disease in Iran is mainly
caused by the close trading partnership with China, inadequate cautionary measures and a lack of
drastic actions to contain the spread [90]. In our analysis, Iran could face a peak level of 65,000 (50,000)
in the worst-case (mid-case) scenario.

Table 2 conducts a stress test for the countries Italy, France, Germany, Spain, Switzerland, United
Kingdom (UK), United States (US), South Korea, and Iran (We thank [91] and [92] for providing the
data). For this purpose, the number of intensive care unit (ICU) beds presents the upper limit of
people who can be medicated in hospital. Furthermore, we calculate the number of newly incoming
COVID-19 cases between 12 April 2020 and 26 April 2020 in the case of explosion. We choose this
time period because this is the predicted peak of our crisis (see Figure 4). Furthermore, we assume
that infected people are sick for 2 weeks [93]. According to the World Health Organization’s Regional
Office for Europe, 9.90% and 47.82% of COVID-19 cases need intensive care units and hospitalization,
respectively [94]. Based on those data, we create the variable “Collapse” which compares the number
of ICU beds and our COVID-19 forecasts in the explosion case. Particularly, we display “Yes”, “No”,
and “Unclear” by applying the following rules:

• “Yes” if there are less ICU beds than 9.90% of predicted COVID-19 cases.
• “No” if there are more ICU beds than 47.82% of predicted COVID-19 cases.
• “Unclear” if number of ICU beds falls in our margin of safety of 9.90% to 47.82% of

COVID-19 cases.

First of all, we observe that the United States possesses by far the most beds (205,000)—Germany
follows in second place with 24,000 beds. All other countries are equipped with less than 10,000 supply
points. Six out of nine countries, namely, Italy, France, Germany, United States, South Korea and Iran,
are in a position to safely survive the case explosion. Spain might be able to manage this scenario
without help. United Kingdom and Switzerland would run into problems as severe COVID-19 cases,
that require intensive care, exceed the number of ICU beds. Of course, a key challenge for countries
with a large surface area, such as the United States, is the distribution of ICU beds. Local clusters could
lead to insufficient intensive care in that area without chance to transfer patients to other hospitals that
operate below capacity. This would also result in a collapse of the healthcare system.

It should be noted that the explosion scenario covers the worst case. Nevertheless, all countries
should be aware that the COVID-19 pandemic confronts them with severe challenges.
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Figure 4. Forecast of COVID-19 cases for Italy, France, Germany, Spain, Switzerland, United Kingdom
(UK), United States (US), South Korea, and Iran.
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Table 2. Population, intensive care unit (ICU) beds, forecast of newly incoming COVID-19 cases
between 12 April 2020 and 26 April 2020, and if there is a collapse in the healthcare system of Italy,
France, Germany, Spain, Switzerland, United Kingdom (UK), United States (US), South Korea, and Iran.

Country Population ICU Beds COVID-19 Cases Explosion Collapse

Italy 60,431,280 7500 14,258 No
France 66,987,240 7500 14,804 No
Germany 82,927,920 24,000 9540 No
Spain 46,723,750 5000 20,039 Unclear
Switzerland 8,516,540 1000 40,346 Yes
UK 66,488,990 4500 49,621 Yes
US 327,167,430 205,000 138,211 No
South Korea 51,635,260 5500 1620 No
Iran 81,800,270 4000 4442 No

6. Conclusions

This manuscript predicts the future spread of the Coronavirus by exploiting the identified lead-lag
structure between different countries. In this respect, we make three main contributions to the
existing literature. The first contribution bears on the developed statistical approach, which captures
time-varying lead-lag structures between two time series. The use of dynamic time warping allows
to identify similar, but time-shifted, time series. Therefore, we are able to forecast the following time
sequence based on the past development of the leading time series. The second contribution relies
on the application of Coronavirus infections from 1 January 2020 to 28 March 2020. We find causal
relationships, e.g., China leads all other countries in the range of 29 days for South Korea and 44 days
for the United States. The third contribution refers to the forecast of future COVID-19 developments
based on the gained information from China. We distinguish between the scenarios recovery, growth,
and explosion to guarantee the best possible disease prevention and risk management. The healthcare
systems of the United Kingdom and Switzerland would collapse in case of our explosion scenario.
For further investigations in this research area, hidden Markov models may be explored in order to
receive probability distributions. Next, a multivariate framework could be implemented in order to
account for common interactions between countries. Finally, the framework might be applied to other
research areas, such as the recognition of human actions or robot programming.
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